APPENDIX

```
Algorithm 1 Approximate sparse relation matrix of subdomain - level augmented matrix
    Input result of KL expansion \(\mathbf{K}_{i, I I}^{s}\) for \(i=0,1,2, \cdots, m\) and \(s=1,2, \cdots, N_{s}\)
    for \(s=1,2, \cdots, N_{s}\) do
        for \(i=0,1,2, \cdots, m\) do
            Calculate \(\mathbf{R}_{i, I I}^{s}=\left(\mathbf{K}_{0, I I}^{s}\right)^{-1} \mathbf{K}_{i, I I}^{s}\)
            Calculate \(\tilde{\mathbf{R}}_{i, I I}^{s}=\ell\left(\mathbf{R}_{i, I I}^{s}\right)\) by (17)
        end for
        Calculate \(\tilde{\mathbf{R}}_{I I}^{s}=\sum_{i=0}^{m} \Theta\left(\mathbf{A}_{i}, \tilde{\mathbf{R}}_{i, I I}^{s}\right)\)
    end for
    Output \(\tilde{\mathbf{R}}_{I I}^{s}\)
```

```
Algorithm 2 Multiplication of argument matrix and vector
    Input \(\mathbf{p}\)
    Initialize \(\mathbf{q}_{j}=\mathbf{0}, j=0,1,2, \ldots, M-1\)
    for \(\left(i, j, k, c_{i j k}\right) \in \lambda\) do
        \(\mathbf{q}_{j}=\mathbf{q}_{j}+\mathbf{K}_{i} \mathbf{p}_{k}\)
        \(\mathbf{q}=\left\{\begin{array}{llll}\mathbf{q}_{0} & \mathbf{q}_{1} & \cdots & \mathbf{q}_{M-1}\end{array}\right\}\)
    end for
    Output \(\mathbf{q}\)
```

```
Algorithm 3 Parallelmultiplicationof e-SC matrixandvector
    Input \(\mathbf{p}\)
    for \(s=1,2,3, \cdots, N_{s}\), parallelly do
        Compute \(\mathbf{p}_{s}=\mathbf{B}_{s}^{s} \mathbf{p}\)
        Compute \(\mathbf{q}_{1}^{s}=\mathbf{K}_{\Gamma T}^{s} \mathbf{p}^{s}\) by Algorism 2
        Compute \(\mathbf{q}_{a}^{s}=\mathbf{K}_{I \Gamma}^{s} \mathbf{p}^{s}\) by Algorism 2
        Solve \(\mathbf{K}_{I I}^{s} \mathbf{q}_{b}^{s}=\mathbf{q}_{a}^{s}\). by PCG, preconditioner \(\mathbf{M}^{s}=\left(\mathbf{I} \otimes \mathbf{K}_{0, I I}^{s}\right) \tilde{\mathbf{R}}_{I I}^{s}\)
        Compute \(\mathbf{q}_{2}^{s}=\mathbf{K}_{\Gamma I}^{s} \mathbf{q}_{b}^{s}\). by Algorism 2
        Compute \(\mathbf{q}^{s}=\mathbf{q}_{1}^{s}-\mathbf{q}_{2}^{s}\)
    end for
    Compute \(\mathbf{q}=\sum_{s=1}^{N_{s}}\left(\mathbf{B}_{s}^{s}\right)^{T} \mathbf{q}^{s}\)
    Output \(\mathbf{q}\)
```

```
Algorithm 4 Parallel computation for the relation matrix of e-SC matrix
    Establish the second level Boolean matrix \(\mathbf{B}_{L}^{(i)}\), for \(i=1,2, \cdots, L_{i}\)
    Compute \(\mathbf{S}=\sum_{i=1}^{L_{i}}\left(\overline{\mathbf{K}}_{0, \Gamma \Gamma}^{i}-\overline{\mathbf{K}}_{0, \Gamma I}^{i}\left(\overline{\mathbf{K}}_{0, I I}^{i}\right)^{-1} \overline{\mathbf{K}}_{0, I \Gamma}^{i}\right)\)
    Compute \(\mathbf{S}^{-1}\)
    for \(i=0,1,2, \cdots\), parallelly do
        Choose \(j\) and \(k\) satisfy \((i, j, k) \in \mathfrak{I}\)
        Compute \(\mathbf{R}_{j k}^{\left(L_{i}+1, L_{i}+1\right)}\) by Equation (47)
        for \(s=1,2,3, \cdots, L_{s}\) do
            Compute \(\mathbf{R}_{j k}^{\left(L_{i}+1, s\right)}\) by Equation (45)
            Compute \(\mathbf{R}_{j k}^{\left(s, L_{i}+1\right)}\) by Equation (48)
            for \(t=0,1,2,3, \cdots, L_{s}\) do
                Compute \(\mathbf{R}_{j k}^{(t, s)}\) by Equation (46)
                    Approximate \(\tilde{\mathbf{R}}_{j k}^{(t, s)}=\ell\left(\mathbf{R}_{j k}^{(t, s)}\right)\) by Equation (17)
            end for
            Approximate \(\tilde{\mathbf{R}}_{j k}^{\left(L_{i}+1, s\right)}=\ell\left(\mathbf{R}_{j k}^{\left(L_{i}+1, s\right)}\right)\) by Equation (17)
            Approximate \(\tilde{\mathbf{R}}_{j k}^{\left(s, L_{i}+1\right)}=\ell\left(\mathbf{R}_{j k}^{\left(s, L_{i}+1\right)}\right)\) by Equation (17)
            Approximate \(\tilde{\mathbf{R}}_{j k}^{\left(L_{i}+1, L_{i}+1\right)}=\ell\left(\mathbf{R}_{j k}^{\left(L_{i}+1, L_{i}+1\right)}\right)\) by Equation (17)
            Assembly \(\tilde{\mathbf{R}}_{j k}^{\prime}\) by Equation (49)
            Approximate \(\tilde{\mathbf{R}}_{i}=\ell\left(\mathbf{R}_{j k}\right)\) by Equation (17)
        end for
    end for
    Assembly \(\tilde{\mathbf{R}}\) according to \(\tilde{\mathbf{R}}_{j k}\) by \(\sum_{i=0}^{m} c_{i r q} \mathbf{R}_{i}\)
    Output \(\tilde{\mathbf{R}}\)
```

```
Algorithm 5 Approximate sparse approach for the e - SC system
    : Input \(\mathbf{u}_{\Gamma}=0 ; \varepsilon=1\)
    2: Parallelly compute \(\mathbf{r}=\mathbf{g}-\overline{\mathbf{K}} \mathbf{u}_{\Gamma}\) by Algorism 3
    3: Parallel Preconditioned Residual: \(\mathbf{r}=\Theta\left(\mathbf{I}, \overline{\mathbf{K}}_{0}\right) \tilde{\mathbf{R}} \mathbf{z}\)
    4: Compute: \(\mathbf{p}=\mathbf{z}\)
    5: Compute: \(\delta=(\mathbf{r}, \mathbf{Z})\)
    While \(\varepsilon \leq 10^{-8}\), do :
    Parallelly compute \(\mathbf{q}=\mathbf{K} \mathbf{p}\) by Algorism 3
    8: Compute: \(\gamma=(\mathbf{q}, \mathbf{p})\)
    9: Compute: \(\alpha=\delta / \gamma\)
    10: Update: \(\mathbf{u}_{\Gamma}=\mathbf{u}_{\Gamma}+\alpha \mathbf{p}\)
    11: Update: \(\mathbf{r}=\mathbf{r}-\alpha \mathbf{q}\)
    12: Parallel Preconditioned Residual: \(\mathbf{r}=\Theta\left(\mathbf{I}, \overline{\mathbf{K}}_{0}\right) \tilde{\mathbf{R}}_{\mathbf{z}}\)
    13: Compute: \(\beta=(\mathbf{r}, \mathbf{Z}) / \delta\)
    14: Compute: \(\delta=\beta \delta\)
    15: Update: \(\mathbf{p}=z+\beta \mathbf{p}\)
    \(\varepsilon=(\mathbf{r}, \mathbf{r}) /(\mathbf{g}, \mathbf{g})\)
    End while
    Output: \(\mathbf{u}_{\Gamma}\)
```

