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Abstract
Hydroxyurea is a commonly used drug for the treatment of sickle cell disease. Several studies have demonstrated 
the efficacy of hydroxyurea in ameliorating disease pathophysiology. However, a lack of consensus on optimal 
dosing and the need for ongoing toxicity monitoring for myelosuppression limits its utilization. Pharmacokinetic 
(PK) and pharmacodynamic (PD) studies describe drug-body interactions, and hydroxyurea PK-PD studies have 
reported wide inter-patient variability. This variability can be explained by a mathematical model taking into 
consideration different sources of variation such as genetics, epigenetics, phenotypes, and demographics. A PK-PD 
model provides us with a tool to capture these variant responses of patients to a given drug. The development of an 
integrated population PK-PD model that can predict individual patient responses and identify optimal dosing would 
maximize efficacy, limit toxicity, and increase utilization. In this review, we discuss various treatment challenges 
associated with hydroxyurea. We summarize existing population PK-PD models of hydroxyurea, the gap in the 
existing models, and the gap in the mechanistic understanding. Lastly, we address how mathematical modeling can 
be applied to improve our understanding of hydroxyurea’s mechanism of action and to tackle the challenge of inter-
patient variability, dose optimization, and non-adherence.
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INTRODUCTION
Sickle cell disease (SCD) is a hereditary disease affecting up to an estimated 100,000 people in the United
States and millions worldwide[1]. SCD is caused by a point mutation in the β-globin gene that results
in a single nucleotide substitution, changing glutamic acid (GAG) to valine (GTG) in the sixth codon,
and subsequently produces abnormal sickle hemoglobin (HbS)[2]. Sickle hemoglobin polymerizes upon
deoxygenation in the peripheral microvasculature and forms an elongated, rod-like structure[3]. The
polymerized structure stretches the red blood cell (RBC) and deforms the membrane producing rigid and
sickle-shaped RBCs[4]. The sickled RBC adheres to endothelial cells and is responsible for the vaso-occlusive
crisis[5]. The primary clinical effects associated with vaso-occlusive complications are painful episodes,
acute chest syndrome, and stroke[3]. Sickle cell anemia (SCA) describes the homozygous condition when
both the genes for β-globin (βs) are mutated, and SCA is represented by the HbSS genotype[4,5]. Besides
the homozygous HbSS genotype, other genotypes of SCD include heterozygous sickle-cell/β0 thalassemia
(HbS/β0), sickle-cell/β+ thalassemia (HbS/β+), sickle-cell/hemoglobin C disease (HbSC), and other rare
genotypes[5,6]. A wide degree of phenotypic variability is observed in addition to genetic variability[7].

Mathematical models have been developed for several diseases, such as hematological malignancies,
solid tumors, diabetes, and human immunodeficiency viruses (HIV), to address the ongoing treatment
challenges ranging from improving the existing drug dosing regimen to the effective management of
the disease adverse events. A model-guided dosing strategy can be applied to predict drug-dependent
efficacy and toxicity at multiple stages of treatment. For example, the pharmacokinetic-pharmacodynamic
(PK-PD) modeling of the drugs cisplatin and etoposide for small-cell lung cancer identified three new
dosing regimens with a better reduction in tumor size compared to standard protocol while satisfying
toxicity constraints for neutrophil and platelet counts[8]. Similarly, Houy and Grand determined optimal
chemotherapy regimens for temozolomide using the PK-PD modeling[9]. The model showed that the
toxicity of metronomic chemotherapy could be reduced while achieving the same level of efficacy[9].
Another successful use of a model-based approach in treatment efficacy was to personalize the
6-mercaptopurine treatment of acute lymphoblastic leukemia[10,11]. The model factored in the patient-
specific variations in enzyme, thiopurine methyltransferase (TPMT), activity to obtain optimal dose. The
study showed that a lower dose is needed for a patient with low TPMT enzyme activity than the standard
dose[10]. Mathematical model-based approaches have been developed for diabetes, where both clinical and
non-clinical models are available[12]. The clinical models include models developed for describing diagnosis,
control, progression, and complications. The non-clinical models aid in unraveling the mechanism of
insulin-glucose dynamics on multi-scale levels[12]. Mathematical models have also been used to study HIV
dynamics, to understand disease progression, and to improve treatment[13]. Similar mathematical modeling
approaches can be leveraged for describing SCD progression and the influence of hydroxyurea on disease
modification.

The need for a model-based approach arises from the treatment challenges faced by clinicians in
managing SCD. In this review, we discuss the challenges associated with hydroxyurea treatment. The
pharmacokinetics and pharmacodynamics of hydroxyurea are discussed with a focus on population PK-PD
modeling. This review elaborates on building a personalized treatment strategy by formulating patient PK-PD
models and integrating them. The modeling strategy can be applied to predict an individual patient’s
treatment response trajectory with time and determine personalized dosage.

TREATMENT APPROACHES
The treatment approach for SCD varies from patient to patient depending on the stage of the disease
and clinical severity. The treatment includes two types of strategies: targeting the relief of symptoms and
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targeting the prevention of symptoms[14]. The treatment approaches for relief of symptoms include blood 
transfusion and administration of antibiotics, opioids, and analgesics[3,14]. The treatments for symptoms 
prevention include induction of fetal hemoglobin (HbF), targeting HbS polymerization, targeting 
complications downstream of HbS polymerization, and curative intent therapies, which have recently been 
reviewed elsewhere[15,16]. This manuscript focuses on the application of hydroxyurea and the rationale for 
the development of an integrated population PK-PD model that may predict individual patient responses 
to therapy and identify optimal dosing strategies.

Fetal hemoglobin (HbF; α2γ2), the primary form of hemoglobin produced during fetal life, consists of two 
α-globin subunits and two γ-globin subunits. After birth, expression of HbF is silenced as individuals 
transition to adult hemoglobin (HbA; α2β2) production. Since individuals with SCA produce HbS instead 
of HbA, HbS polymerization leads to symptoms of SCA[17]. Fetal hemoglobin inhibits HbS polymerization 
by directly interfering with polymerization and by reducing the concentration of HbS production[18]. 
Hence, the elevation of HbF levels ameliorates the severity of SCA[18]. The FDA approved drug for SCA 
that induces HbF is hydroxyurea (HU). Prior to being identified as a therapy for SCA, HU was used as a 
chemotherapeutic agent and in the treatment of HIV[19,20]. In individuals with SCA, HU reactivates HbF 
production, thereby decreasing HbS polymerization, as discussed previously. The therapeutic effects of HU 
include: increase in total hemoglobin by prolonging RBC life span; improvement in RBC hydration, thereby 
decreasing HbS concentration and reducing polymerization; improvement in RBC rheology; reduction 
of RBC-endothelial adhesion; and the potential increase in nitric oxide (NO), a potent vasodilator[17,21]. 
Hydroxyurea inhibits ribonucleotide reductase, an enzyme essential for DNA synthesis, thereby causing 
myelosuppression[22]. Hydroxyurea is also associated with the normalization of usually elevated white blood 
cells (WBC) by the primary effects of myelosuppression and the secondary effects of reducing ischemic 
damage in the microvasculature[17,23,24].

Long-term follow-ups of HU treatment showed increased survival of patients with no increased risk of 
stroke, infection, or neoplasia[25,26]. Since HU therapy is associated with transient myelosuppression, routine 
monitoring of blood counts is recommended during therapy[14]. Routine laboratory monitoring during HU 
therapy showed that individuals with SCA have an increased percentage of fetal hemoglobin (HbF%), total 
hemoglobin level, and mean corpuscular volume (MCV)[27,28]. Although there is a large degree of individual 
variability in response, increases in HbF% and MCV in HU-treated patients can be used as a surrogate for 
medication adherence and clinical efficacy[29,30].

Hydroxyurea treatment challenges
Heterogeneity of the disease and response 
The type and degree of severity of SCD disease manifestations vary widely from patient to patient, likely 
due to complex interactions between genetic and environmental disease modifiers. Additionally, patients 
with SCD have a variable response to treatment with HU[31]. Some patients respond well, and some are 
poor responders to HU as determined by the percentage increase in HbF[21,27]. One therapeutic approach 
for HU treatment is the personalization of a maximum tolerated dose (MTD) determined for individual 
patients after careful monitoring of biomarkers and treatment response[29,31]. However, there is wide inter-
patient variability in the PK-PD of the drug inside the body[32-35]. This variability may arise due to each 
patient having a different genetic, metabolic, and physiological makeup.

Timely and optimal prediction of dose
Clinicians define MTD using an adaptive dosing approach. In this empirical approach, the dosing starts 
at 15-20 mg/kg, and the patient is monitored for excessive myelosuppression at the 4-6 weeks mark[14]. 
The dose is then increased in steps of 5 mg/kg every eight weeks up to a maximum of 35 mg/kg[14]. The 
therapeutic goal is to achieve an absolute neutrophil count of 1500-3000 cells/µL. The MTD determination 
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usually takes 9-12 months of treatment. If the optimal dose can be determined earlier using mathematical 
modeling, the time to MTD can be reduced, and, as a result, maximum benefits from HU can be extracted.

Non-adherence to treatments
Non-adherence presents a significant challenge for clinicians. The effect of HU is maximized with 
adherence to daily administration, and the benefits wane with non-adherence. Clinically, it is challenging 
to differentiate treatment inefficacy from non-adherence, and doctors may confuse the non-adherence to 
the patient being treatment refractory. Thornburg et al.[36] evaluated adherence in children with SCA treated 
on HU therapy and found that good adherence led to an increase in HbF% inferred from a moderate 
association between HbF% and Morisky score and number of refills. Brandow and Panepinto classified 
barriers to the use of hydroxyurea as provider-related, patient-related, and system-related ones[37]. They 
identified several barriers to adherence to HU therapy: the delayed benefits of HU, fear of drug side effects, 
expected frequent treatment monitoring, forgetfulness, and poor access to healthcare[36,37].

Need for effective biomarkers 
The biomarkers currently in use are HbF and MCV of RBC, both of which increase with HU treatment[27]. 
However, they take some time to reach a steady-state, and there is a large degree of intra-patient variability 
in response. Therefore, there is a need for a better biomarker to detect treatment efficacy earlier.

Incomplete understanding of the drug mechanism
The mechanism of HU-induced HbF stimulation is not known, and the transporters, enzymes, 
metabolites, and signaling molecules involved in HU PK-PD are not known. The potential role of organic 
anion transporting polypeptides (OATP) as HU transporters was investigated[38,39]. Studies showed that 
metabolites such as urea, nitric oxide were produced, and enzymes such as monooxygenase and catalase 
were involved in the metabolism of HU[40-42]. Studies have indicated the nitric oxide-cyclic guanosine 
monophosphate signaling pathway or p38 mitogen-activated protein kinase pathway to be activated when 
HU is administered in vitro[43-45]. Understanding the drug mechanism will help in advancing the HU 
treatment further.

Myelosuppression
As mentioned above, HU inhibits enzyme ribonucleotide reductase, which causes bone marrow toxicity[2]. 
A dose-dependent decrease in neutrophils and reticulocytes follows HU administration. HU-induced 
increase in HbF% is correlated to change in MCV, neutrophils, and reticulocytes count[21]. Neutrophil 
count < 2000/µL, reticulocyte count < 80,000/µL, platelet count < 80,000/µL, and hemoglobin concentration 
< 4.5 g/dL are considered excessive myelosuppression[21]. When excessive myelosuppression events are 
repeated, the treatment is withheld for 1-2 weeks until cell counts normalize [46]. Following this, HU is 
resumed at a lower dose than the toxic dose.

All these challenges reflect the need for a mathematical model to address and further explore mechanisms 
of HbF activation. We need a treatment regimen guided by patients’ history and patient-specific variables 
to decide an adequate dose for every patient. The standard clinical practice of determining the MTD is time 
and effort consuming and requires constant monitoring of the patient. A mathematical model would be 
clinically useful in predicting the inter-patient variability by considering individual patients’ biochemical 
and genetic composition and demographic variables. A mathematical model will also help the timely and 
optimal dosage prediction by maximizing efficacy and minimizing toxicity. Through the model, we can 
look for alternative biomarkers that do not take a longer time to reach a steady-state.

PHARMACOKINETICS AND PHARMACODYNAMICS OF HYDROXYUREA
Hydroxyurea is used for the treatment of cancer, HIV, and sickle cell disease. Pharmacokinetics mainly 
consists of four processes: absorption, distribution, metabolism, and excretion (ADME). Hydroxyurea 
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administered orally is well absorbed and shows good bioavailability of 79% or more[19,47]. Studies showed 
that the rapid absorption, distribution, and elimination might be facilitated by solute carrier (SLC) 
transporters belonging to OATP families and urea transporters[38,39]. The distribution of HU is rapid, and 
the volume of distribution approximates total body water volume[19,48]. The drug concentration in the blood 
achieves rapid equilibrium with that in the tissues and fluids[49]. Hydroxyurea is eliminated through hepatic 
and renal pathways[48]. In the in vitro experiments performed, hydroxyurea was metabolized to urea in 
mouse liver and kidney[40,50]. Another study showed the involvement of the mouse liver monooxygenase 
system in the metabolism of HU into urea[41]. The other possible metabolites from hydroxyurea were 
identified as hydroxylamine, nitric oxide, nitrite, and nitrate[51]. From the pharmacokinetic studies, it is 
observed that the drug is eliminated both linearly and nonlinearly. One study demonstrated that, when 
administered intraperitoneally, the majority of HU was recovered as an unchanged drug and urea from 
the urine of mice[50]. The drug pharmacokinetics is modeled to gain insight into the ADME processes and 
make predictions on the amount of drug and metabolites present in the plasma, tissues, and organs and the 
changes in them with time. The predictive PK model aid in estimating drug exposure and the effect of drug 
exposure on efficacy and toxicity.

Pharmacokinetic modeling
Pharmacokinetic models are formulated using a compartment modeling approach. The whole body is 
assumed to be a system that is divided into a series of compartments where each compartment consists 
of organs and tissues with similar drug distribution profiles[52]. The following factors are considered 
while constructing a compartment model of the drug pharmacokinetics: (1) elimination (central and/or 
peripheral); (2) absorption and elimination rates (linear or nonlinear); and (3) administration (orally or 
intravenously)[52]. The compartment model’s performance in predicting the concentration-time relationship 
is evaluated using criteria such as Akaike information criteria (AIC), Bayesian information criteria (BIC), 
and likelihood test ratio (LRT) that balances between the goodness of fit and model complexity[19,33,34].

Population PK studies help to model individual patients and incorporate inter-patient, intra-patient, and 
inter-study variability in drug pharmacokinetics. Population PK modeling uses nonlinear mixed effect 
(NLME) models. The NLME modeling is a two-stage hierarchical model with individual and population 
models, and NLME considers fixed effects and random effects. A structural PK model is constructed 
using a compartment modeling approach. The inter-individual variability (IIV) is incorporated by taking 
parameters, θ , as a function of an average parameter (fixed effect), θ , from the population, and an error 
term (random effect), η , which describes the individual deviation from average parameter value. The 
random variable, η , is assumed to be normally distributed with mean 0 and variance ω 2. The parameters 
are further expressed as a function of covariates, which are individual-specific clinical, laboratory, or 
demographic variables. The covariate selection for a particular parameter is made if it lowers the model’s 
objective function value compared to when the covariate is not selected[53]. Intra-individual variability or 
residual variability (RV) is introduced into the model by a residual error, ε , expressed as the difference 
between the observed variable, y and the output from the model. The residual error, ε , is assumed to be 
normally distributed with mean 0 and variance σ 2. This random variability can arise due to variability 
in assay, error in sample collection, and model misspecification[53]. The following equation provides a 
generalized formulation of NLME modeling:

  (1)

  (2)

where yij is the observed drug concentration of ith individual at jth time and f denotes the structural model 
output with tij as time and θ i and Di as PK parameters and dose for ith individual. The i subscript denotes 
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the value of the corresponding variables/parameters for the ith individual. The j subscript denotes the 
corresponding variables/parameters at jth time. The residual error shown above is an additive term in the 
model output. Other types of residual error models are proportional, exponential, combined additive and 
proportional, and combined additive and exponential functions of ε [53]. The IIV is described in Equation 
(2) using an exponential function. The other functions used to describe IIV are additive and proportional. 
Population PK studies have been done in cancer and SCA patients.

Pharmacokinetic studies of HU in HIV described the HU plasma concentration–time data with a 
one- or two-compartment model with first-order absorption and first-order elimination[20,47]. One 
study demonstrated a significant correlation between predicted and observed serum concentrations of 
hydroxyurea[20]. Tracewell et al.[19] studied population PK of HU in cancer patients. A one-compartment 
model fitted the patients’ data with elimination through the metabolic and renal pathways. Michaelis-
Menten kinetics was used for metabolic elimination, and a first-order rate equation was used for renal 
elimination[19]. The IIV for the volume of distribution, V, was assumed to be proportional to the average 
value through the following equation[19]:

(3)

where Vi is ith individual V, V
_
  is the average V of population, and ηVi  is the random variable that denotes 

IIV. To account for RV, the residual error model was described by the proportional function given below[19]:

(4)

where yMij is the model-predicted drug concentration of ith individual at jth time.

The PK-PD studies in cancer and HIV patients found one- or two-compartment models with first-
order absorption and first-order or Michaelis-Menten elimination to best fit the drug concentration-
time profile[19,20,47]. In the case of SCD, Ware et al.[32] studied the PK after the first dose of HU using non-
compartmentalized PK analysis. They observed two categories of patients with varying absorption profiles, 
slow and fast, and with varying drug exposure. The apparent clearance, CL/F, depends on the weight of the 
patient, as determined from the least-squares regression fit. Univariate and multivariate linear regression 
was done to identify significant covariates for CL/F. The coefficient of variation in PK parameters described 
the IIV. In multivariate analysis, covariates related to CL/F were weight, alanine aminotransferase (ALT), 
and serum creatinine[32].

The population PK-PD model in SCA patients developed by Paule et al.[33] captured the relationship 
between exposure-efficacy and corresponding variability in PK-PD. The second-order conditional 
estimation method was used to obtain the PK parameter estimates with the interaction between inter-
individual and residual variabilities. The two-compartment model with first-order absorption and first-
order elimination fitted the PK data best. The combined additive and proportional residual error model 
described the RV, as shown below[33]:

(5)

where ε pij and ε aij are the proportional and additive residual random errors, respectively. A scaling factor for 
the central volume of distribution, Vc, and clearance, CL, was used to scale these parameters by body weight 
(BW) of a 70-kg patient. The scaling was done to adapt the model to children, as given by the following 
equation[33]:

(6)
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where θ Vc and θ CL are the Vc and CL of a 70-kg patient. The IIV was high for Vc, CL, ka, absorption rate 
constant, and kcp, the rate constant for transit from central to peripheral compartment. The IIV in PK 
parameters was assumed to be an exponential function of η , as shown in Equation (2). The model 
performance was evaluated using a simulation-based diagnostic tool, visual predictive check (VPC). Based 
on the VPC results, the model gave good fits with the observed PK data[33].

Similarly, Wiczling et al.[34] developed a population PK model to capture the variation of HU concentration 
in plasma and urine with time. In this study, a one-compartment model with first-order elimination 
through renal and non-renal pathways provided good fits to the data. Additionally, a gamma-distributed 
absorption rate (transit absorption model) was used owing to the delay in absorption observed in several 
patients. In the transit absorption model, the absorption compartment consists of Nt transit compartments, 
and the input to the central compartment, u(t), was given by the following equation[34]:

(7)

where F is the bioavailability, D is the drug dose, and ktr is the transit rate in between compartments. ktr is 
given by (Nt + 1)/MTT, where MTT is the mean transit time. The proportional residual error model given 
by Equation (4) was used to account for RV[34]. The following equation gave the individual parameters:

(8)

where θ i and θ median are the PK parameters for the ith individual and median covariate, COVi is the 
continuous covariate of ith individual, COVmedian is the median value for a particular covariate, and θ COV is 
the regression coefficient. The weight was identified as a significant covariate for the apparent volume of 
distribution, V/F, and CL/F due to the metabolic pathway. The model performed well, as evaluated from 
the goodness of fits, VPC plots, and the individual patient fits obtained for the variation of HU plasma 
concentration and HU urine amount with time[34].

In another study, Estepp et al.[35] performed a population PK study in children with SCD. The model 
was similar to the model developed earlier by Wiczling et al.[34]. However, elimination through only one 
pathway was considered. The study participants received HU in capsule and liquid forms. Since the drug 
was administered on two occasions, the model expressed the PK parameters as a function of two random 
variables to account for inter-individual (η ) and inter-occasion variability (k )[35]. 

(9)

where θ ik is the set of PK parameters for ith individual and kth occasion. Vc and CL were expressed as 
functions of bodyweight using Equation (5). They showed that their model adequately described the data 
based on the goodness-of-fit plots and VPC plots for liquid and capsule formulations. The individual 
patients fit for PK data in patients receiving the liquid and capsule formulations showed that the model 
simulation matched the observed data well[35].

Dong et al.[54] developed a dosing strategy using individual patient PK profile to reduce the time to reach 
MTD and maximize the effect of HU. Using D-optimal design, they identified that only three plasma 
samples at sampling times of 15-20 min, 50-60 min, and 3 h post-dosing are needed to estimate HU 
exposure. They described the relationship between the average PK parameter and continuous covariates 
shown in the following equations by normalized power models or linear models[54]:

(10)
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where θ 1 is the regression coefficient. 

In this study, the PK data were best fitted by a one-compartment model with absorption described by 
the transit absorption model given by Equation (7) and elimination described by the Michaelis-Menten 
equation with the elimination rate given by kmaxy/(y + KM), where kmax is the maximum elimination rate, 
y is the drug plasma concentration, and KM is the Michaelis-Menten constant[54]. Weight and cystatin C, 
a marker of kidney function, were identified as significant covariates for kmax and weight was identified 
as a significant covariate for V/F. The elimination of HU decreased with an increase in cystatin C 
concentration with a corresponding increase in area under the concentration-time curve (AUC). A 
power model was used to describe the relationships of kmax and V/F with the covariate weight[54]. The 
IIV was described by an exponential model as given by Equation (2). The RV was described by a 
combined additive and proportional model, as given by Equation (5). The model gave good fits with 
the observed PK profile, as seen from goodness-of-fit plots and VPC[54]. McGann et al.[55] validated the 
strategy of PK-guided dosing developed by Dong et al.[54] to determine the time to reach MTD. The 
population PK model developed by Dong et al.[54] showed that the time to reach MTD could be reduced 
from 6-12 to 4.8 months, and the starting dose could be increased from 20 mg/kg/day to an average of 
27.7 mg/kg/day with a corresponding increase in hemoglobin and HbF[54,55].

From these studies, it can be concluded that the population PK models adequately described the clinical 
data under various settings. Table 1 summarizes the PK models developed for SCD patients and reviewed 
in this section. Together, these studies indicate the ability of compartment models embedded into the 
statistical framework of NLME models to describe the average behavior and individual behavior of 
patients. For SCD, the structural model for describing average PK data consisted of either one or two 
compartments[33,34]. In HU studies in SCD patients, a linear or nonlinear absorption rate was used, and, 
for the typical dose of 20 mg/kg/day used in SCD, a linear elimination was sufficient to describe the 
PK trajectory[33,34]. When the dose is high, as in cancer patients, the elimination occurred via linear and 
enzymatic pathways[19]. However, in a recent study in sickle cell patients, Michaelis-Menten elimination 
was used to fit the PK data[54]. Weight was identified as a significant covariate for CL and V, as it lowered 
the objective function value[32-35,54]. However, the ADME processes for hydroxyurea are still not fully 

Table 1. Summary of hydroxyurea pharmacokinetic (PK) models for sickle cell patients

Individual 
patients PK model

Individual PK 
parameter 
estimation

PK model Parameters - 
predictors/covariates IIV RV

Ware et al.[32] Univariate and 
multivariate linear 
regression

Noncompartmental PK 
analysis

CL/F - weight, ALT, 
serum creatinine

Coefficient of 
variation

Paule et al.[33] NLME model Two-compartment model
•	 First-order absorption
•	 First-order elimination

CL - weight
V - weight

Exponential model Combined additive 
and proportional 
model

Wiczling et al.[34] NLME model One compartment model
•	 Transit absorption model
•	 First-order renal and 

non-renal elimination

CL/F - weight
V/F -weight

Exponential model Proportional model

Estepp et al.[35] NLME model One compartment model
•	 Transit absorption model
•	 First-order elimination 

CL - weight
V - weight

Exponential model 
and exponential 
model for inter-
occasion variability

Proportional model

Dong et al.[54] NLME model One compartment model
•	 Transit absorption model
•	 Michaelis-Menten 

elimination

CL/F - weight, 
cystatin C
V/F - weight

Exponential model Combined additive 
and proportional 
model

IIV: inter-individual variability; RV: residual variability; NLME: nonlinear mixed effect; CL: clearance; V: volume of distribution; F: 
bioavailability; CL/F: apparent clearance; V/F: apparent volume of distribution; ALT: alanine aminotransferase
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understood. The variability in the level of protein, lipids, and small molecules involved in ADME of the 
drug, such as the transporter protein OATP1B, might be responsible for the variability in patients’ PK. 
Therefore, understanding the ADME processes will help in building a mechanism-based model and 
strengthen the predictive ability of the population PK model. The studies highlighted here implemented PK 
modeling strategies; however, there is a need to link the PK model with the PD model.

Pharmacodynamic modeling
The majority of the models developed for HU describe the PK and the variability in the PK profile of 
patients. There is very little research done in the area of PD modeling of HU. There is a difference in the 
timescale of PK and PD variables. The changes in PK variables occur on the scale of hours, while changes in 
PD variables occur over weeks. The long-term usage of HU causes a significant increase in the percentage 
of HbF and MCV of RBC[28].

Ware et al.[32] did a univariate and multivariate analysis between PK and PD variables and covariates and 
PD variables. The PD variables were HbF% at MTD and the MTD itself. Multivariate modeling identified 
five significant variables related to HbF% and MTD, as listed in Table 2. However, multivariate linear 
regression could not adequately predict HbF% and MTD[32].

The mechanism through which HU generates a specific response is not fully understood. To predict the 
change in response without knowing the exact mechanism of the drug action, four basic types of structural 
models (turnover models) have been used for describing drug response as a function of drug plasma 
concentration[56]. A general form of these models is shown in the following equation:

(11)

These four turnover models involve: (1) stimulation or inhibition of the rate of production (Kin); and (2) 
stimulation or inhibition of the rate of elimination (Kout) of the response variable (R) by the drug plasma/
biophase concentration. The turnover models have been investigated to correlate the change in MCV and 
HbF% with HU[33]. In sickle cell patients, two models, for two response variables, HbF% and MCV, were 
tested: (1) HU-mediated stimulation of Kin; and (2) HU-mediated inhibition of Kout. For HbF% dynamics, 
the elimination rate was modeled as Kout(1 - Imax), where (1 - Imax) is an inhibitory function. This model 
could not correlate HbF% and plasma drug concentration for the given dataset. For MCV dynamics, the 
elimination rate was modeled as Kout(1 - βy- γ), where y-  is the average drug concentration and (1 - βy- γ) is the 
inhibitory function. To explain the variability in responses of patients, the NLME model was used[33]. The 
proportional residual error model in the form of Equation (4) was used to explain RV for HbF% and MCV. 
The exponential models in the form of Equation (2) were used to describe the IIV for both HbF% and 
MCV model parameters (Kin, Kout, Imax, and β ). For HbF%, Kin has an exponential dependence on ΔMCV 
(change in MCV/day) as a significant covariate. For MCV, β  has an exponential dependence on ΔHbF% 
(change in HbF%/day) as a significant covariate. The comparison between the population PD model results 
and the observed HbF% and MCV data using VPC showed that the model’s performance was acceptable[33].

The study also compared two dosing regimens: (1) a daily dose of 1000 mg for seven days; and (2) a daily 
dose of 1000 mg for five consecutive days followed by an interruption of two days[33]. For patients with 
the highest HbF% level, continuous dosing resulted in stronger response (quantified by a higher HbF%) 
as compared to dosing with a two-day interruption. The effect of missing the dose on two days in a week 
was cumulative as the difference in HbF% continued to increase with every week. The two different dosing 
schemes did not seem to alter MCV dynamics significantly[33].

The percentage changes in HbF and MCV increase in HU treatment. There are very few PD models 
developed, and only one of them describes the change in the HU response variables with the change in 
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the drug concentration. The PD modeling approach has focused on relating efficacy with drug exposure. 
A model that can relate both drug toxicity and drug efficacy with drug exposure is needed to obtain 
a dose that maximizes efficacy and minimizes toxicity. Table 2 summarizes the PD models developed 
for SCD patients and reviewed in this section. A PD model able to correlate drug biophase/plasma 
concentration with MCV of RBC and HbF will be useful for predicting individual patient trajectory with 
time and will reduce clinicians’ waiting time in reaching the individual specific dose. Additionally, genetic 
polymorphisms were seen in patients treated with HU in genes associated with HU metabolism, erythroid 
progenitor proliferation, and HbF expression[57]. Incorporation of genetic polymorphisms in the population 
PD model will help in better explaining the IIV in response. In PD modeling, an indirect response or 
turnover model is useful to correlate change in HbF and MCV with HU exposure. However, for a detailed 
approach, a mechanistic model needs to be developed. Several studies were conducted to investigate the 
signaling pathway involved in the mechanism of HU-mediated reactivation of HbF.

Hydroxyurea signaling pathway
HU increased nitric oxide (NO) and activated soluble guanylyl cyclase (sGC)[43,58-60]. sGC induced γ-globin 
gene expression, mediated by cyclic guanosine monophosphate (cGMP)[44,61]. The role of p38 mitogen-
activated protein kinase (MAPK) in HbF activation has been studied[45,62-64]. Phosphorylation of p38 
MAPK increased in HU responsive erythroid cells while it was unaffected in HU resistant cells[65]. In some 
studies, NO stimulated p38 MAPK phosphorylation through cGMP-dependent protein kinase (PKG)[66,67]. 
In separate studies, the transcription factors such as BCL11A, KLF1, and SOX6 silenced γ-globin gene 
expression[68-70]. The HU treatment reduced the expression of repressors, which activated the γ-globin 
gene[71]. Additionally, HU induced immediate reduction in WBCs adhesion to vascular endothelium and 
reduction in WBC-RBC interaction, which are associated with the vaso-occlusive crisis. The studies have 
shown the potential role of the NO-cGMP signaling pathway in HU induced anti-inflammatory effects[72,73].

The HU induced HbF synthesis is represented by a proposed signaling pathway, as shown in Figure 1. In 
the figure, HU is metabolized to NO. Then, NO binds to sGC and activates it. The activated sGC (sGC*) 
converts GTP to cGMP. The transcription factors that silence the γ-globin gene expression are all combined 
into TFr. HU activates p38 MAPK (p38 MAPK*) as well. The HU-dependent cGMP production and p38 
MAPK activation inhibit the expression of TFr. As a result, the reduced expression of TFr promotes γ-globin 
gene expression and, consequently, HbF production.

The signaling pathway plays a significant role in HU-induced HbF stimulation. Hence, a deeper 
understanding of the signaling network is needed. Further studies are needed to establish the role of the 

Table 2. Summary of hydroxyurea pharmacodynamic (PD) models for sickle cell patients

Individual 
patients PD 
model

PD model Parameters - predictors/covariates IIV RV

Ware et al.[32] Univariate and multivariate linear 
regression

Univariate analysis
HbF% at MTD - baseline HbF, baseline total 
bilirubin, baseline ARC, age, height, cystatin C
MTD - creatinine, weight, BSA, age, height, BMI

Multivariate analysis
%HbF at MTD - baseline HbF, baseline total 
bilirubin, baseline ARC, BMI, MRT∞

MTD - baseline creatinine, baseline ARC, baseline 
BMI, half-life, fast PK phenotype

Coefficient 
of variation

Paule et al.[33] NLME model (individual 
parameter estimation),
turnover PD models with inhibition 
of the elimination rate

HbF% production rate, kin – ΔMCV
MCV parameter, β - ΔHbF%

Exponential 
model

Proportional 
model

IIV: inter-individual variability; RV: residual variability; NLME: nonlinear mixed effect; HbF: fetal hemoglobin; MTD: maximum tolerated 
dose; ARC: absolute reticulocyte count; BSA: body surface area; BMI: body mass index; MRT∞: mean residence time; MCV: mean cell 
volume; ΔMCV: change in MCV/day; ΔHbF%: change in HbF%/day
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HU-NO-sGC-cGMP and HU-p38 MAPK pathways in HbF activation. We also need to investigate how 
cGMP and p38 MAPK are correlated with transcription factors such as BCL11A, KLF1, and SOX6, which 
silence the γ-globin gene, and this will shed light on how HU turns on the switch for HbF synthesis. The 
signaling network shown in Figure 1 needs to be modeled to capture the HbF dynamics along with HU 
dynamics. The predictive model can be used to guide future experiments to explore and fill the gap in our 
understanding of the possible mechanism of HbF induction. The reason for studying a signal transduction-
based PD model is that it will give better insight into understanding the drug-cell interaction.

DISCUSSION AND FUTURE DIRECTION
The majority of studies validate the safety and efficacy of long-term usage of HU treatment for SCD[25,26]. 
However, variability in patient response across the population and the variability of an individual patient 
response with time demands continuous monitoring of the drug in patients. The standard dosing scheme 
followed in a clinical setting to understand the relationship between dose and response provides a 
framework for the development of computational approaches. A mathematical model provides us with a 
tool to capture the variant responses of patients against a given drug. Based on the current HU treatment 
challenges for SCD patients, the following directions can be pursued for future research initiatives.

Optimal dose determination
Patients currently undergo a trial-and-error approach for clinicians to determine their MTD. Sometimes 
this approach might cause excessive or inadequate dosing, which will cause either cytotoxicity or ineffective 
treatment. To minimize excessive myelosuppression and maximize drug efficacy, the optimal drug dosage 
needs to be determined based on the response predicted from a PK-PD model for an individual. The 
PK model needs to be integrated with the efficacy and toxicity models to characterize kinetics with both 
efficacy and toxicity. The modeling can include the three components Kinetics Model, Efficacy Model, and 
Toxicity Model, as shown in Figure 2. The kinetics model will calculate HU plasma (yp) and metabolites (ym) 
concentration dynamics with HU dose as the input. For this, the already existing PK models can be used. 
Using yp and ym as the inputs, the efficacy model will calculate HbF and MCV with time, and the toxicity 
model will calculate absolute neutrophil count (ANC) and absolute reticulocyte count (ARC) with time.

Figure 1. Proposed hydroxyurea signaling pathway. HU: hydroxyurea; NO: nitric oxide; sGC: soluble guanylyl cyclase; GTP: guanosine 
triphosphate; cGMP: cyclic guanosine monophosphate; p38 MAPK: p38 mitogen-activated protein kinase; TFr: repressor; solid line: 
activation; dashed line: repression; asterisk: activated form
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Quantify non-adherence
As described in the section on Hydroxyurea Treatment Challenges, there is a need to quantify non-
adherence using a mathematical model that can predict patient response and differentiate non-adherent 
patients from non-responders.

In PK-PD studies of HU, it is seen that there is a time lag in the drug expression in the plasma and the drug 
response. The timescale for change in HU in the plasma is in hours, as observed from PK studies[32,34,35]. 
However, the change in the response variables is seen after weeks of hydroxyurea exposure[21,27]. The reason 
behind the time lag in the PK-PD profiles of HU is not fully understood. The underlying mechanism of 
how HU stimulates HbF synthesis, how it increases the MCV of RBC, and how it causes myelosuppression 
is not fully understood. To address the above, the various factors influencing the PK-PD trajectory of HU 
need to be understood. Further work needs to be done to identify the HU transporters, metabolites, and 
enzymes involved. The signaling pathway involved in HbF stimulation needs to be identified through new 
experiments. The mechanism of how HU affects cells in the different stages of hematopoiesis will aid in 
elucidating the drug-dependent myelosuppression.

The current state of mathematical model development in HU treatment of SCD patients aims towards 
building a population PK-PD model to predict individual patient PK and the relation between exposure 
and efficacy [Tables 1 and 2]. The recent developments in population PK models have shown promising 
results in predicting varying PK profiles of patients[33-35,54]. However, there has been little effort to link the 
PK and PD models of HU. Besides, the PD model only considered efficacy and did not include toxicity[33]. 
A detailed PD model based on HU efficacy and toxicity is needed, which can predict the dynamics of 
individual patient response and can be tweaked to generate the desired response. There is also a need 
to integrate the systems biology approach with PK-PD modeling to develop mechanistic models of the 
drug-disease dynamics. Mathematical models can give new insight and improve the understanding of the 
mechanism of SCD progression and modification in the presence of HU, thereby advancing the treatment 
and improving the quality of life of SCD patients.
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