Supplementary Material

Suppleme	entary Ta	ible 1.	Principal	studies	evaluating	metabolic	risk f	factor f	for the	e devel	opment	of HCC
----------	-----------	---------	-----------	---------	------------	-----------	--------	----------	---------	---------	--------	--------

Author,[Ref]	Series	Findings	Conclusion
Nair, <i>et al</i> . ^[63]	Study conducted among 19,271	Obesity was an independent predictor of HCC	Obesity was an independent risk factor
	evaluable patients belonging to the	among individuals with alcoholic cirrhosis (OR,	for HCC in patients with advanced
	UNOS database on all liver	32; 95%CI: 15-66; <i>P</i> = 002) and cryptogenic	cirrhosis However, the risk seemed to
	transplantations from 1991 to 2000	cirrhosis (OR, 111; 95%CI: 15-874; <i>P</i> = 02)	be primarily associated with alcoholic
		However, it was not an independent predictor of	liver disease and cryptogenic cirrhosis
		HCC among subjects with hepatitis C, hepatitis	rather than other etiologies of CLD
		B, PBC and AIH	
Ohata, et al. ^[64]	Out of 218 HbsAg-negative	At multivariate analyses hepatic steatosis was a	Hepatic steatosis is an independent
	individuals with chronic hepatitis	significant independent risk factor for HCC	risk factor for HCC in patients with
	or cirrhosis, 161 patients with	(together with aging, cirrhosis, and no IFN	chronic HCV infection
	chronic HCV infection who were	treatment)	
	followed for > 6 months were		
	enrolled in this study		
	The average follow-up was 765		

	months (64 years)		
Tanaka, <i>et al</i> . ^[65]	Clinical, viral and histological data	The cumulative incidence for HCC significantly	Although multivariate analysis was
	of 266 patients who achieved SVR	differed according to liver fibrosis (F3-4) ($P =$	not performed in this study, data
	with IFN therapy and who were	00028), hepatic steatosis (Grade 2-3) ($P = 00002$)	suggest that hepatic steatosis, together
	thereafter submitted to a regular	and age (\geq 55) ($P = 0021$) at the pre-interferon	with fibrosis and age, was associated
	follow-up for an average 99 \pm	treatment	with HCC in individuals treated with
	41-year period, were		IFN for cronic hepatitis owing to HCV
	retrospectively reviewed		infection
Ohki, <i>et al</i> . ^[66]	62 patients with naive	At multivariate analysis	VFA is an independent
	NASH-HCC treated with PRA	VFA (risk ratio 108, per 10 cm ² , $P = 0046$) and	risk factor of HCC recurrence after
	were divided into two groups based	older age (risk ratio 106 per 1 year, $P = 004$)	PRA in patients with naive
	on VFA assessed with CT scan	were independently associated with HCC	NASH-HCC
	images: the high VFA group (> 130	recurrence	This study supports the notion that
	cm^2 in males, > 90 cm^2 in females,		VFA links the previously reported
	n = 27) and the others ($n = 35$)		nexus of BMI with HCC risk
El-Serag, et al. ^[67]	This prospective study enrolled	Diabetes was associated with an HRR of 198	The presence of diabetes was
	173,643 individuals with and	(95%CI: 188 to 209, <i>P</i> < 00001) of CNLD and an	associated with a two-fold increased
	650,620 without diabetes	HRR of 216 (186 to 252, <i>P</i> < 00001) of HCC	risk of CNLD and HCC

	Based on the duration of follow-up:		Diabetes preceded the diagnosis of
	either \leq 5 years, 5 to 10 years, or >	Diabetes was associated with the highest risk	both CNLD and HCC and there was a
	10 years three subgroups of	among those with a > 10-year follow-up	significant duration response
	patients were identified		These findings strongly suggest cause
			and effect association
Tseng, et al. ^[68]	Out of 1,000,000	Diabetes was not a risk factor for HCC in either	This study conflicts with other
	individuals who had been	sex:[multivariable adjusted RR 0932 (CI	investigations in as much as it reported
	randomly selected from the	0788-1101) for men and 1158 (CI 0968-1386) for	that diabetes was not an independent
	Taiwanese National Health	women] after considering the effects of	risk factor for HCC
	Insurance database, 494,080 men	confounding factors such alcohol-related	
	and 502,841 women without HCC	diagnoses, CLD and potential detection bias	The short duration of follow-up may
	were followed-up for two years		account for these negative results
Regimbeau, et	Out of 210 CLD patients submitted	Compared to matched	Evaluation of surgically treated
al. ^[69]	to hepatic resection owing to HCC,	controls in whom HCCs were associated with	patients supports the notion that
	18 (86%) had cryptogenic liver	alcohol and CVH, in individuals with	obesity and diabetes mellitus are
	disease	crypto-HCCs the prevalence of obesity (50% vs.	major risk factors for cryptogenic
		17% vs. 14%), diabetes (56% vs. 17% vs. 11%),	CLD in HCC patients
		AST /ALT < 1 (50% vs. 19% vs. 17%), and	
		steatosis > 20% (61% vs. 17% vs. 19%) was	

		significantly higher Among these patiens with crypto-HCCs well-differentiated cancers (89%) were significantly more common ($P < 00001$ for all comparisons) than in patients with HCCs related to alcohol (64%) and in those with HCCs related to CVH (55%)	
Watanabe, <i>et</i> <i>al</i> . ^[70]	Prospective study of 85 consecutive HCC cases submitted to curative treatment options were followed-up to ascertain cancer recurrence	At multivariate analysis serum leptin concentration (HR 125, 95%CI:107-149, $P =$ 00035) as significant independent risk factor for HCC recurrence	Individuals with high serum leptin concentrations are at risk of recurrent HCC after surgical resection or RFA
Jain, <i>et al</i> . ^[71]	Clinicopathological study conducted on OLT recipients: 47 cases had NAFLD-cirrhosis (HCC was present in 8 of these); and 75 cases had alcohol-related cirrhosis (HCC was present in five of these)	The HCC steatohepatitic variant is a histologic hallmark of association with NAFLD-cirrhosis risk factors This type of HCC was much more common among those with alcohol-related cirrhosis	NAFLD risk factors are associated not only with cirrhosis but also with HCC

Gupta, et al. ^[72]	20 HCC cases were compared to	Compared to fasting insulin concentrations < 275	There seems to be a parallel gradient
	200 healthy controls	μ U/ml, values > 610 μ U/ml were associated with	in the HCC risk, which mirrors
		a 236-fold increased risk of HCC and insulin	increasing fasting insulin values
		values in the 275-410 μ U/ml range were	
		associated with a 157-fold increased HCC risk	
Ibrahim, <i>et al</i> . ^[73]	Three groups of individuals were	HOMA-IR > 37, insulin > 9 μ U/L and DM were	This study supports insulin resistance
	evalated: 100 cases of HCV-related	found to be independent predictors of HCC	as a risk factor in HCV-related HCC
	HCCs; 60 HCV- related CLD		
	patients; and 40 healthy controls		
Kamachi, et al. ^[74]	Retrospective analysis of 92	At multivariate Cox analysis, sarcopenia	Sarcopenia predicts HCC recurrence
	consecutive HCC naive patients	(together with baseline	in patients
	with HCV-related cirrhosis in	α -fetoprotein > 40 ng/mL) were independently	submitted to curative procedures
	Child-Pugh A class	associated with HCC recurrence	
Azuma, et al. ^[75]	182 NAFLD patients were	At multivariate analysis, DR (OR 8654; P =	DR and NFS are risk factors
	recruited; 22 out of 182 had HCC	0017) was independently associated with the	associated with the development of
		development of HCC after adjusting for the NFS	HCC in NAFLD patients
		The AUC of DR was significantly higher than	DR may guide HCC screening among

		that of diabetes (0731 vs. 0615; $P < 0001$) for predicting the development of HCC	NAFLD patients
Valdés-Peregrina,	74 HCC cases (out of a series of	23 patients (33%) had cirrhotic HCCs defined as	One out of three non-cirrhotic HCCs
<i>et al</i> . ^[76]	1863 liver biopsies) were	\leq 3 stage of fibrosis Of these 23, 8 had T2D and 6	has either SH or conditions known to
	identified, and 18 were cryptogenic	HTN; SH-HCC variant was found in 4 and 5 had SH in the remnant liver	be associated with the MetS
		No molecular evidence of aflatoxin exposure was	
		found in HCCs with/without "classical" risk	
		factors	
Ohki, et al. ^[77]	1431 CHC patients were divided	The incidence rate of HCC significantly varied	Among CHC patients the risk of
	into 4 groups based on their BMI	among the various BMI groups ($P = 007$)	incident HCC increases in parallel
	values[underweight (< 185 kg/m ² ,	After adjusting for confounding factors,	with increasing BMI values
	N = 112); normal (185 to less than	compared to those underweight patients, both	
	25 kg/m^2 , N = 1023); overweight	overweight and obesity were found to be	
	(25 to less than 30 kg/m ² , N =	independent risk factors of HCC [HR 186	
	265); and obese (> 30 kg/m ² , N =	(95%CI: 109-316; <i>P</i> = 022) and 310 (95%CI:	
	31)] and followed-up for a mean	[141-681; P=005)]	
	61-year period		

Konishi, et al. ^[78]	This retrospective study recruited	Compared to patients with either NGT or IGT, in	Assessment of glucose tolerance with
	197 HCV patients whose glucose	patients with DM pattern* HCC occurred more	OGTT provides useful information
	tolerance was evaluated with the 75	frequently	regarding the risk of developing HCC
	g OGTT		among those with HCV infection
	The mean follow-up period was	At multiple LRA, advanced hepatic fibrosis, the	
	7845 months	DM pattern (at the 75 g OGTT), older age and	
		GGT were all independent factors of HCC	
Takahashi, <i>et</i>	203 HCV-RNA-positive adults	The independent predictors of HCC at	Post-load hyper-glycemia is a strong
al. ^[79]	submitted to liver biopsy and a 75	multivariate analysis were: male sex, age > 65	risk factor for the development of
	g OGTT and treated with IFN were	years, excessive alcohol consumption, non-SVR,	HCC among HCV-RNA positive
	recruited	biopsy-proven steatosis, and 2-hour post-load	individuals
		hyperglycemia	
	Aimed at identifying the		
	development of HCC, the average	Advanced fibrosis stages (HR 28), hepatic	
	follow-up was 520 ± 195 months	steatosis (HR 54), and 2-hour post-load	
		hyperglycemia (HR 49) were significant risk	

		factors for the development of HCC after	
		matching patients for sex, age, alcohol	
		consumption, and response to IFN treatment	
		Among these, only hepatic steatosis (HR 57) and	
		2-hour post-load hyperglycemia (HR 69)	
		remained significantly associated with HCC	
		occurrence after matching for the stage of hepatic	
		fibrosis	
Li, <i>et al</i> . ^[80]	Retrospective evaluation of 112	At LRA, DM was associated with a 2-fold to	Among Chinese individuals with
	patients with HCC and chronic	3-fold increased risk of HCC (AOR: 2402;	chronic HBV infection, DM (together
	HBV infection and 210 (age- sex-	95%CI: 1150-5018) and HBV viral load was	with cigarette smoking and high viral
	and cirrhosis-) matched	associated with a nearly 2-fold increased HCC	load) is an independent risk factor for
	non-diabetic individuals with	risk (AOR: 1753; 95%CI: 1079-2849); cigarette	the development of HCC
	chronic HBV infection without	smoking was associated with a 1-fold to 2-fold	
	НСС	increased risk of HCC (AOR: 1665; 95%CI:	
		1031-2690)	
Kurosaki, et al. ^[81]	Retrospective single-center cohort	At multivariate analysis, a higher steatosis extent	The finding that, in CHC, steatosis is a
	study on 1279 CHC patients treated	was significantly associated with HCC	significant and independent risk factor

	with IFN therapy in Japan	irrespective of age, sex, BMI, stage of fibrosis,	of HCC suggests that HCC may be
		and non-SVR	prevented through treatment of
	After IFN treatment, 393 were		steatosis
	SVR and 886 non-SVR	The ARR of steatosis (304; CI 182-506, <i>P</i> <	
		00001) was higher than that of age (109), sex	
	All were followed-up (average	(212), non-SVR (243) and BMI (169)	
	period 45 years) with semi-annual		
	surveillance for early diagnosis of		
	НСС		
Ji, et al. ^[82]	This follow-up study (median	By adjusted Cox analysis, the following baseline	Post-SVR, in CHC baseline NAFLD
	post-SVR follow-up of 48 months)	variables predicted incident HCC: age (≥ 55	was a risk factor for incident HCC,
	aimed at identifying those risk	years) [HR 24, 95%CI: 13-43)], NAFLD[HR 24,	particularly in those treated with DAA
	factors associated with HCC	95%CI (13-42), AFP (≥ 20 ng/ml) [HR 34,	
	development post-SVR in a cohort	95%CI: 20-58)], LSM (≥ 146 kPa) [HR 42,	
	of CHC patients	95%CI (23-76)], and T2D [HR 42, 95%CI:	
		24-74)]	
	SVR was observed in 519 and 817		
	CHC patients after DAAs and PR		
	therapy, respectively		

Fan, <i>et al</i> . ^[83]	5,754 CHB nucleos(t)ide analogue	WHR > 05 (i.e., central obesity) was associated	The WHR, a measure of central
	treated patients were followed for 5	with a significantly increased risk of incident	obesity, was associated with a
	years	HCC in the overall population (39% vs. 21%,	two-fold increased risk of incident
		HR: 206, $P = 00001$) and 745 propensity score	HCC at 5 years among CHB patients
		matched pairs (47% vs. 23%, HR: 204, P =	submitted to antiviral treatment with
		0026), respectively	nucleos(t)ide analogues
		Central obesity was also independently associated	
		with HCC risk (HR: 163, $P = 0013$) further to	
		cirrhosis status and aMAP HCC risk score	
		Increased WHR within 1 year was associated	
		with an aHR of 188 (95%CI: 112-313, <i>P</i> = 0017)	
Imai, <i>et al</i> . ^[84]	333 individuals with chronic viral	At LRA, age, sex, VAT, HbA1c, HTN, and HBV	Visceral obesity is a risk factor for
	hepatitis owing to either HBV (69	were independent risk factors for HCC in a	HCC in patients with non-cirrhotic
	patients) or HCV (264 patients),	non-cirrhotic liver	chronic viral hepatitis
	were classified as either cirrhotic or		
	non-cirrhotic based on FIB-4 index		
	values (> 325 and \leq 325,		

AIH: Autoimmune hepatitis; aMAP: age-male-albumin-bilirubin-platelets; aHR: adjusted Hazard Ratio; AOR: adjusted odds ratio; ARR: adjusted risk ratio; AST/ALT: aspartate aminotransferase/alanine aminotransferase ratio; AUC: area under the receiver operating characteristic curve; BMI: body mass index; CI: confidence interval; CHB: chronic hepatitis B; CHC: chronic hepatitis C; CLD: chronic liver disease; CNLD: chronic nonalcoholic liver disease; cryptoHCCs: cryptogenic HCCs; CT: computed tomography; CVH: chronic viral hepatitis; DAAS: direct-acting antiviral agents; DM: diabetes mellitus; DR: diabetic retinopathy; FIB-4: Fibrosis-4; GGT: gamma-glutamy transferase; HbA1c: glycosilated hemoglobin; HCC: hepatocellular carcinoma; HOMA-IR: homeostatic model assessment of insulin resistance; HR: hazard ratio; HRR: Hazard rate ratio; HTN: arterial hypertension; IFN: interferon; IGT: impaired glucose tolerance; LRA: logistic regression analysis; LSM: liver stiffness measurement; MetS: metabolic syndrome; NAFLD: Non-alcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NFS: NAFLD fibrosis score; NGT: normal glucotolerance ; OGTT: oral glucose tolerance test; OLT: orthotopic liver transplant; OR: Odds Ratio; PR: pegylated-interferon plus ribavirin; PRA: percutaneous radiofrequency ablation; PBC: primary biliary cholangitis; RR: relative risk; RFA: radiofrquency ablation; SH: steatohepatitis; SVR: sustained virological response; T2D: type 2 diabetes; VAT: visceral adipose tissue; VATI: visceral adipose tissue index; VFA: visceral fat accumulation; WHR waist-to-height ratio.

REFERENCES

63. Nair S, Mason A, Eason J, Loss G, Perrillo RP. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? *Hepatology* 2002;36:150-5.

64. Ohata K, Hamasaki K, Toriyama K, et al. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. *Cancer* 2003;97:3036-43.

65. Tanaka A, Uegaki S, Kurihara H, et al. Hepatic steatosis as a possible risk factor for the development of hepatocellular carcinoma after eradication of hepatitis C virus with antiviral therapy in patients with chronic hepatitis C. *World J Gastroenterol* 2007;13:5180-7.

66. Ohki T, Tateishi R, Shiina S, et al. Visceral fat accumulation is an independent risk factor for hepatocellular carcinoma recurrence after curative treatment in patients with suspected NASH. *Gut* 2009;58:839-44.

67. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. *Gastroenterology* 2004;126:460-8.

68. Tseng CH. Diabetes is not an independent risk factor for hepatocellular carcinoma. Diabetes Metab Res Rev 2013;29:515-24.

69. Regimbeau JM, Colombat M, Mognol P, et al. Obesity and diabetes as a risk factor for hepatocellular carcinoma. *Liver Transpl* 2004;10:S69-73.

70. Watanabe N, Takai K, Imai K, et al. Increased levels of serum leptin are a risk factor for the recurrence of stage I/II hepatocellular carcinoma after curative treatment. *J Clin Biochem Nutr* 2011;49:153-8.

71. Jain D, Nayak NC, Saigal S. Hepatocellular carcinoma in nonalcoholic fatty liver cirrhosis and alcoholic cirrhosis: risk factor analysis in liver transplant recipients. *Eur J Gastroenterol Hepatol* 2012;24:840-8.

72. Gupta SP, Mittal A, Sathian B, Jha DK. Elevated serum insulin is an independent risk factor for hepatocellular carcinoma: a case control study from Nepal. *Asian Pac J Cancer Prev* 2013;14:7331-3.

73. Ibrahim AA, Abdel Aleem MH, Abdella HM, Helmy A. Study of the role of insulin resistance as a risk factor in HCV related hepatocellular carcinoma. *J Egypt Soc Parasitol* 2015;45:107-13.

74. Kamachi S, Mizuta T, Otsuka T, et al. Sarcopenia is a risk factor for the recurrence of hepatocellular carcinoma after curative treatment. *Hepatol Res* 2016;46:201-8.

75. Azuma S, Asahina Y, Kakinuma S, et al. Diabetic retinopathy as a risk factor associated with the development of hepatocellular carcinoma in nonalcoholic fatty liver disease. *Dig Dis* 2019;37:247-54.

76. Valdés-Peregrina EN, Sánchez-Hernández BE, Gamboa-Domínguez A. Metabolic syndrome instead of aflatoxin-related tp53 r249s mutation as a hepatocellular carcinoma risk factor. *Rev Invest Clin* 2020;72.

77. Ohki T, Tateishi R, Sato T, et al. Obesity is an independent risk factor for hepatocellular carcinoma development in chronic hepatitis C patients. *Clin Gastroenterol Hepatol* 2008;6:459-64.

78. Konishi I, Hiasa Y, Shigematsu S, et al. Diabetes pattern on the 75 g oral glucose tolerance test is a risk factor for hepatocellular carcinoma in patients with hepatitis C virus. *Liver Int* 2009;29:1194-201.

79. Takahashi H, Mizuta T, Eguchi Y, et al. Post-challenge hyperglycemia is a significant risk factor for the development of hepatocellular carcinoma in patients with chronic hepatitis C. *J Gastroenterol* 2011;46:790-8.

80. Li X, Xu H, Gao P. Diabetes Mellitus is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis B virus infection in China. *Med Sci Monit* 2018;24:6729-34.

 Kurosaki M, Hosokawa T, Matsunaga K, et al. Hepatic steatosis in chronic hepatitis C is a significant risk factor for developing hepatocellular carcinoma independent of age, sex, obesity, fibrosis stage and response to interferon therapy. *Hepatol Res* 2010;40:870-7.
 Ji D, Chen GF, Niu XX, et al. Non-alcoholic fatty liver disease is a risk factor for occurrence of hepatocellular carcinoma after sustained virologic response in chronic hepatitis C patients: a prospective four-years follow-up study. *Metabol Open* 2021;10:100090.
 Fan R, Niu J, Ma H, et al; Chronic Hepatitis B Study Consortium. Association of central obesity with hepatocellular carcinoma in patients with chronic hepatitis B receiving antiviral therapy. *Aliment Pharmacol Ther* 2021;54:329-38.
 Imai K, Takai K, Miwa T, et al. Higher accumulation of visceral adipose tissue is an independent risk factor for hepatocellular carcinoma

among viral hepatitis patients with non-cirrhotic livers. *Cancers (Basel)* 2021;13:5980.

Author,[Ref]	Series	Findings	Conclusion
Kuper, et al. ^[94]	This case-control study was	A history of thyroid disease was found to be	Endocrine factors may be
	conducted in Greece on 6 patients	associated with CC; conversely, the following	important risk factors in the
	with CC; 333 with HCC; and 360	factors were not: HBV; HCV; tobacco; alcohol and	development of CC
	relatively healthy controls	DM	
		Compared to the other two cohorts of individuals,	
		estradiol concentrations were higher in CC cases	
Shaib, <i>et al</i> . ^[95]	625 cases of intrahepatic CC (\geq 65	The following risk factors were significantly more	Further to previously reported
	years) diagnosed between 1993 and	prevalent among cases: nonspecific cirrhosis (aOR	risk factors, this population-based
	1999 in the population-based SEER	272; $P < 0001$), alcoholic liver disease (aOR 74; P	study identifies novel factors
	registries and 90,834 cancer-free	< 0001), HCV infection (aOR 61; <i>P</i> < 0001), HIV	associated with intrahepatic CC:
	controls randomly chosen in the	infection (adjusted odds ratio, 59; $P = 003$), DM	HCV; HIV; cirrhosis and DM
	SEER regions population	(aOR 20; <i>P</i> < 0001) and IBD (aOR 23; <i>P</i> = 002)	
Chang, et al. ^[96]	This study conducted in Taiwan	The following factors were associated with an	This study confirms the
	assessed 5,157 cases of incident CC	increased risk of CC: cholangitis, cholelithiasis,	association of CC with some

Supplementary Table 2. Principal studies evaluatig metabolic risk factor for the development of CC

	diagnosed from 2004 to 2008	cholecystitis, cirrhosis; ALD, CNALD; HBV;	novel risk factors, including DM,
	compared to 20,628 matched	HCV, DM, chronic pancreatitis, IBD and PUD	IBD, HBV, HCV, and PUD
	controls from the NHIRD	Additionally, sex and age differences were also	(proxy for the presence of HP),
		observed	pointing to the opportunity to
			focus on environmental and
			genetic causes of CC
Lee, <i>et al</i> . ^[97]	This hospital-based case-control	Multivariate analysis identified the following risk	The population attributable
	study	factors for perihilar CC: hepatolithiasis (aOR	perihilar CC risk percentage for
	evaluated 81 patients with perihilar	1647), choledocholithiasis (aOR 939), DM (aOR	DM, heavy smoking,
	CC diagnosed from 2007 to 2013	336) and heavy smoking (aOR 252)	hepatolithiasis and
	compared to 162 matched controls		choledocholithiasis was about
			225%, 171%, 85% and 48%,
			respectively
Barner-Rasmussen,	6,949 CC cases diagnosed from	DM (OR 11), IBD (OR 2,6) and cirrhosis (OR 38)	Population-based data from
<i>et al</i> . ^[98]	1971 to 2014 were retrieved from	were associated with intra-hepatic CC, whereas	Finland confirm the importance
	the population based FCR	cholelithiasis (OR 23) and HCV (OR 16) were	of acknowledged risk factors for
		associated with extra-hepatic CC	CC with PSC having the highest
	For each CC case, five controls		OR
	were extracted from the PRDPDSA,	PSC was associated with a 30-fold increased risk of	

	matched by age, gender, and	intrahepatic CC and 25-fold increased risk of	
	municipality	extrahepatic CC	
Welzel, et al. ^[99]	This nationwide Danish	ALD (OR = 1922, 95%CI: 555-6654); unspecified	Further to prior bile duct
	population-based case-control study	cirrhosis (OR = 759, 95%CI: 102-5657);	diseases, ALD and DM also
	included 764 ICC patients compared	cholangitis (OR = 63, 95%CI: 23-175);	increase ICC risk
	to 3,056 matched controls	choledocholithiasis (OR = 2397, 95%CI: 29-1989);	
		cholecystolithiasis (OR = 40, 95%CI: 20-799); and	
		IBD (OR = 47, 95%CI: 165-139) were all	
		significantly associated with ICC	
		Diabetes (but not obesity) was associated with ICC	
		risk in the year prior to diagnosis of ICC (OR =	
		302, 95%CI: 105-869)	
Palmer, et al. ^[100]	This meta-analytic review identified	The following factors were associated with ICC:	All studies except those
	11 published case-control studies on	cirrhosis (OR 2292; 95%CI: 1824-2879); HBV	evaluating cirrhosis, diabetes, and
	risk factors for ICC from both high	(OR 510; CI 291-895); HCV (OR 484; CI	obesity exhibited significant
	and low prevalence regions	241-971); obesity (OR 156; CI 126-194); T2D,(OR	heterogeneity
		189; CI 174-207); smoking (OR 131; CI 095-182),	

		and alcohol use (OR 281; CI 152-521)	Sensitivity analysis did not alter
			the OR for any risk factors except
			smoking
			There was no evidence of
			publication bias
Chaiteerakij, et	This study assessed the effects of	The following factors were associated with	Further to confirming that DM
al. ^[101]	metformin in 612 ICC patients	increased ICC risk: BTD (AOR 818; 95% CI	and smoking are independent risk
	observed at the Mayo Clinic (USA)	112-5988; <i>P</i> < 0001), cirrhosis (AOR, 80; 95%CI:	factors for ICC, this study also
	from 2000 to 2010 compared to 594	18-365; <i>P</i> = 0007), DM (AOR, 36; 95%CI: 23-55;	has the novel finding that, in DM
	matched controls identified among	<i>P</i> < 0001), and smoking (AOR, 16; 95%CI: 13-21;	patients, treatment with
	the Mayo Clinic Biobank	<i>P</i> < 0001)	metformin was associated with a
	participants		60% reduced ICC risk
		While obesity and MetS were not associated with	
		ICC, compared to diabetic patients not receiving	
		metformin, the OR for ICC for those diabetic	
		patients receiving metformin was decreased (OR,	
		04; 95%CI: 02-09; $P = 004$)	
Ahrens, et al. ^[102]	This survey, conducted between	The following risk factors were significantly	While confirming that GD is a

	1995 and 1997 in 5 European	associated with ECC: GD (OR 249; 95%CI:	risk factor of ECC, this study also
	countries, was based on 153	132-470); BMI > 30 at age 35 years (OR 258;	highlights that overweight and
	histologically proven cases of	95%CI: 107-623)	obesity are strong risk factors for
	carcinoma of the ECC in adult men		ECC in European adult men
	and 1,421 matched population	Some increase in risk was found for alcohol	
	controls	consumption \geq 40-80 g daily	
Welzel, et al.[103]	By utilizing the SEER-Medicare	In addition to traditional risk factors, the following	ECC and ICC share several risk
	database, this study evaluated 535	conditions were associated with	factors This study underlines that
	ICC and 549 ECC patients	cholangiocarcinoma: PBC ($P = 00001$ for both	obesity and NAFLD seem to be
	diagnosed from 1993 to 1999	types), ALD (ECC, $P < 00001$, ICC $P = 001$),	relevant risk factors for ICC
	compared to 102,782 cancer-free	non-specific cirrhosis $P < 00001$ for both types),	
	controls	DM ($P < 00001$ for both types), thyroid disease	
		(ECC $P = 0006$, ICC $P = 004$) and chronic	
		pancreatitis ($P < 00001$ for both types) Instead,	
		metabolic risk factors such as obesity ($P < 001$) and	
		NAFLD ($P = 002$) were solely related to ICC	
Zhou, <i>et al</i> . ^[104]	This study from China enrolled 312	At multivariate analysis, the following risk factors	In this study HCV, DM, HTN,
	ICC cases and 438 matched controls	were associated with ICC: HBsAg (aOR, 8876,	smoking, and alcohol were not
		95%CI: 5973-13192), and hepatolithiasis (aOR,	associated with ICC

		5765, 95%CI: 1972-16851)	
Zhou, <i>et al</i> . ^[105]	This study from China enrolled 200	At multivariate analysis, the following risk factors	In this study HBV and DM were
	ECC cases and 200 matched	were associated with ECC: current smoking (OR =	not associated with ECC
	controls	190, 95%CI: 108-334), heavy alcohol consumption	
		(OR = 208, 95%CI: 139-313), and	
		choledocholithiasis (OR = 668, 95%CI: 148-3027)	
Choi, <i>et al</i> . ^[106]	This USA, Mayo Clinic- based	Aspirin, which was used by 247% of patients with	DM was associated with an
	case-control study evaluated 2,395	CC and 446% of controls was significantly and	increased risk of CC, whereas
	cases of CC cases (1,169 ICC, 995	inversely associated with all CC subtypes, with	aspirin use was protective
	perihilar, and 231 distal) observed	AOR 035 (95%CI: 029-042) for ICC; 034 (95%CI:	
	from 2000 to 2014 compared to	027-042) for perihilar CC and 029 (95%CI:	
	4,769 matched controls selected	019-044) for distal CC, ($P < 0001$ for all)	
	from the Mayo Clinic Biobank		
		PSC was more strongly associated with perihilar	
		CC (AOR = 453, 95%CI: 104-999) than ICC (AOR	
		= 934, 95%CI: 271-322) or distal CC (AOR = 340,	
		95%CI: 36-323)	
		DM was more associated with distal CC (AOR =	

		42, 95%CI: 25-70) than perihilar CC (AOR = 29,	
		95%CI: 22-38) or ICC (AOR = 25, 95%CI: 20-32)	
		PSC-unrelated cirrhosis was associated with both	
		ICC and perihilar CC, with AORs of 14 for both	
		IBD per se (i.e., other than with PSC) was not	
		associated with CC	
Petrick, et al. ^[107]	2,092 ICC and 2,981 ECC cases	NAFLD was associated with increased risks of ICC	Risk factors for ICC and ECC
	identified using the SEER-Medicare	(OR = 352, 95%CI: 287-432) and ECC (OR = 293,	were similar, and this study
	database from 2000 to 2011 were	95%CI: 242-355)	highlights the role of several risk
	compared to 323,615 matched		factors including dysmetabolic
	controls	Overweight/obesity were associated with ICC risk	conditions, viral hepatitis, PBC,
		(OR = 127, 95%CI: 110-147)	Caroli disease, T1D, UC, chronic
			pancreatitis, gout and nonspecific
		Chronic viral hepatitis due to HBV, HCV and	cirrhosis
		unspecified as well as disease of bile ducts were	
		associated with both ICC and ECC	

Altho	ough sample size was limited, Caroli disease	
was	associated with a strongly increased risk of	
ICC	(OR = 3813, 95%CI: 1420-10238) and ECC	
(OR	= 9681, 95%CI: 5102-18368)	
Whil	le T1D, IBD, chronic pancreatitis, and gout	
were	e associated with increased risks of both ICC	
and I	ECC, lupus was associated with a decreased	
risk o	of ECC (<i>n</i> < 11, OR = 040, 95%CI: 019-083)	
but h	nad no association with ICC ($n = 13$)	
Alco	bhol-related disorders were associated with a	
37-fc	old higher risk of ICC (OR = 372, 95%CI:	
317	435) and a 26-fold higher risk of ECC (OR =	
260,	95%CI: 223-304)	
Smol	king was associated with an increased risk of	
ICC	(OR = 146, 95%CI: 128-166) and ECC (OR =	
177,	95%CI: 159-196)	

	Nonspecific cirrhosis and duodenal/gastric ulcers	
	were associated with a significantly increased risk	
	of both ICC and ECC	

ALD: Alcoholic liver disease; aOR: adjusted Odds Ratio; BMI: body mass index; BTD: biliary tract diseases; CC: cholangiocarcinoma; CI: confidence interval; CNALD: chronic nonalcoholic liver disease; DM: diabetes mellitus; ECC: extrahepatic cholangiocarcinoma; FCR: Finnish Cancer Registry; GD: gallstone disease; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HIV: human immunodeficiency virus; HP -Helicobacter Pylori; HTN: arterial hypertension; IBD: inflammatory bowel disease; ICC: intrahepatic cholangiocarcinoma; MetS: Metabolic Syndrome; NAFLD: Non-alcoholic fatty liver disease; NHIRD: National Health Insurance Research Database; OR: Odds Ratio; PBC: primary biliary cirrhosis; PSC: primary sclerosing cholangitis; PRDPDSA: Population Registry of the Digital and Population Data Services Agency; PUD: peptic ulcer disease; SEER: Surveillance, Epidemiology, and End Results; T1D: type 1 diabetes; T2D: type 2 diabetes UC: ulcerative colitis.

REFERENCES

94. Kuper H, Lagiou P, Mucci LA, Tamimi R, Benetou V, Trichopoulos D. Risk factors for cholangiocarcinoma in a low risk Caucasian population. *Soz Praventivmed* 2001;46:182-5.
95. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. *Gastroenterology* 2005;128:620-6.
96. Chang JS, Tsai CR, Chen LT. Medical risk factors associated with cholangiocarcinoma in Taiwan: a population-based case-control study. *PLoS One* 2013;8:e69981.
97. Lee BS, Cha BH, Park EC, Roh J. Risk factors for perihilar cholangiocarcinoma: a hospital-based case-control study. *Liver Int* 2015;35:1048-53.

98. Barner-Rasmussen N, Pukkala E, Hadkhale K, Färkkilä M. Risk factors, epidemiology and prognosis of cholangiocarcinoma in Finland. *United European Gastroenterol J* 2021;9:1128-35.

99. Welzel TM, Mellemkjaer L, Gloria G, et al. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study. *Int J Cancer* 2007;120:638-41.

100. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. *J Hepatol* 2012;57:69-76.

101. Chaiteerakij R, Yang JD, Harmsen WS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. *Hepatology* 2013;57:648-55.

102. Ahrens W, Timmer A, Vyberg M, et al. Risk factors for extrahepatic biliary tract carcinoma in men: medical conditions and lifestyle: results from a European multicentre case-control study. *Eur J Gastroenterol Hepatol* 2007;19:623-30.

103. Welzel TM, Graubard BI, El-Serag HB, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. *Clin Gastroenterol Hepatol* 2007;5:1221-8.

104. Zhou YM, Yin ZF, Yang JM, et al. Risk factors for intrahepatic cholangiocarcinoma: a case-control study in China. *World J Gastroenterol* 2008;14:632-5.

105. Zhou Z, Nie SD, Jiang B, Wang J, Lv P. Risk factors for extrahepatic cholangiocarcinoma: a case-control study in China. *Eur J Cancer Prev* 2019;28:254-7.

106. Choi J, Ghoz HM, Peeraphatdit T, et al. Aspirin use and the risk of cholangiocarcinoma. *Hepatology* 2016;64:785-96.

107. Petrick JL, Yang B, Altekruse SF, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare. *PLoS One* 2017;12:e0186643.