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Supplementary Materials detailed materials and methods 

Materials and Method 

Data retrieval and preprocessing 

We first downloaded multi-omics data of LUAD from the TCGA database 

(https://tcga-data.nci.nih.gov/), including complete transcriptome expression data, 

DNA methylation, somatic mutations, and matching clinical data. Transcriptomic 

profiles of mRNA and lncRNA were obtained through the TCGAbiolinks package. 

The IDs of mature miRNAs in TCGA were recorded through the 

miRBaseVersions.db package. Somatic mutations were also obtained through 

TCGAbiolinks and processed using the maftools package. DNA methylation profiles 

and clinical information were downloaded from UCSC Xena 

(https://xenabrowser.net/). After downloading, the data was processed using the 

robust limma package for correction, log2 transformation, and data normalization. 

Subsequently, we downloaded the LUAD single-cell sequencing dataset (GSE189357) 

and LUAD transcriptome datasets (GSE31210, GSE50081) from the GEO database 

and used the SVA package for batch effect removal and merging. Additionally, we 

downloaded three immunotherapy datasets (GSE78220, GSE91061, GSE135222) for 

subsequent immune analysis and obtained clinical trial data on immunotherapy 

efficacy from http://research-pub.gene.com/IMvigor210CoreBiologies. 

The GWAS data (ieu-a-984) on LUAD was downloaded from the IEU OPEN GWAS 

database (https://gwas.mrcieu.ac.uk/), which included data from 65,864 Europeans, 

consisting of 11,245 lung adenocarcinoma patients and 54,619 controls. 

 

Single-cell sequencing analysis 

We obtained the raw single-cell sequencing data (GSE189357), which included 

samples from nine LUAD patients. Before analysis, we excluded low-quality cells 

through quality control, eliminating cells with fewer than 200 expressed genes or 

mitochondrial gene proportions exceeding 20%. Subsequently, we used Harmony for 

batch correction and dimensionality reduction, selecting PC=30 for further analysis 

and a resolution of 0.6 for cell clustering. After clustering, cell populations were 

annotated using the singleR package. Finally, we used the CellChat package to predict 

intercellular communication patterns among all identified cell types. 

 

Bayesian deconvolution of cell types and gene expression 

https://tcga-data.nci.nih.gov/
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Bayesian deconvolution uses a reference scRNA-seq to infer two statistics for each 

bulk RNA-seq sample: (1) the proportion of reads from each cell type, assuming it is 

proportional to the proportion of that cell type; (2) the gene expression levels of each 

cell type. The most challenging aspect of cellular deconvolution is accounting for 

various sources of uncertainty, including technical and biological batch variations and 

gene expression differences between bulk and reference scRNA-seq. To address these 

uncertainties, we adopted a Bayesian approach, modeling prior distributions with 

scRNA-seq and using observed data to infer the joint posterior distribution of cell 

type proportions and gene expression in each bulk sample. Thus, uncertainties in each 

estimate could be drawn from the joint posterior. 

 

We first identified disease-associated cell subsets at the single-cell level using the 

scPagwas package, which performs polygenic linear regression of pathway activity 

scores from scRNA-seq data with GWAS genetic signals to identify trait-related 

genes for inferring trait-related cell subsets. Through extensive simulations and real 

data evaluations, many well-known cell type-disease associations were replicated, and 

disease-related cell subsets were newly discovered. By scoring LUAD-related cell 

subsets and calculating a trait-relevant score (TRS) for each subset, we obtained 

trait-related genes. Using the processed single-cell count matrix, single-cell 

annotation files, and TCGA transcriptome data, we performed deconvolution analysis 

using the BayesPrism package, obtaining scores for each cell subset in each sample 

for subsequent analysis. 

 

Identification of functional differences in convoluted cell subsets 

We first normalized each sample's subsets, identifying tumor versus control 

differences between transcription profiles of each subset. Subsequently, we performed 

differential analysis on convoluted cells using the DESeq2 package, identifying group 

differences and visualizing them through heatmaps and volcano plots. Using the 

ImmPort database (https://immport.org/shared/), we identified differences in immune 

functions between related cell subsets. Simultaneously, we conducted immunotherapy 

differences analysis on cell subsets using mimiconda software and performed drug 

prediction on designated convoluted cells using the oncoPredict package. To further 

verify the differences in convoluted cell subsets, we performed somatic mutation 

analysis on cell subsets using the maftools package and calculated the percentage of 

https://immport.org/shared/


the genome with copy number alterations using copy number segment data. Finally, 

we identified key module genes in convoluted cells using the WGCNA package. To 

determine the optimal soft-thresholding power, we employed the scale-free topology 

criterion. Subsequently, transformations of the weighted adjacency matrix and the 

topological overlap matrix were generated. Hierarchical clustering and tree analysis 

were conducted to filter modules containing more than 50 genes. 

 

Multi-omics integration analysis 

In this study, we extracted TCGA-LUAD multi-omics data, including mRNA, 

lncRNA, miRNA, and methylation. We used the MOVICS package to screen the top 

1500 genes with the highest variation and combined clinical data to identify 

prognostic genes (p < 0.05). Subsequently, we used the maftools package to screen 

the top 5000 genes with the highest mutation rates and finally identified the top 5% 

most common mutation genes through the method parameter. These data results were 

incorporated into our research for further analysis. 

 

To further determine our optimal clustering number, we used 10 clustering algorithms 

(CIMLR, ConsensusClustering, SNF, iClusterBayes, PINSPlus, moCluster, NEMO, 

IntNMF, COCA, and LRA), obtaining clustering results for each algorithm, and based 

on consensus clustering, we finally decided to divide them into two subtypes. 

 

Molecular landscape of consensus clustering 

To calculate LUAD subtype-related features and different treatment-related features, 

we used gene set variation analysis (GSVA) for identification. Subsequently, we 

compared the characteristics of targeted therapy and radiotherapy and the distribution 

of immune checkpoints between LUAD subtypes and used the ESTIMATE package 

to evaluate the immune/stromal scores of tumor tissues. Additionally, we calculated 

DNA methylation scores based on the status of tumor-infiltrating lymphocytes 

(MeTIL). We then performed differential analysis between the two subtypes, selecting 

the top 100 upregulated genes in each subtype as features, and visualized the heatmap 

between subtypes using the ComplexHeatmap package. These genes served as 

classifiers to subtype the validation set and plotted Kaplan-Meier survival curves. We 

also evaluated the enrichment of 24 tumor immune microenvironment cells using 



GSVA. Finally, we verified the consistency of consensus clustering using external 

datasets. 

 

Machine learning construction of prognostic features and clinical application of 

consensus clustering 

We first performed univariate prognostic analysis on the top 100 upregulated genes, 

then intersected them with the hub module genes identified by WGCNA, screening 

out 30 key hub prognostic genes. Using the TCGA dataset as the training set and the 

META dataset obtained by batch-effect removal merging of GSE31210 and 

GSE50081 using the SVA package as the validation set, we constructed the MOMLS 

with high accuracy and extensive generalizability using 10 machine learning 

algorithms, including CoxBoost, stepwise Cox, Lasso, Ridge, elastic net (Enet), 

survival support vector machines (survival-SVMs), generalized boosted regression 

models (GBMs), supervised principal components (SuperPC), partial least Cox 

(plsRcox), and RSF. Regardless of the training set or validation set, we used the 

C-index to predict the best performance of MOMLS, and only models with the 

highest C-index in both sets were considered optimal. 

 

Based on the model, we scored each sample in the training and validation sets and 

divided them into high MOMLS and low MOMLS groups based on the scores. We 

evaluated the prognostic significance of MOMLS using Kaplan-Meier survival curves. 

To enhance the clinical utility of MOMLS, we constructed a nomogram using factors 

obtained from multivariate Cox regression. We plotted the time-dependent C-index 

curve and calibration curve to describe accuracy and used decision curves to calculate 

patients' clinical benefits. 

 

Immunological characterization and comprehensive analysis of immunotherapy 

response based on MOMLS 

We analyzed TME cell types, immunotherapy response, and immunosuppressive and 

immune rejection-related features in high MOMLS and low MOMLS groups using 

the IOBR package. Using a unified method, we calculated the enrichment scores for 

each sample, comprehensively analyzing the immunological differences between high 

MOMLS and low MOMLS groups. We compared differences in immune cell 

distribution between the two groups. For immunotherapy response, we first evaluated 



the delayed response survival of patients to immunotherapy and estimated the 

immunotherapy response by combining the TIP algorithm, subclass mapping, and 

TIDE algorithm. 

 

Screening potential therapeutic drugs for MOMLS patients 

We analyzed the status of carcinogenic pathways in high MOMLS and low MOMLS 

groups using the GSEA algorithm. Human cancer cell line (CCL) expression data 

were obtained from the Cancer Cell Line Encyclopedia (CCLE) of the Broad Institute. 

CTRP v.2.0 (https://portals.broadinstitute.org/ctrp) and PRISM Repurposing datasets 

(19Q4; https://depmap.org/portal/prism/) were used to obtain drug sensitivity data for 

CCLs. The area under the dose-response curve (AUC) value was used as a measure of 

drug sensitivity. 

 

Colocalization analysis 

To prevent different but related causal variations between exposure and outcome, for 

results exceeding the MR threshold (FDR <0.05), we performed colocalization 

analysis using the COLOC package. Colocalization assesses the probability of a 

shared causal variant (PP.H4) or distinct causal variants (PP.H3) between the 

LUAD-GWAS and cis-pQTL instruments for the protein of interest. We performed 

conditional analysis on the pQTL data to identify conditionally distinct pQTL signals 

and performed colocalization using marginal (unadjusted) pQTL results as well as 

results conditional on each of the instruments used in the MR. Statistically significant 

MR hits with a posterior probability of a shared causal variant (PP.H4) >0.5 for at 

least one instrumental variant were then investigated further. The tissue used was lung 

tissue from GTEx V8. 

 

Statistical analysis 

All statistical and bioinformatics analyses were performed using R software. 

Continuous data were compared using t-tests or Mann-Whitney tests as appropriate. 

Analysis of different clinical outcomes was based on Kaplan-Meier plots and Cox 

regression analysis. Multi-omics integration analysis was performed using the 

MOVICS package. Statistical significance was determined at a p-value threshold of 

less than 0.05. 
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