Arginine modification of hybrid cobalt/nitrogen Ti₃C₂T_x MXene and its application as a sulfur host for lithium-sulfur batteries

Miao Zhang¹, Kaiyu Zhang¹, Wei Wei¹, Hongxin Yuan², Jingjing Chang¹, Yue Hao¹

¹Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, Shaanxi, China.

²School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Correspondence to: Prof. Jingjing Chang, Academy of Advanced Interdisciplinary Research, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, China. E-mail: jjingchang@xidian.edu.cn; Dr. Miao Zhang, Academy of Advanced Interdisciplinary Research, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, China. E-mail: miaozhang@xidian.edu.cn

Figure S1 Cross sectional SEM images of Co-N@Ti_3C_2T_X-Ser, Co-N@Ti_3C_2T_X-Lys and Co-N@Ti_3C_2T_X-Arg.

Figure S2 The TEM images and elemental mappings of the Co-N@Ti_3C_2T_{x-Arg}

Figure S3 SEM image and EDS spectrum mapping: C, Co and N elemental distribution of Co-N $@Ti_3C_2T_{X-Ser}$ composite.

Figure S4 SEM image and EDS spectrum mapping: C, Co and N elemental distribution of Co-N@Ti_3C_2T_{X-Lysr} composite.

Figure S5 XRD pattern of $Ti_3Al_2T_x$ and $Ti_3C_2T_x$.

Figure S6 a) XPS study for Ti₃C₂T_x composites of the total scale. b) C 1s XPS spectrum of Ti₃C₂T_x. c) O 1s spectrum of Ti₃C₂T_x. d)Ti 2p spectrum of Ti₃C₂T_x.

Figure S7 a) XPS study for Co-N@Ti₃C₂T_{x-Ser} composites of the total scale. b) C 1s XPS spectrum of Co-N@Ti₃C₂T_{x-Ser} composites. c) O 1s spectrum of Co-N@Ti₃C₂T_{x-Ser} composites. d) Co 2p spectrum of Co-N@Ti₃C₂T_{x-Ser} composites. e) Ti 2p spectrum of Co-N@Ti₃C₂T_{x-Ser} composites. h) N 1s spectrum of Co-N@Ti₃C₂T_{x-Ser} composites.

Figure S8 a) XPS study for Co-N@Ti₃C₂T_{x-Lys} composites of the total scale. b) C 1s XPS spectrum of Co-N@Ti₃C₂T_{x-Lys} composites. c) O 1s spectrum of Co-N@Ti₃C₂T_{x-Lys} composites. d) Co 2p spectrum of Co-N@Ti₃C₂T_{x-Lys} composites. e) Ti 2p spectrum of Co-N@Ti₃C₂T_{x-Lys} composites. h) N 1s spectrum of Co-N@Ti₃C₂T_{x-Lys} composites.

Figure S9 the flexible Co-N@Ti₃C₂T_{x-Lys} film.

Figure S10 The rate capability of Mul-MXene and Co-N@Ti₃C₂T_{x-Arg} composite cathode at 0.1, 0.2, 0.5, 1, 2 C.

Figure S11. Discharge–charge curves of the Co-N@Ti₃C₂T_{X-Ser}/S, Co-N@Ti₃C₂T_{X-Lys}/S, and Co-N@Ti₃C₂T_{X-Arg}/S composite electrodes at 0.2 C.

Figure S12 Comparison of areal capacity of Co-N@Ti₃C₂T_{x-Ser}/S, Co-N@Ti₃C₂T_{x-}

$_{Lys}/S$, and Co-N@Ti₃C₂T_{x-Arg}/S electrode at 0.2 C.

Materials	Current density	Initial capacity (mAh g ⁻¹)	Cycle life/rate capacity	Capacity retention ratio (%)	Ref
TiO ₂ /Ti ₂ C	0.2 C	879.2	rate capacity	/	[1]
Ti _n O _{2n-1} /MXene	0.2 C	1227	100	81.5	[2]
TiS ₂ /TiO ₂ @MXene	0.2 C	1232	100	86.7	[3]
N-Ti ₃ C ₂ T _x	0.2 C	1144	200	83.0%	[4]
TiN@MXene	0.2 C	1185	250	84.1	[5]
Co-N@Ti ₃ C ₂ T _{X-Arg}	0.2 C	1314.3	200	83.4	This work

Table S1 Performances and strategies of representative MXene-based Li-S batteries.

References

[1] Du C, Wu J, Yang P, et al. Embedding S@TiO₂ Nanospheres into MXene Layers as High Rate Cyclability Cathodes for Lithium-Sulfur Batteries, Electrochim Acta, 2019, 295: 1067-1074. DOI: 10.1016/j.electacta.2018.11.143.

 [2] Xia J, Gao R, Yang Y, et al. Ti_(n)O_(2n-1)/MXene Hierarchical Bifunctional Catalyst Anchored on Graphene Aerogel toward Flexible and High-Energy Li-S Batteries, ACS Nano, 2022, 16: 19133-19144. DOI 10.1021/acsnano.2c08246.

[3] Nguyen V P, Park J S, Shim H C, et al. Accelerated Sulfur Evolution Reactions by TiS₂/TiO₂@MXene Host for High-Volumetric-Energy-Density Lithium-Sulfur Batteries, Adv Funct Mater, 2023, 33: 202303503. DOI 10.1002/adfm.202303503.

[4] Bao W, Liu L, Wang C, et al. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries, Adv Energy Mater, 2018, 8: 201702485. DOI 10.1002/aenm.201702485.

[5] Zhang M, Lu Y, Yue Z, et al. Design and Synthesis of Novel Pomegranate-like TiN@MXene
Microspheres as Efficient Sulfur Hosts for Advanced Lithium Sulfur Batteries, RSC Adv, 2023,
13: 9322-9332. DOI 10.1039/d3ra00095h.