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Abstract
Perovskite materials are central to the fields of energy conversion and storage, especially for fuel cells. However, 
they are challenged by overcomplexity, coupled with a strong desire for new materials discovery at high speed and 
high precision. Herein, we propose a new approach involving a combination of extreme feature engineering and 
automated machine learning to adaptively learn the structure-composition-property relationships of perovskite 
oxide materials for energy conversion and storage. Structure-composition-property relationships between 
stability and other features of perovskites are investigated. Extreme feature engineering is used to construct 
a great quantity of fresh descriptors, and a crucial subset of 23 descriptors is acquired by sequential forward 

selection algorithm. The best descriptor  for stability of perovskites is determined with 
linear regression. The results demonstrate a high-efficient and non-priori-knowledge investigation of structure-
composition-property relationships for perovskite materials, providing a new road to discover advanced energy 
materials.

Keywords: Perovskites, structure-composition-property relationships, stability, descriptors, automated machine 
learning

INTRODUCTION
To discover materials, the investigation of structure-composition-property relationship of inorganic 
materials is essential, and a huge number of material composition pose a big challenge to investigate the 
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hidden structure-composition-property relationships[1,2]. It is usually supported by magnanimous lab 
experiments that are demanding both in terms of time and technology. Accordingly, the exploration of the 
structure-composition-property relationship is very difficult[3-5]. Machine learning is intensively applied in 
the field of advanced materials exploration and discovery for almost a decade[6-9], becoming a high-efficient 
approach to investigate inorganic materials[5]. However, the complicacy of machine-learning processes 
and the inability to comprehend models make it hard to obtain good rules for describing connections 
between structure, composition and property of materials, which impedes their deeper comprehension[10]. 
Consequently, it is particularly significant to improve the approach of exploring the structure-composition-
properties relationship of inorganic materials[7,11]. So far, several approaches for discovering important 
descriptors have been published, such as the symbolic regressionr algorithm[12], the least absolute shrinkage 
and selection operator algorithm algorithm[13], and the sure independence screening and sparsifying 
operator (SISSO) algorithm[14]. The purpose of these approaches is to find some vital descriptors describing 
the target variables or some hidden mathematical formulas from the given feature space so that these vital 
descriptors can be used to predict the target variables[4,9,10]. Although these methods achieved good results, 
they need to rely on many conditions, such as a large amount of data, suitable algorithms, etc., which are 
obviously tough for material scientists who are not familiar with computer algorithms[15]. Therefore, these 
algorithms are extremely low efficient[14-16].

Perovskite materials are essential for energy storage and conversion, due to their excellent electrocatalytic 
properties[11]. The stability of perovskite compounds is the focus and challenging dimension in perovskite-
based fuel cells, and is a key material property whose value may determine the use of perovskite oxides[17]. 
When considering numerous different A- and B-site elements [Figure 1], as well as various conventional 
doping ratios and combinations, the amount of perovskite components should be huge. The full 
compositional flexibility of perovskite structure gives it a complex set of functional properties. In addition, 
the flexibility poses the big challenge for predicting stability[18]. A recent research paper obtained a subset 
of nine important descriptors by constructing a large number of new descriptors and using recursive 
feature elimination method. Furthermore, the optimal descriptor of lattice constant was obtained by linear 
regression algorithm, and the simple linear expression of lattice constant was obtained successfully[19]. It 
helps to explore structure-composition relationships of materials without prior knowledge. In this work, 
the approach was further improved.

In this paper, the structure-composition-property connections between stability and other features of 
perovskite compounds was investigated via a high-effective approach of extreme feature engineering 
and automated machine learning[19-27]. The feature engineering approach was used to remove redundant 
features while generating many fresh descriptors[28]. The subset of significant descriptors was obtained 

Figure 1. A-site 12-coordinated cations (green), B-site 6-coordinated cations (blue), and O-site oxygen anions in the crystal structure of 
perovskite oxide ABO3 (red).
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by sequence forward selection algorithm, the best descriptor was obtained via linear regression analysis 
to obtain expression of stability. Instead of trying to model all the feature combinations, the sequential 
forward selection algorithm aborts the search by finding an optimal solution, which greatly reduces the 
computational effort. This new approach combining feature engineering with linear regression algorithms 
does not demand researchers to have an in-depth understanding of computer algorithms and does not 
depend on advanced knowledge or model[29]. Compared with symbolic regression algorithm and SISSO 
algorithm, this algorithm has obvious advantages[9]. The acquired structure-composition-property 
relationships will speed up the design and optimization of perovskite materials, and offer a new way for the 
exploration and research of inorganic materials.

EXPERIMENTAL
The whole process of adaptively learning structure-composition-property connections of ABO3 perovskite 
compounds shows in Figure 2, and it contains several steps as follows:

Step 1: Collect the material dataset from different ways;
Step 2: Perform pretreatment on the material dataset;
Step 3: Extreme feature engineering is used to generate a large number of new descriptors;
Step 4: Apply the feature selection on a significant number of new descriptors, discover the subset of 
important descriptors, and then apply regression fitting on the subset of important descriptors. This enables 
the discovery of the optimal descriptor as well as the gain of the related structure-composition-property 
relationships.

Figure 2. Whole process of adaptively learning structure-composition-property connections of ABO3 perovskite compounds via 
automated machine learning.
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Dataset of perovskite materials
The dataset of ABO3 perovskite oxide utilized in this paper originates from DFT high-throughput compute, 
including the ion radius of the A-site, the ion radius of the B-sit, formation energy, crystal volume, band 
gap, lattice parameters (a, b, c, α, β, γ), oxygen vacancy formation energy, stability, etc.[30]. Different radii of 
ions were used in A sites and B sites, including those of A ∈ [Al, As, Ag, Be, B, Bi, Ba, Ca, Co, Cu, Cr, Cd, 
Ce, Zr, Zn, Dy, Er, Fe, Ge, Gd, Ga, Hf, Ho, In, Ir, K, La, Lu, Mn, Mg, Mo, Ni, Nb, Nd, Pr, Pd, Ru, Pb, Rb, Re, 
Rh, Si, Sc, Sr, Sb, Sn, Sm, Ta, Th, Tb, Te, Ti, Tm, U, V, W, Y, Yb, etc.] and B ∈ [Al, Ag, As, Li, B, Bi, Be, Ca, 
Zn, Co, Cu, Cd, Cr, Ce, Zr, Dy, Eu, Er, Fe, Ga, Ge, Gd, Hf, Ho, In, Ir, Lu, Mn, Mg, Mo, Ni, Nd, Nb, Pr, Pb, 
Pd, Ru, Rb, Rh, Re, Si, Sb, Sc, Sn, Sm, Sr, Ti, Ta, Th, Tb, Te, Tm, U, V, W, Y, Yb, etc.], for perovskite ABO3 

compounds. Through a cursory examination of the data, a total of 4912 sets of ABO3 perovskite compound 
high-throughput data were chosen. The values of stability were in the -0.729~3.927 eV/atom range. Data 
sets are indexed via abbreviations to make experimentation easier, using the following details: rA for ionic 
radius at the A-site, rB for ionic radius at the B-site, ΔHf for formation energy, V for crystal volume, ΔE 
for band gap, a for lattice parameter a, b for lattice parameter b, c for lattice parameter c, α for the lattice 
parameter of the α phase, β for the lattice parameter of the β phase, γ for the lattice parameter of the γ 
phase, O

VE∆  for oxygen vacancy formation energy and ΔHs for stability. For ABO3 perovskite oxide, more 
detailed descriptions are shown in Table 1.

Data pretreatment
Data pretreatment is used to process the missing and repeated values in the data, raising the data’s accuracy 
and helping to raise the precision and efficiency of the subsequent learning procedure. The common 
processes of data pretreatment include missing value processing, attribute coding, feature selection, etc.[31,32]. 
There are three common ways to deal with missing values: use the feature that contains the missing value 
directly, delete the feature that contains the missing value (this only works if the feature contains blank 
values in a big number), and complete the missing value[33,34]. Because there are a small number of blank 
values in the raw Dataset, the features containing blank values are employed in this paper to process blank 
values.

Feature selection refers to the procedure of picking a subset of relevant features from a given feature 
collection[35]. Although a variety of factors influence the target characteristics of perovskite oxides, the 
amount of features must be appropriate, the features must be uneven for the category of interest, and 
certain non-essential information must be removed[36]. Correlation is a term that describes the degree and 

No. Property Unite Description
1 rA Å Ionic radius of A site
2 rB Å Ionic radius of B site
3 ΔHf eV/atom Formation energy as calculated by equation of the distortion with 

the lowest energy
4 ΔHs eV/atom Stability as calculated by equation of the distortion with the lowest 

energy
5 V Å3/atom Volume per atom of the relaxed structure
6 ΔE eV PBE band gap obtained from the relaxed structure
7 a Å Lattice parameter a of the perovskite structure
8 b Å Lattice parameter b of the perovskite structure
9 c Å Lattice parameter c of the perovskite structure

10 α α angle of the relaxed structure. α = 90 for the cubic, tetragonal 
and orthorhombic distortion

11 β β angle of the relaxed structure. β = 90 for the cubic, tetragonal 
and orthorhombic distortion

12 γ γ angle of the relaxed structure. γ = 90 for the cubic, tetragonal 
and orthorhombic distortion

13 O
VE∆ eV per O atom Oxygen vacancy formation energy

Table 1. Explanation for ABO3 perovskite compounds datasheet
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direction of the link between these two measurable features. Pearson correlation analysis is often adopted 
for analyzing the connections between two measurable features[37]. In this paper, Pearson correlation 
coefficient was used to examine the link between composition, structure and property, and the linear 
correlation among composition, structure and property is measured[38]. Pearson correlation coefficient can 
be defined easily as follows: ( )( )

n

i i
i 1

x y

x x y y1cor( x, y )
n 1 σ σ

=
− −∑

= ⋅
−

                                                   (1)

where xi represents the value of feature x, yi represents the value of feature y,  represents the average value 
of value of feature x,  represents the average value of feature y, σx represents the standard deviation of 
feature x, σy represents the standard deviation of feature y and n represents the sample size[38]. Correlation 
coefficient of 1 indicates strongly positively correlated, whereas a correlation value of -1 indicates a strong 
negative correlation. The correlation coefficient near to 0 implies that there is no association[37,38].

Pearson correlation coefficients were utilized to choose the raw dataset in this paper. Table 2 depicts the 
degree of connection between the 12 properties of perovskite oxide ABO3 and their stability. Figure 3 
depicts Pearson correlation map for different features.

Extreme feature engineering
For the sake of rapidly discovering the connections between structure, composition, and properties, we 
displayed dataset’s feature distribution. Figure 4 depicts the distribution of raw features and stability. The 
distribution of the raw data set of observation feature and the predicted variable stability is positively 
biased, and the range of data is quite broad. Therefore, data transformation methods must be employed to 
generate new descriptors through feature engineering[39]. Essentially, the data provided to the algorithm 
should be compatible with the required structure or characteristics of the underlying data. Feature 
engineering is the process of turning data attributes into data features and extracting features from raw 
data through algorithms and models to the greatest extent possible[40]. Therefore, the feature engineering 
approach may generate a large number of new descriptors and assess their performance with a subset of 
them.

In machine learning, feature engineering is a critical data preparation activity that creates suitable 
descriptors from a given feature to improve prediction performance[41]. Feature engineering is adding some 
functions of conversion, such as arithmetic and aggregation operators, into a given attribute to create a 
huge number of new descriptors[42]. The transformation functions contribute to increase the dimensions 
of features or to turn the nonlinear connection between features and stability into a more understandable 
linear one[40,43]. Feature combination is a highly important method in feature engineering to integrate 
features from several categories into a single feature[44]. This is a beneficial method when a combination of 
features outperforms a single feature. The feature combination is the cross multiplication of all conceivable 
eigenvalues in mathematics. The features of each combination really constitute the information synergy.

A huge number of brand-new descriptors were gained through extreme feature engineering, where the 
dimensionality of features was also expanded. Figure 5 shows the construction process of the descriptors by 
extreme feature engineering. In their midst, xi (i = 1, 2, … n) indicates the selected feature. The parameters 
following the yellow arrows reflect a significant number of new descriptors that were produced. These 
9 functions of x, x-1, , x2, x3, ex, ln|x|, ln(1 + |x|) and log|x| are utilized for nonlinear transformation of 
features. In order to generate additional descriptors, these descriptors are merged non-linearly[45]. The 
primary descriptors were generated in the following way:

Step 1: Import the chosen vital features into these 9 functions of x, x-1, , x2, x3, ex, ln|x|, ln(1 + |x|) and 
log|x|, where x is one of the vital features chosen from the raw features, and it can directly generate brand-
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Table 2. Pearson correlation coefficients of built-up features and stability
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new descriptors;
Step 2: Feature combination combines the brand-new descriptors from Step 1. Increase the number of 
descriptive words by multiplying them by two or more and then combining them into a brand-new one;
Step 3: Substituting brand-new descriptors gained in step 2 into the function x-1 for nonlinear conversion, 
and the number of descriptors acquired has increased.

Regression
The term “regression” refers to the process of determining the quantitative connection between two or more 
variables using a group of data, the establishment of simulations from mathematics, and the estimation of 
unidentified factors[46]. Machine learning is an efficient way of performing regression. The capacity to do 
linear regression is defined as to properly depict the connection between data using a straight line, which 
is more suited to fitting the expression[47]. The modeling speed of linear regression is rapid, it does not need 
sophisticated calculation, and it may even run quickly when dealing with huge amounts of data[48]. The 
gained linear expression can be understood and interpreted according to the coefficient of each variable, 
and the influence of each feature on the result can be directly seen from the weight, which is much easier to 
grasp[43,49]. Nonlinear expressions are more complex than other machine learning methods, and the related 
process is difficult to learn[48]. Clearly, linear regression is appropriate for selecting the most appropriate 
descriptor. In this paper, we gained 55%/45% of the optimized data sets, which nicely balanced the 
accuracies and overfitting of the machine learning model. In the end, the important descriptor was gained 
by comparing the effectiveness of models for various descriptors.

Figure 3. This is a Pearson correlation map for raw data. The correlation coefficient is shown by the color bar: red indicates strongly 
positive correlations, white denotes strongly negative correlations. The worth of the related Pearson correlation coefficient is 
represented by the filled fraction in each tiny square.
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Performance evaluation
In order to assess the prediction accuracy and model performance, we employed the mean absolute error 
(MAE), mean square error (MSE) and coefficient of determination (R2). Simply, the smaller MAE and 
MSE values to 0 and the bigger R2 values to 1 suggest the higher prediction accuracy and better model 
performance. The corresponding equations can be summarized:

n

j j
j 1

1 ˆMAE y y
n =

= −∑                                                                    (2)

( )
2n

j j
j 1

1 ˆMSE y y
n =

= −∑
                                                                (3)

Figure 4. (A) The radius distribution of A-site ions; (B) the radius distribution of B-site ions; (C) distribution of formation energy; (D) 
distribution of band gap feature; (E) distribution of volume; (F) distribution of lattice constant a; (G) distribution of lattice constant b; 
(H) distribution of lattice constant c; (I) distribution of α angle of the crystal structure; (J) distribution of β angle of the crystal structure; 
(K) distribution of γ angle of the crystal structure; (L) distribution of stability; and (M) distribution of oxygen vacancy formation energy.
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( )
( )

n 1

j j
j 02

n 1 2

j j
j 0

ˆy y
R 1

y y

−

=
−

=

−∑
= −

−∑
                                                                 (4)

Where, n indicates the sample size,  indicates experimental value and yj indicates predicted value, and y  
is the average value.

RESULTS AND DISCUSSION
Extreme feature engineering
Following data pretreatment and feature transformation, the amount and quality of the description dataset 
must be checked further. Feature processing plays an important role in feature engineering and is also 
the most time-consuming aspect of data analysis. Because feature processing lacks a defined phase, such 
as algorithms and models with greater technical knowledge and compromises, there is no unified feature 
processing way. Fortunately, scikit-learn offers a more comprehensive feature processing approach, which 
includes data preparation, feature selection, dimension reduction, and so on[50]. Scikit-learn is a free and 
open-source machine learning library licensed under the Berkeley Software Distribution license[51]. Thus, in 
this paper, the python package scikit-learn was used for data pretreatment, feature transformation, feature 
processing, machine-learning model training and model performance evaluation[51-53]. Feature selection is 
the process of eliminating duplicate and unnecessary characteristics from a data collection, determining 
the important features in the data set, and eventually obtaining the feature subset[51]. Wrapper methods are 
common methods for feature selection[54,55]. The basic description of wrapper methods is:

Step 1: A subset of features is chosen to train the model. The model here usually refers to a machine 
learning algorithm, also called an objective function;
Step 2: Evaluate the model with a validation dataset;
Step 3: Perform the above operations on different feature subsets based on some search algorithm;
Step 4: Based on the evaluation results, the best feature subset is selected.

Clearly, the method for finding the optimal descriptors subset belongs to the family of greedy search 
algorithms. Wrapper methods include three common selection methods, such as sequential feature 
selection (SFS)[56], exhaustive feature selection[57] and recursive feature elimination[58]. Among them, SFS 

Figure 5. The process of descriptor construction by extreme feature engineering. The xi (i = 1, 2, … n) indicates the chosen feature. The 
parameters following the arrows denote the constructed a large number of brand-new descriptors. These 9 functions of x, x-1, , x2, 
x3, ex, ln|x|, ln(1 + |x|) and log|x| are employed in the nonlinear conversion of features. All of the descriptors mixed in a nonlinear way to 
construct more descriptors.



Page 10of                                      Deng et al . Energy Mater  2021;1:100006  I  http://dx.doi.org/10.20517/energymater.2021.10

includes two algorithms, such as sequential forward feature selection algorithm and sequential backward 
feature selection algorithm. Sequential forward selection algorithm is about execution of the following 
steps to search the most appropriate features out of N features to fit in K-features subset. Instead of trying 
to model all the feature combinations, the sequential forward feature selection algorithm aborts the search 
by finding an optimal solution, which greatly reduces the computational effort[56]. Therefore, we adopted 
the sequential forward feature selection algorithm to perform feature selection. In this work, gradient 
augmented regression (GBR) was used as the objective function.

The extreme feature engineering created many descriptors, and was followed by a preliminary screening 
of these descriptors. By analyzing the Pearson correlation coefficient, the top 50 descriptors with the 
highest Pearson correlation coefficient were successfully selected. Figure 6A shows the Pearson correlation 
coefficients for different new-constructed descriptors. Figure 6B shows the Pearson correlation coefficients 
for the as-selected 50 descriptors. Figure 6C shows the Pearson correlation map of the as-selected 50 
descriptors and stability. Figure 6D shows the trend between the prediction effect of GBR models and the 
descriptor number.

Figure 6. (A) Indicators of Pearson correlation coefficients for distinct descriptors with varying sequence numbers and stability. The 
horizontal axis displays the sequence number for the descriptors while the vertical axis is a reference to the relative Pearson correlation 
coefficient. (B) Indicators of Pearson correlation coefficients for the selected 50 distinct descriptors with varying sequence numbers 
and stability. The horizontal axis displays the sequence number for the descriptors while the vertical axis is a reference to the relative 
Pearson correlation coefficient. (C) Pearson correlation map for the selected 50 descriptors and the stability. The color bar on the right 
represents the correlation coefficient. (D) R2 values of GBR models are used to evaluate machine learning algorithms. There are values 
of descriptors on the horizontal axis, and R2 values for GBR models on the vertical axis.
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GBR is an enhancement to the Boosting algorithm[59]. Boosting is a type of integrated machine-learning 
algorithm that transforms the poor learner into the strong learner. Each sample was initially allocated an 
equal weight value in the Boosting algorithm[60,61]. Because each training produced a significant change in 
the values of data points, the weight values were processed by adding mis-splitting points at the end of each 
step, and then N iterations were done to obtain N simple base classifiers[62,63]. Finally, the N basic classifiers 
acquired were weighted together to form a final model.

The distinction between GBR and Boosting is that each GBR computation is designed to minimize the last 
residual. To reduce the associated residuals, a new model must be created in the gradient’s orientation to 
reduce the residuals. As a result, in GBR, each new modeling aimed to reduce the previous model residuals 
in the gradient orientation[64], the associated loss-function negative gradient was employed as the estimated 
value of the residual in the GBR algorithm, and then the regression tree was fitted[65,66]. As a weak classifier, 
GBR typically employs a fixed size regression tree. The capacity to analyze mixed data and create models 
with complicated functions are two properties of the regression tree that make it more accurate in the 
promotion process[64]. The GBR model is as follows:

                                                         (5)

Here, rm is the weight, T(x; θ m) is the regression tree, θ m is the parameter of the regression tree and m is the 
number of trees[67]. The GBR models were built iteratively in this paper. The best descriptors were chosen 
based on the coefficients of descriptor significance, and this process was repeated for the other descriptors 
until all descriptors had been explored. Finally, the optimal descriptor subset consists of 23 most important 
descriptors, as shown in Table 3.

Figure 6D depicts the relationship between GBR model prediction effect and descriptor numbers. It is 
clear that when the number of descriptors was raised, the prediction effect of the GBR models grew and 
eventually stabilized[68,69]. Clearly, the best effect of the GBR models was obtained when the optimum subset 
of 23 descriptors was employed. Figure 6B depicts the Pearson correlation coefficients for the 50 descriptors 
chosen and the stability, which ranges from 0.845766 to 0.839595 with minor variations. These descriptors 
are strongly correlated with the stability of perovskite compounds. The key to understanding the structure-
composition-property relationship is to choose the best relevant description.

Following the selection of 23 key descriptors through SFS, the ideal subset of descriptors was chosen based 
on the three evaluation indices of the GBR model to train the linear regression model, as shown in Table 3. 
After a large number of experiments, the results showed that these fluctuations were within the range of 
3%. It is apparent that the descriptor 1 2 1 1

A B(ln(1 r )r c )α− − −+  exhibited the highest R2 of 0.716913, the lowest 
MAE of 0.230453 and the lowest MSE of 0.230453, respectively, indicating the best model performance. 
The R 2,  MSE and MAE values  for  descr iptors  ,   

  ,  
and  are exceptionally small. The other 16 descriptors exhibited poor prediction 
effects and were not considered in the subsequent work. For these 7 different descriptors, the performance 
of the model was similar, so we chose 7 descriptors,   

 
 and , to train the linear regression model.

Due to the limited capabilities of experimental and theoretical tools, traditional material discovery 
has always been a process of trial and error. The widely used tolerance factor (t for short) to measure 
the stability of perovskite was proposed by Goldschmidt in 1926. t has become a popular descriptor of 
stability and has accelerated stability screening of perovskite over the past century. It is worth noting that 
Goldschmidt tolerance factor t has been widely used to predict the stability of perovskite structures based 



Page 12 of 16                              Deng et al . Energy Mater  2021;1:100006  I  http://dx.doi.org/10.20517/energymater.2021.10

only on a universal formula of ABX3 with matching ionic sizes of A-site, B-site and X-site[70]. Its expression 
is:

A X

B X

( r r )t
2( r r )

+
=

+
                                                                  (6)

Here, rA is the A-site ionic radius, rB is the B-site ionic radius, and rX is the X-site ionic radius. This is 
a semi-empirical formula with an accuracy of only 70% that gives a rough indication of the stability of 
perovskite materials. The descriptors constructed in this work are not only related to the A-site ion radius, 
B-site ion radius, but also related to the lattice parameters, which are considered to be key features related 
to the stability of perovskite materials.

Automated machine learning
By automated machine learning, we discovered the quantitative relationships between various 
variables based on a collection of data, which resulted in the construction of a mathematical model 
and the estimation of unknown parameters. The linear regression algorithm, as an effective machine-
learning algorithm, accurately depicted the connection of data via the straight line and was better 
for fitting expressions in this paper[71]. Table 4 shows the 7 descriptors {

   
  }  a n d  t h e  c o r r e s p o n d i n g 

evaluation indexes selected by the linear regression model. It is easy to see that the last descriptor of 
 achieved the greatest R2 value of 0.735529, the lowest MAE value of 0.224526 and 

the lowest MSE value of 0.102889. As a result, the descriptor of  was chosen as the 
best descriptor for investigating structure-composition-property relationships in perovskite compounds 
(ABO3), which was only related with A-site ion radius, B-site ion radius, lattice constant b, and α angle of 
the crystal structure.

Table 3. Comparison of three evaluation indicators and brand-new descriptors chosen by the GBR model

Method No. Descriptors
Evaluation index

R 2 MAE MSE
GBR 1 1 2 1 1

A B(ln(1 r )r c )α− − −+ 0.716913 0.230453 0.110132
2 1 2 1 1

A B(ln(1 r )r bc )α− − −+ 0.713565 0.231627 0.111434
3 1 2 1 1

A B(ln(1 r )r ln(1 b )c )− − −+ + 0.715694 0.230980 0.110606
4

1 2 1 1
A B(ln(1 r )r ln b c )α− − −+ 0.712077 0.234185 0.112013

5
1 2 1 1

A B(ln(1 r )r bc )− − −
0.711042 0.235473 0.112416

6
1 2 1

A B(ln(1 r )r bc ln )α− −+ 0.699977 0.240292 0.116721
7 1 1 1

A B(ln(1 r )r bc )α− − −+ 0.707636 0.235522 0.113741
8 1 2 1

A B(ln(1 r )r bc )− −+ 0.707648 0.238117 0.113736
9 1 2 1 1

A B( r r bc )α− − − 0.687836 0.241530 0.121444
10 1 2 1 1

A B( r r c )α− − − 0.711809 0.233404 0.112117
11 1 2 1

A B(ln(1 r )r bc ln(1 ))α− −+ + 0.703372 0.239687 0.115400
12 1 2 1

A B(ln(1 r )r bc ln )α− −+ 0.714631 0.234160 0.111020
13 1 2 1 1

A B( r r ln(1 b )c )α− − −+ 0.673522 0.248478 0.127012
14 1 1 1

A B( r r bc )α− − − 0.645613 0.247656 0.137870
15

1 2 1
A B(ln(1 r )r ln(1+ b )c )α− −+ 0.691656 0.243092 0.119958

16
1 2 1 1

A B( r r ln b c )α− − −
0.691806 0.242466 0.119899

17
1 2 1 1

A B( r r ln b c )α− − −
0.669111 0.246630 0.128729

18 1 2 1 1
A B( r r ln b c )α− − − 0.708067 0.235591 0.113573

19 1 2 1 1
A B( r r log b c )α− − − 0.708067 0.235591 0.113573

20 1 2 1 1
A B(ln(1 r )r b c )α− − −+ 0.703448 0.238094 0.115370

21
1 2 1

A B(ln(1 r )r bc )α− −+ 0.585948 0.274807 0.161083
22

1 1 2 1 1
A B(ln(1 r )r b c )α− − − −+ 0.683018 0.244765 0.123318

23 1 2 1
A B( r r bc )− − 0.683018 0.244765 0.123318

GBR: Gradient augmented regression; MAE: mean absolute error; MSE: mean square error.
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The straightforward linear equation is intended to represent the structure-composition-property 
relationships of ABO3 perovskite compounds after obtaining the optimal descriptor using a linear 
regression model. The following is the equivalent formula:

F = f(d1, d2,…dn)                                                                         (7)
Where di is the final descriptors, F is the stability, f(d1, d2,…dn) is a linear representation of the structure-
composition-property connection. A simple linear expression was produced using linear regression analysis 
as follows:

                                               (8)
where k = 0.1485 and z = -0.0380 are the coefficient values. Following linear regression fit and comparison 
with DFT calculation value, as shown in Figure 7, the dependability of the automated-machine-learning 
stability expression was validated. The results showed that the effects of A-site ion radius, B-site ion radius, 
lattice constant b, and α angle of the crystal structure are more significant than that of other variables. The 
equation of  showed the relationship between structure, 
composition and property in perovskite oxides. Our technique produces a more accurate expression than 
the semi-empirical formula. In a nutshell, the novel approach may be utilized to investigate the structure-
composition-property relationships of ABO3 perovskite oxides.

Table 4. The linear regression model’s specified descriptors and assessment indices

Method No. Descriptors
Evaluation index

R 2 MAE MSE
Linear 
Regression

1 1 2 1 1
A B(ln(1 r )r c )α− − −+ 0.735529 0.224526 0.102889

2 1 2 1 1
A B(ln(1 r )r bc )α− − −+ 0.732250 0.226233 0.104165

3
1 2 1 1

A B(ln(1 r )r ln(1 b )c )α− − −+ + 0.732245 0.226250 0.104167
4

1 2 1 1
A B(ln(1 r )r ln b c )α− − −+ 0.728364 0.228253 0.105677

5
1 2 1 1

A B(ln(1 r )r bc )α− − −+ 0.721646 0.231526 0.108291
6

1 2 1 1
A B( r r c )α− − −

0.718913 0.109353 0.235988
7

1 2 1
A B(ln(1 r )r bc ln )α− −+ 0.718752 0.235184 0.109416

MAE: Mean absolute error; MSE: mean square error.

Figure 7. Scatter plots showing correlations between the best descriptor and stability for ABO3 perovskite compounds. The blue line 
showed anticipated stability values, whereas the scatter points reflect actual stability values.
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CONCLUSIONS
For the sake of conquering the huge complexity of structure-composition-property in ABO3 perovskite 
materials for energy conversion and storage, we presented a new way to combine extreme feature 
engineering and automated machine learning for investigating structure-composition-property connections 
in perovskite oxides. A great number of brand-new descriptors were generated via extreme feature 
engineering and a subset of 23 significant descriptors was gained via SFS. Furthermore, by linear regression 
algorithm, the optimal descriptor of  was found, and the straightforward linear 
equation of  for the stability was achieved. It has been shown 
that the influence of radius of A-site ions, radius of B-site ions, lattice constant b, and α angle of the crystal 
structure on the stability of ABO3 perovskites are more significant than others. In this way, we can obtain 
expression with higher accuracy than a semi-empirical formula. The results demonstrate a high-efficient 
and non-priori-knowledge investigation of structure-composition-property relationships for perovskite 
materials, providing a new road to discover advanced energy materials.
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