Supplementary Materials

Coke deposition mechanisms of propane dehydrogenation on different sites of Al₂O₃ supported PtSn catalysts

Jianhao Jiao^{1,2}, Ye Yang^{2,*}, Maojie Yuan², Xuqi Tang², Mengfan Shi², Kai He^{1,2}, Haijuan Zhang², Yanfeng Bi², Yucai Qin², Lijuan Song^{1,2,*}

¹College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong, China.
²Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, Liaoning, China.

*Correspondence to: Dr. Ye Yang, Prof. Lijuan Song, Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, No.1 Dandong Road West Section, Wanghua District, Fushun 113001, Liaoning, China. E-mail: yangye56@163.com; lsong@lnpu.edu.cn

Supplementary Figure 1. XRD patterns of the Al₂O₃ (a), Sn-Al₂O₃ (b), Pt/Al₂O₃ (c), Pt/Sn-Al₂O₃ (d) catalysts.

Supplementary Figure 2. TEM images of the Pt/Sn-Al₂O₃ sample. Scale bars: 20 nm (A); 10 nm (B); 5 nm (C); 2 nm (D).

Supplementary Figure 3. STEM images and EDX element-mapping analysis of Sn-Al₂O₃ (A), Pt/Al₂O₃ (B) and Pt/Sn-Al₂O₃ (C) samples and particle size distributions of Pt/Al₂O₃ (D) and Pt/Sn-Al₂O₃ (E) samples.

Supplementary Figure 4. NH₃-TPD curves of Al₂O₃, Sn-Al₂O₃, Pt/Al₂O₃ and Pt/Sn-Al₂O₃ samples.

Supplementary Figure 5. FTIR spectra of pyridine adsorption on Al₂O₃, Sn-Al₂O₃, Pt/Al₂O₃ and Pt/Sn-Al₂O₃ samples after desorption at 150 °C (A) and 400 °C (B) for 0.5 h.

Supplementary Figure 6. FTIR spectra acquired during dehydration of the Al₂O₃ sample at various temperatures.

Supplementary Figure 7. Product distribution of different catalysts as a function of time on stream during propane dehydrogenation for Al_2O_3 (A), $Sn-Al_2O_3$ (B), Pt/Al_2O_3 (C), and $Pt/Sn-Al_2O_3$ (D) samples. Dehydrogenation conditions: $m_{catalyst} = 100$ mg, $C_3H_8/H_2 = 1/1$ (2.3 mL min⁻¹ of propane and 2.3 mL min⁻¹ of H₂), $T_{reduction} = 500$ °C, $T_{reaction} = 600$ °C, GHSV= 1,000.

Supplementary Figure 8. Sn 3d XPS spectra of Sn-Al₂O₃ and Pt/Sn-Al₂O₃ samples.

Supplementary Figure 9. H₂-TPR profiles of Sn-Al₂O₃, Pt/Al₂O₃ and Pt/Sn-Al₂O₃ samples.

Supplementary Figure 10. H₂-TPD profiles of the Pt/Al₂O₃ and Pt/Sn-Al₂O₃ samples.

Supplementary Figure 11. FTIR spectra of CO adsorption on the fresh Al₂O₃,

Sn-Al₂O₃, Pt/Al₂O₃ and Pt/Sn-Al₂O₃ catalysts.

Supplementary Figure 12. Pt 4d XPS spectra of Pt/Al₂O₃ and Pt/Sn-Al₂O₃ samples.

Supplementary Figure 13. Conversion and selectivity as a function of time during propane dehydrogenation for Pt/Sn-Al₂O₃ samples. Dehydrogenation conditions: $m_{catalyst} = 100 \text{ mg}, C_3H_8/H_2 = 1/1 \text{ (2.3 mL min^{-1} of propane and 2.3 mL min^{-1} of H_2)},$ $T_{reduction} = 500 \text{ °C}, T_{reaction} = 600 \text{ °C}, \text{ GHSV} = 1,000.$

Supplementary Figure 14. Raman spectra of the Al₂O₃ (a), Sn-Al₂O₃ (b), Pt/Al₂O₃ (c), Pt/Sn-Al₂O (d) catalyst after 3.3 h of reaction and Pt/Sn-Al₂O-100h (e) catalyst after 100 h of reaction.

Supplementary Figure 15. Confocal fluorescence intensity maps of the Al₂O₃ (A), Sn-Al₂O₃ (B), Pt/Al₂O₃ (C), Pt/Sn-Al₂O (D) catalysts after 3.3 h of reaction and Pt/Sn-Al₂O-100h (E) after 100 h of reaction, (F) The applied laser excitation wavelengths are 405 nm, 488 nm, 561 nm, and 640 nm. The inset is the enlarged profiles (f2). The detection area is full spectrum detection. Minor adjustments in the saturation level have been made to decrease the overexposure level.

Supplementary Figure 16. FTIR spectra of CO adsorption on the fresh Pt/Sn-Al₂O₃ sample and the Pt/Sn-Al₂O₃ sample after pulse C₃H₈ and pulse C₃H₈/H₂ mixture (volume ratio=1:1).

Samples	Characterize	Highlights	
		The coke mainly consists	
Reacted Pt-Sn/Al ₂ O ₃ ^[1]	GC-MS, IR, Raman	of three kind of species:	
		aliphatics, aromatics, and	
		pregraphite	
Reacted Pt-Sn/Al ₂ O ₃ ^[2]	ТРО	The coke is located on the	
		metal, in the vicinity of	
		the metal, and on the	
		carrier	
$Pt-Sn/Al_2O_3^{[3]}$	Transient	Identified the reversible	
	experiments	and irreversible coke on	
		the catalysts	
Reacted Pt/Al ₂ O ₃ ^[4]	GC-MS, IR	The coke is pyrene and	
		methyl pyrene are the	
		main components.	
Reacted Pt-Sn/Al ₂ O ₃ ^[5]	XRD, XPS, TPO	The pregraphite-like	
		carbon is the main	
		component of coke	
$Pt-Sn/Al_2O_3$, $Pt/Al_2O_3^{[6,7]}$	Operando Raman	The physicochemical	
		properties of the coke	
		change with time on	
		stream and regeneration	
		times	
$Pt/Al_2O_3^{[8]}$	DFT	Revealing the Janus	
		character of the coke	
		precursor in the propane	
		direct dehydrogenation	
		on Pt catalysts from a	
		kMC simulation	

Supplementary Table 1. Study on coke composition and location of different Pt-based catalysts

	binding energy (eV)				
Sample	Pt ⁰	Pt ²⁺	Pt ⁴⁺	Pt ²⁺ /Pt ⁰	
Pt/Al ₂ O ₃	313.5 (81.1%)	315.9 (7.5%)	316.8 (11.3%)	0.09	
Pt/Sn-Al ₂ O ₃	313.7 (76.6%)	316.0 (12.2%)	316.8(11.2%)	0.16	

Supplementary Table 2. Curve-Fitting Parameters for Pt 4d_{5/2} XPS Spectra of Fresh Catalysts

Supplementary Table 3. Curve-Fitting Parameters for Sn 3d XPS Spectra of Fresh Catalysts

	binding energy	/ (eV)	
Sample	Sn ⁴⁺	Sn ²⁺	Sn ⁰
Pt/Sn-Al ₂ O ₃	495.5, 487.0	494.6, 486.2	492.7,484.4
	(74.0%)	(4.4%)	(21.5%)

Samples	C (wt %)	H (wt %)	H/C (mol ratio)
Al ₂ O ₃	0.89	1.17	15.85
Sn-Al ₂ O ₃	0.65	1.06	19.59
Pt/Al ₂ O ₃	15.2	1.10	0.87
Pt/Sn-Al ₂ O ₃	3.06	1.0	3.96
Pt/Sn-Al ₂ O ₃ -100h	12.5	0.94	0.91

Supplementary Table 4. Compositions of the Coke on Catalysts

Supplementary Table 5. Catalytic properties of propane dehydrogenation over catalysts used in this work^a

Sample	Conversi	ion [%]		K _d ^b	τ ^c
	0.5h	3.3h	100h	[h ⁻¹]	[h]
Al ₂ O ₃	6.8	2.0		0.053	19
Sn-Al ₂ O ₃	9.8	5.3		0.028	36
Pt/Al ₂ O ₃	74.5	32.5		0.075	13
Pt/Sn-Al ₂ O ₃	32.6	19.3		0.029	34
Pt/Sn-Al ₂ O ₃ -100h	32.6		7.6	0.073	14

^aReaction temperature, 600°C; 50.5 kPa C₃H₈, 50.5 kPa H₂. ^bk_d, deactivation rate constant, calculated from ln[(1-X_{final})/ -X_{final}]=k_d*t+ln[(1--X_{final})/ -X_{final}]. ^cTime required for rates to decrease by e^{-1} , $\tau=1/k_d$.

REFERENCES

 Wang H, Sun L, Sui Z, et al.Coke formation on Pt-Sn/Al₂O₃ catalyst for propane dehydrogenation. *Ind. Eng. Chem. Res.* 2018; 57: 8647-54. [DOI: 10.1021/acs.iecr.8b01313].

2. Larsson M, Hulten M, Blekkan EA, Andersson B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation. *J. Catal.* 1996;164:44-53. [DOI:10.1006/jcat.1996.0361].

3. Larsson M, Henriksso N, Andersson B. Estimation of reversible and irreversible coke by transient experiments. *Stud. Surf. Sci. Catal.* 1997;111:673-80. [DOI:10.1016/S0167-2991(97)80213-3].

4. Jackson SD, Grenfell J, Matheson IM, Munro S, Raval R, Webb G. Deactivation and regeneration of alkane dehydrogenation catalysts. *Stud. Surf. Sci. Catal.* 1997;111:167-74. [DOI:10.1016/S0167-2991(97)80152-8].

5. Vu BK, Song M, Ahn IY, et al. Location and structure of coke generated over Pt-Sn/Al₂O₃ in propane dehydrogenation. *J. Ind. Eng. Chem.* 2011;17:71-6. [DOI: 10.1016/j.jiec.2010.10.011].

6. Iglesias-Juez A, Beale AM, Maaijen K, Weng T, Glatzel P, Weckhuysen BM. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. *J. Catal.*

2010;276:268-79.[DOI:10.1016/j.jcat.2010.09.018].

7. Sattle JJHB, Beale AM, Weckhuysen BM. Operando Raman spectroscopy study on the deactivation of Pt/Al₂O₃ and Pt-Sn/Al₂O₃ propane dehydrogenation catalysts. *Phys. Phys. Chem. Chem. Phys.* 2013;15: 12095-103. [PMID:23615824 DOI:10.1039/c3cp50646k].

8. Lian Z, Ali S, Liu T, Si C, Li B, Su D. Revealing the Janus Character of the Coke Precursor in the Propane Direct Dehydrogenation on Pt Catalysts from a kMC Simulation. *ACS Catal.* 2018;8:4694–704.[DOI:10.1021/acscatal.8b00107].

15