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Abstract
Recent evidence suggests that genetic and epigenetic mechanisms might be associated with acquired resistance to 
cancer therapies. The aim of this study was to assess the association of genome-wide genetic and epigenetic 
alterations with the response to anti-HER2 agents in HER2-positive breast cancer patients. PubMed was screened 
for articles published until March 2021 on observational studies investigating the association of genome-wide 
genetic and epigenetic alterations, measured in breast cancer tissues or blood, with the response to targeted 
treatment in HER2-positive breast cancer patients. Sixteen studies were included in the review along with ours, in 
which we compared the genome-wide DNA methylation pattern in breast tumor tissues of patients who acquired 
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resistance to treatment (case group, n = 6) to that of patients who did not develop resistance (control group, n = 
6). Among genes identified as differentially methylated between the breast cancer tissue of cases and controls, one 
of them, PRKACA, was also reported as differentially expressed in two studies included in the review. Although 
included studies were heterogeneous in terms of methodology and study population, our review suggests that 
genes of the PI3K pathway may play an important role in developing resistance to anti-HER2 agents in breast 
cancer patients. Genome-wide genetic and epigenetic alterations measured in breast cancer tissue or blood might 
be promising markers of resistance to anti-HER2 agents in HER2-positive breast cancer patients. Further studies 
are needed to confirm these data.
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INTRODUCTION
The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor and 
belongs to the epidermal growth factor receptor (EGFR) family[1]. It comprises an extracellular domain 
(ECD), a transmembrane segment, and an intracellular region[2]. HER2 gene amplification and receptor 
overexpression, which occur in approximately 15%-20% of breast cancer patients, are important markers for 
poor prognosis, including a more aggressive disease and shorter survival[3]. In addition, HER2-positive 
status is considered a predictive marker of response to HER2-targeted drugs[4]. Detection of receptor 
overexpression via immunohistochemistry (IHC) and/or HER2 gene amplification using in situ 
hybridization (ISH) techniques in breast cancer tissue, including fluorescent ISH (FISH), determines 
patients’ eligibility to receive anti-HER2 therapies[5]. Food and Drug Administration (FDA)-approved anti-
HER2 agents currently used in clinical settings in combination with chemotherapy comprises recombinant 
monoclonal antibodies that bind the ECD of HER2, such as trastuzumab (Herceptin®), pertuzumab 
(Perjeta®) and trastuzumab emtansine (T-DM1, Kadcyla®), and small molecule tyrosine kinase inhibitors, 
like lapatinib (TYKERB®), that inhibit enzyme function of the intracellular catalytic domain of HER2 and 
other EGFR members[6,7].

Although targeted treatment with anti-HER2 agents has significantly improved the disease-free and overall 
survival rates of metastatic and early-stage HER2-positive breast cancer patients[8-11], resistance to anti-HER2 
therapy, both primary and acquired, has emerged as a major clinical problem in the treatment of HER2-
positive breast cancer patients[12-14]. Even though several molecular mechanisms of resistance to anti-HER2 
agents have been proposed in preclinical models, no clinically applicable strategy to overcome resistance to 
these targeted treatments has been identified yet[15]. Therefore, there is an urgent need to identify reliable 
predictive molecular markers of treatment failure with the ultimate goal of developing targeted drugs that 
can overcome resistance.

Studies indicate that genetic factors, including single nucleotide polymorphisms (SNPs), copy number 
variations (CNVs), HER2 mutations, and HER2 splice variants, might influence treatment effectiveness 
toward targeted therapies in HER2-positive breast cancer patients or HER2-positive breast cancer cell 
lines[16-28]. Recent evidence suggests that epigenetic regulatory mechanisms, including DNA methylation and 
microRNAs (miRNAs), might play a role in acquiring resistance to cancer therapies[29-32]. DNA methylation 
occurs through the covalent attachment of a methyl group on cytosine residues in CpG dinucleotides and 
contributes to transcriptional regulations[33]. While DNA methylation in the immediate vicinity of the 
transcriptional start site (TSS) generally represses gene expression, methylation in the gene body (far from 
annotated TSS) may stimulate elongation and is, therefore, positively associated with gene expression[34,35]. 
miRNA are approximately 22 nucleotides long non-coding RNAs that regulate gene expression in a 
sequence-specific manner[36].
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The aim of this pilot study was to analyze the association between DNA methylation patterns in breast 
cancer specimens and response to trastuzumab in a cohort of 12 trastuzumab-treated, non-metastatic 
HER2-positive breast cancer patients. Additionally, a systematic review that combines these findings with 
all available published results on the association of genome-wide genetic and epigenetic alterations in breast 
cancer tissue or blood with response to anti-HER2 treatment in HER2-positive breast cancer patients is also 
reported.

MATERIAL AND METHODS
Pilot study of new findings
Study population and data collection
The study population consisted of 12 women (six cases and six controls) selected among 106 trastuzumab-
treated patients with non-metastatic, HER2-positive breast cancer diagnosed between July 1, 2005 and 
December 31, 2010 at the Centre des Maladies du Sein, a specialized breast center in Quebec City, Canada. 
Information on tumor characteristics and prognostic factors at the time of diagnosis (baseline) and follow-
up information were collected from medical records. The clinical endpoint in this study was disease-free 
survival (DFS). All breast cancer recurrences (locoregional, contralateral breast, and distant) were 
considered as events, whereas death (from any cause) before recurrence and loss to follow-up were 
considered as censoring events.

Over a mean follow-up period of 6.22 years, 22 patients out of 106 experienced recurrence. Eight cases were 
randomly selected among all patients who developed recurrence during follow-up and six had a sufficient 
amount of primary breast cancer tissue available for DNA extraction (see below). Of note, baseline 
characteristics of the six selected cases were comparable to the total population of cases (n = 22) for all 
characteristics except tumor grade (the proportion of grade III tumors among the selected cases was 67% vs. 
41% for the total population of cases) [Supplementary Table 1]. For each case, one control was selected from 
the 84 patients who had not developed recurrence and were alive at the date of the case’s recurrence. 
Controls were matched to cases for the following factors: age at diagnosis (with 5-year age categories), 
estrogen receptor (ER) status, year of diagnosis (with 2-year categories), and menopausal status. The 
number of samples used was determined upon the availability of samples and not evaluated using a 
statistical sample size calculation. All patients provided written informed consent. Ethical approval of the 
study was obtained from the Research Ethics Committee of the Centre de Recherche du CHU de Québec 
(# 2016-2802).

Gene methylation assessment
To ensure that DNA methylation was analyzed to the greatest possible extent in breast cancer tissue and to 
reduce contamination with other cell types (lymphocytes, adipocytes, fibroblasts), tissue microarray (TMA) 
blocks containing formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue cores (1 mm in diameter) 
were constructed for each patient, as previously described[37]. From each TMA block, one section was 
stained with hematoxylin and eosin (H&E) to verify the cellular composition of the cores. Cores were 
removed from TMA blocks if they contained abnormal tissue or if epithelial tumor tissue occupied < 70% of 
the core area before proceeding to DNA extraction. H&E sections were prepared from different levels of the 
TMA blocks: at the beginning, at regular intervals (every tenth 10-µm-thick serial section), and after the last 
section. DNA was extracted from tissue cores using GeneJET FFPE DNA Purification kit (ThermoScientific, 
Ottawa, Canada) with minor modifications to the manufacturer’s instructions in which samples were 
incubated with Digestion buffer for six minutes and incubated with Proteinase K solution for 180 minutes.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5262-SupplementaryMaterials.pdf
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DNA samples were sent to Génome Québec Innovation Center (Montreal, Canada). Methylation was 
measured with the Illumina HumanMethylation450 BeadChip array (Illumina Inc., San Diego, CA, USA) 
following the manufacturer’s instructions for the bisulfite treatment, Infinium FFPE quality control 
(Illumina FFPE QC kit, Illumina, Inc., CA, USA), and DNA restoration. This BeadChip interrogates 482,421 
CpG sites, 3091 non-CpG sites, 65 random SNPs, and covers 21,231 RefSeq genes. It uses two distinct 
oligonucleotide probes (Infinium I and Infinium II) to assess methylation levels[38].

Statistical analysis
Raw β-values, defined as the ratio of the methylated probe intensity to the overall intensity (sum of the 
methylated and unmethylated probe intensities)[39], were imported into the R statistical programming 

environment (version 3.2.2). Since M-values [logit transformed β-values, calculated as ] are 
considered more reliable in the detection rate and true positive rate for both highly methylated and 
unmethylated CpG sites compared to β-values[39], M-values were used for statistical analyses.

Quality control was performed with the qcReport function from the minfi package, and none of the 12 
samples were excluded due to bad quality control. The Dasen method from the WateRmelon package, also 
known as data-driven separate normalization, was used to background correct and quantile normalize data 
based on methylated and unmethylated intensities, separately, by probe types (Infinium I and II)[40]. A probe 
filtration step was performed to remove CpG sites corresponding to probes that could affect our analysis, 
including probes with bad detection (detection P-value > 0.01); unique probes having a common single 
nucleotide polymorphism (SNP) in European individuals at the interrogated CpG loci or the single-base 
extension according to the list published by Chen et al.[41]; probes that can hybridize to multiple loci also 
listed by Chen et al.[41]; and probes located on X and Y chromosomes. A total of 76,161 unique probes were 
removed, leaving 406,260 autosomal probes for the analysis. Data were verified for confounding batch 
effects due to separate chips[42], and none were observed. All samples passed quality-control tests and were 
therefore retained in the analysis.

Baseline characteristics between cases and controls were compared using Fisher’s exact test for categorical 
variables, Student’s t-test for follow-up time and Wilcoxon-Mann-Whitney test for the other continuous 
variables. The difference in global methylation levels between median M-values of cases and controls was 
assessed using a Wilcoxon signed-rank test for paired samples. Differentially methylated probes (DMPs) 
were identified using LIMMA (robust linear regression method), taking into account the matching factors 
between cases and controls (i.e., age at diagnosis, ER status, year of diagnosis, and menopausal status). 
Multiple testing correction was performed using false discovery rate (FDR) estimation (cut-off < 5%). In 
addition, we used a log2-fold change |log2FC| (i.e., the difference between mean M-values measured in 
breast cancer tissues of resistant patients and controls) > 2.0 as a cut-off to identify probes that were strongly 
differentially methylated between cases and controls.

Systematic review of published findings
A systematic review was conducted and reported according to the 2020 Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines[43].

Eligibility criteria
Population: We included studies of HER2-positive breast cancer patients treated with any type of anti-HER2 
agent (trastuzumab [Herceptin®], lapatinib [TYKERB®], pertuzumab [Perjeta®], trastuzumab emtansine 
[trastuzumab-DM1, Kadcyla®], erlotinib [Traceva®], gefitinib [Iressa®]) regardless of age, stage, and 
menopausal status.
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Exposure: To be included, a study had to measure response-specific survival using including pathologic 
complete response (pCR), disease-free survival (DFS), progression-free survival (PFS), or event-free survival 
(EFS).

Outcome: We considered all assessments of genetic and epigenetic alterations at the genome-wide level in 
breast cancer tissue or blood, whatever the measurement method.

Types of studies: Any observational or randomized controlled study that assessed the association between 
genome-wide genetic and epigenetic alterations in breast cancer specimens or blood and the response to 
anti-HER2 agents in HER2-positive breast cancer patients was eligible. Case reports were excluded.

Only full available articles in English were included.

Information sources
Dragic D searched the PubMed biomedical database from inception to the search date of March 25, 2021, to 
identify eligible studies.

Search strategy
The search strategy was developed by Dragic D and Furrer D, approved by Diorio C, using controlled 
vocabulary search terms and free-text words related to HER2-positive breast cancer, genome-wide genetic 
and epigenetic alterations and treatment outcome [Supplementary Table 2]. No restrictions regarding 
language were applied.

Selection process
The references identified by the search strategy were selected according to the predefined eligibility criteria 
in a two-step process: titles and abstracts were screened by one author (Dragic D), and full texts of retained 
articles were examined by two authors (Dragic D and Furrer D). Disagreements between the two authors 
were discussed until a consensus was reached, and whenever required, a third review author (Diorio C) was 
consulted.

Data collection process
We designed a data extraction form for this review. Data were extracted by two authors (Furrer D and 
Dragic D) for half of the included studies. A third author (Diorio C) was consulted when discrepancies 
between both authors could not be resolved. For the remaining studies, the extraction was done by one 
author (Dragic D), and when needed, a second author (Diorio C) was involved. Additionally, the authors of 
studies of interest that lacked data to evaluate eligibility (n = 1) or other measures needed for this review 
(n = 3) were contacted to obtain the necessary information.

Data items
For all selected articles, study characteristics (study design and sample size), patient’s characteristics (age, 
stage, ER and PR status, menopausal status, and treatment received), assessment of genetic and epigenetic 
alterations (tissue processing, DNA, RNA or miRNA extraction method, assessment method, and 
parameters used), as well as statistical methods and study results, were collected. The study’s definition of 
response to targeted treatment was recorded.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5262-SupplementaryMaterials.pdf
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Risk of bias assessment
Studies included in the review were assessed for risk of bias using the “Risk Of Bias in Non-randomized 
Studies of Interventions (ROBINS-I) tool[44]. The following domains were assessed: selection of participants 
in the study, exposure measurement, outcome measurement, potential confounding factors, missing data, 
and selective reporting.

Assessment of the risk of bias was done by two authors (Furrer D and Dragic D) for half of the included 
studies. Inconsistencies were discussed to reach a consensus. For the remaining studies, the assessment was 
done by one author (Dragic D), and when required, a second reviewer (Furrer D) was consulted.

Assessment of heterogeneity
Differences between studies, including study design, patient characteristics (age, menopausal status, 
ethnicity, and treatment received), tumor characteristics (stage, ER status), assessment of genome-wide 
genetic and epigenetic alterations (tissue processing, extraction method, and measurement method), and 
different levels of risk of bias were considered for exploring possible sources of heterogeneity.

Synthesis methods
Considering that high heterogeneity between studies was expected, quantitative data synthesis was not 
considered appropriate. Instead, we adopted a qualitative systematic review approach to investigate the 
relationship between epigenetic and genetic alterations and response to HER2-targeted therapies in HER2-
positive breast cancer patients. The selection process was detailed using the PRISMA 2020 flow diagram. 
Extracted data were first reported in a table gathering summary characteristics of all included studies. 
Additional information specific to the epigenetic or genetic method used was detailed in several tables. 
Results and genes identified by several studies were also highlighted in a table. If pathway analysis was not 
presented, we performed pathway analysis using the list of the differentially expressed genes reported by the 
study authors and the PANTHER online software (Protein Analysis Through Evolutionary Relationships). 
P-values < 0.05 were considered significant.

RESULTS
Pilot study of new findings
Genome-wide DNA methylation data in 12 breast cancer specimens were obtained from six trastuzumab-
treated HER2-positive breast cancer patients who experienced recurrence during follow-up (cases) and six 
individually matched patients who had not developed recurrence and were alive at the date of the case’s 
recurrence (controls). Baseline characteristics of cases and controls are summarized in Table 1. Baseline 
characteristics for both groups were comparable in clinicopathological characteristics (tumor grade, lymph 
node status, and tumor size) and treatment received. Compared to controls, a higher proportion of cases 
(50%) had a body mass index > 25 kg/m2, although not statistically significant.

Global methylation levels between cases and controls were not statistically different: the median M-values of 
cases were 0.487, and the median M-values of controls were 0.504 (P-value: 0.844). At probe methylation 
levels, we identified 2,009 CpGs (1,382 genes) that were differentially methylated between cases and 
controls: 1,200 DMPs (885 genes) were significantly hypermethylated and 809 DMPs (497 genes) were 
significantly hypomethylated in tumor tissues of cases compared to those of controls after multiple testing 
correction (FDR < 0.05).

Fifteen genes had a |log2FC| > 2.0: ten genes (SIX2, PLEC1, ZNF833, RAI1, ZNF598, USP4, DOCK1, 
UNC84A, KLF16, PRKACA) were significantly hypermethylated, and five genes [STK33, TBXT (alias T), 
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Table 1. Baseline characteristics of the whole study population, case group and control group

Factor Whole study (n = 12) Cases (n = 6) Controls (n = 6) P-value

Mean ± SD Mean ± SD Mean ± SD

Age (years) 51.3 ± 5.6 51.3 ± 6.1 51.2 ± 5.6 0.87

Body mass index (kg/m2) 23.8 ± 2.2 23.8 ± 2.6 23.9 ± 1.6 0.94

Follow-up time (years) 5.5 ± 2.9 3.8 ± 2.8 7.2 ± 2.1 0.04

n (%) n (%) n (%)

Grade 
     I/II 
     III

 
3 (23%) 
9 (77%)

 
2 (33%) 
4 (67%)

 
1 (17%) 
5 (83%)

 
1.00

Lymph node status 
     Negative 
     Positive

 
1 (8%) 
11 (92%)

 
0 (0%) 
6 (100%)

 
1 (17%) 
5 (83%)

 
1.00

Tumor size (cm) 
     ≤ 5 

     > 5

 
11 (92%) 
1 (8%)

 
5 (83%) 
1 (17%)

 
6 (100%) 
0 (0%)

 
1.00

Estrogen receptor status 
     Negative 
     Positive

 
4 (33%) 
8 (67%)

 
2 (33%) 
4 (67%)

 
2 (33%) 
4 (67%)

 
1.00

Progesterone receptor status 
     Negative 
     Positive

 
6 (50%) 
6 (50%)

 
3 (50%) 
3 (50%)

 
3 (50%) 
3 (50%)

 
1.00

Menopausal status 
     Pre 
     Post

 
4 (33%) 
8 (67%)

 
2 (33%) 
4 (67%)

 
2 (33%) 
4 (67%)

 
1.00

Radiotherapy 
     No 
     Yes

 
1 (8%) 
11 (92%)

 
1 (17%) 
5 (83%)

 
0 (0%) 
6 (100%)

 
1.00

Endocrine therapy 
     No 
     Yes

 
4 (33%) 
8 (67%)

 
2 (33%) 
4 (67%)

 
2 (33%) 
4 (67%)

 
1.00

Chemotherapy 
     No 
     Yes

 
0 (0%) 
12 (100%)

 
0 (0%) 
6 (100%)

 
0 (0%) 
6 (100%)

 
1.00

Trastuzumab treatment completed 
     No 
     Yes

 
0 (0%) 
12 (100%)

 
0 (0%) 
6 (100%)

 
0 (0%) 
6 (100%)

 
1.00

n: Number of subjects; SD: standard deviation.

KCNH7, ADAMTS2, FAM19A5] were significantly hypomethylated in breast cancer tissues of cases 
compared to controls. Results are reported in Table 2.

Systematic review of published findings
Study selection
Of the 758 references retrieved by electronic search in PubMed, we reviewed 52 full-text documents, and 
fifteen met the eligibility criteria [Figure 1]. This review also included our pilot study that assessed the 
association between DNA methylation patterns in breast cancer specimens and response to trastuzumab in 
a cohort of 12 HER2-positive breast cancer patients.

Study characteristics
In all selected studies, epigenetic and genetic patterns were measured genome-wide in breast cancer tissues 
or blood. DNA methylation patterns were evaluated in one study (our pilot study), gene expression profile 
in nine studies[45-53], miRNA expression in two studies[54,55], long intergenic non-coding RNA (lincRNA) 
profile in one study[50], copy number alteration (CNA) profile in two studies[48,56], protein expression in one 
study[57] and mutations in two studies[58,59]. One study reported both genome-wide gene expression and 
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Table 2. Genes differentially methylated in breast cancer tissues of cases compared to controls

CpG sites Chr Gene Gene region CpG island region LogFC q-value

cg08788717 chr11 STK33 TSS200 Island -2.835 0.036

cg02149708 chr6 TBXT (T) TSS200 Island -2.384 0.038

cg26974327 chr2 KCNH7 TSS200 OpenSea -2.150 0.037

cg05214690 chr5 ADAMTS2 1stExon Island -2.127 0.015

cg22643811 chr22 FAM19A5 (TAFA5) 1stExon Island -2.024 0.015

cg26391832 chr2 SIX2 TSS1500 S_Shore 2.042 0.028

cg21672292 chr8 PLEC1 Body Island 2.097 0.039

cg26590664 chr19 ZNF833 TSS200 N_Shore 2.114 0.030

cg21771200 chr19 ZNF833 TSS200 N_Shore 2.270 0.028

cg02147681 chr17 RAI1 5'UTR Island 2.235 0.035

cg03654304 chr16 ZNF598 Body Island 2.287 0.038

cg18886444 chr3 USP4 TSS1500 S_Shore 2.366 0.038

cg26353296 chr3 USP4 TSS1500 S_Shore 2.381 0.034

cg06406458 chr10 DOCK1 Body OpenSea 2.028 0.044

cg26987690 chr7 UNC84A Body S_Shore 2.037 0.037

cg08287334 chr19 KLF16 Body Island 2.230 0.049

cg19586199 chr19 PRKACA TSS200; body N_Shelf 2.582 0.030

Chr: Chromosome.

Figure 1. Process flow for article selection (PRISMA 2020 flow diagram).
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genome-wide CNA patterns[48], and one reported both genome-wide gene and genome-wide lincRNA 
expression profiles[50]. The majority of studies were retrospective (n = 10)[46,47,49-51,54-57] including ours, and six 
studies were prospective[45,48,52,53,58,59] [Table 3].

DFS was reported in four studies including ours[46,52,54], RFS in two studies[49,53], and pCR in ten 
studies[45,47,48,50,51,55-59]. DFS was defined as the time between the diagnosis and recurrence (locoregional 
recurrence, recurrence in the contralateral breast, and distant breast cancer recurrence) or death; RFS was 
defined as the time from the start of trastuzumab treatment to the first local, regional or distant recurrence 
event; and pCR as the absence of invasive breast cancer in the breast and axillary lymph nodes at the time of 
surgery. Besides ours, the other fifteen included studies were published between 2007 and 2020 and involved 
between 9 and 849 HER2-positive, anti-HER2 therapy-treated breast cancer patients [Table 3].

Studies of genome-wide DNA methylation and response to targeted treatment
Characteristics of the study (our new findings) that evaluated the association between genome-wide DNA 
methylation patterns measured in breast cancer tissues and response to targeted treatment in HER2-
positive, trastuzumab-treated breast cancer patients are presented in Supplementary Table 3. The study was 
retrospective. The mean age of included HER2-positive breast cancer patients was 51.3 years. The 
proportion of ER-positive breast cancer patients was 67%, and the proportion of positive lymph node status 
was 92%. Sixty-seven percent of HER2-positive breast cancer patients were postmenopausal. DNA 
methylation was assessed using Infinium HumanMethylation450 BeadChip array. Breast cancer patients 
were treated with adjuvant chemotherapy and trastuzumab. The study reported DFS. HER2-positive breast 
cancer patients were of Caucasian ethnicity. Tumor cell fraction was ≥ 70%.

Studies of genome-wide gene expression profile and response to targeted treatment
Characteristics of the nine studies that examined the association between genome-wide gene expression 
profiles measured in breast cancer tissues and response to HER2-targeted therapies in HER2-positive breast 
cancer patients are presented in Supplementary Table 4. Five studies were retrospective[46,47,49-51], and four 
studies were prospective[45,48,52,53]. The median age of HER2-positive breast cancer patients was not reported 
in four studies[46,48,50,51] and varied from 52 to 58 years in two studies[47,49]. The mean age was 55.2 years in one 
study[52], 60.9% of participants were < 45 years in another[45], and 48.3% of participants were < 50 years in one 
other study[53]. The proportion of ER-positive breast cancer patients was reported in three studies and varied 
between 43.4% and 69.6%[45,47,49]. In eight studies, patients received trastuzumab[45-47,49-53], and in the remaining 
study, patients were treated with trastuzumab, lapatinib or both[48]. pCR was reported in five 
studies[45,47,48,50,51], RFS in two studies[49,53], and DFS in two studies[46,52]. Gene expression profile was evaluated 
in fresh frozen tissue in five studies[45,46,48,50,51] and in FFPE tissues in four studies[47,49,52,53]. Gene expression 
profile was assessed using HumanHT-12 v3 BeadChip[46], HumanHT-12 v4 BeadChip[49], Affymetrix Human 
Genome U219 array[47], Affymetrix GeneChip 3’ IVT Express kit[48], Illumina HiSeq 2500 platform[50], 
Illumina HiSeq 3000[52], GeneChip U133 Plus 2.0 Gene Array[45], DASL technology[53] and Agilent UNC 
Perou Lab Homo sapiens 1X44K Custom Array/Illumina HumanHT-12 WG-DASL V4.0 R2 expression 
BeadChip/Affymetrix technology using the HG-U133 Plus 2.0 GeneChip array[51]. Tumor cell fraction was 
not reported in five studies[47,48,50,51,53], and was at least 70% in three studies[46,49,52]. In the remaining study, 
breast cancer samples of each patient contained at least 500 breast cancer cells[45] [Supplementary Table 4].

Study of genome-wide miRNA expression profile and response to targeted treatment
Characteristics of the two studies that examined the association between genome-wide miRNA expression 
profile and response to targeted treatment in HER2-positive trastuzumab-treated breast cancer patients are 
presented in Supplementary Table 5. Both studies had a retrospective design[54,55]. miRNA expression was 
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Table 3. Summary characteristics of studies reporting on the association between genome-wide epigenetic and genetic 
modifications and response to HER2-targeted therapies in HER2-positive breast cancer patients (n = 16)

Study design Prospective studies: n = 6 (Harris[45], Guarneri[48], Shi[59], Sorokin[52], Perez[53], Lesurf[58]) 
Retrospective studies: n = 10 (Khoury[46], Gámez-Pozo[47], Triulzi[49], Du[54], Merry[50], Ohzawa[55], Zhao[51], Yang[57], 
Walsh[56], Furrer [2022])

HER2-positive 
breast cancer 
patients

Number of patients: 9 to 849 
Age: median - 50 to 59 y (n = 6) (Gámez-Pozo[47], Triulzi[49], Ohzawa[55], Walsh[56], Yang[57], Lesurf[58]); mean - 51.3 to 55.2 
y (n = 2) (Furrer [2022], Sorokin[52]); < 45 y in 61% (n = 1) (Harris[45]); < 50 y in 48.3% (n = 1) (Perez[53]); < 65 y in 90.3% (
n = 1) (Shi[59]); NR (n = 5) (Khoury[46], Merry[50], Guarneri[48], Zhao[51], Du[54]) 
Stage:  
Non metastatic I-III: n = 1 (Du[54]) 
Non metastatic II-III: n = 4 (Harris[45], Ohzawa[55], Sorokin[52], Furrer [2022]) 
Non metastatic NR: n = 3 (Guarneri[48], Triulzi[49], Perez[53]) 
Metastatic IV: n = 2 (Gámez-Pozo[47], Walsh[56]) 
Non metastatic and metastatic: n = 1 (Khoury[46]) 
NR: n = 5 (Merry[50], Shi[59], Zhao[51], Yang[57], Lesurf[58]) 
Treatment received: 
Neoadjuvant NVB and T: n = 1 (Harris[45]) 
Adjuvant T: n = 1 (Khoury[46]) 
Adjuvant or neoadjuvant CT (ATC-based, TAX-based, ATC + TAX, Other CT) and T: n = 1 (Gámez-Pozo[47]) 
Neoadjuvant CT (PTX and FEC) plus either T (arm A), L (arm B), or T + L (arm C): n = 1 (Guarneri[48]) 
Neoadjuvant PTX plus either T, L, or T + L: n = 1 (Shi[59]) 
Adjuvant CT and T: n = 4 (Triulzi[49], Du[54], Merry[50], Ohzawa[55]) 
Neoadjuvant CT and T: n = 2 (Zhao[51], Lesurf[58]) 
Adjuvant T only or T plus DTX/PTX + CBDCA/PTX/DTX + CBDCA/Cap/NVB/Gem: n = 1 (Sorokin[52]) 
Neoadjuvant therapy or surgical treatment and T: n = 1 (Yang[57]) 
T: n = 1 (Walsh[56]) 
Adjuvant ATC + CTX, PTX, T, or ATC + CTX, PTX + T, T: n = 1 (Perez[53])

Genome-wide 
profiling method

Methylation: n = 1 (Furrer [2022]) 
miRNA expression: n = 2 (Du[54], Ohzawa[55]) 
Gene expression: n = 9 (Harris[45], Khoury[46], Gámez-Pozo[47], Guarneri[48], Triulzi[49], Merry[50], Zhao[51], Sorokin[52], 
Perez[53]) 
CNA: n = 2 (Guarneri[48], Walsh[56]) 
lincRNA expression: n = 1 (Merry[50]) 
Protein expression: n = 1 (Yang[57]) 
Mutations: n = 2 (Lesurf[58], Shi[59])

Outcome Disease-free survival (DFS): n = 4 (Khoury[46], Du[54], Sorokin[52], Furrer [2022]) 
Relapse-free survival (RFS): n = 2 (Perez[53], Triulzi[49]) 
Pathological complete response (pCR): n = 10 (Harris[45], Gámez-Pozo[47], Guarneri[48], Merry[50], Shi[59], Ohzawa[55], 
Zhao[51], Yang[57], Walsh[56], Lesurf[58])

ATC: Anthracycline; Cap: capecitabine; CBDCA: carboplatin; CNA: copy number alteration; CT: chemotherapy; CTX: cyclophosphamide; DTX: 
docetaxel; FEC: fluorouracil, epirubicin, and cyclophosphamide; Gem: gemcitabine; L: lapatinib; NVB: vinorelbine; NR: not reported; PTX: 
paclitaxel; T: trastuzumab; TAX: taxane; y: years.

measured genome-wide in FFPE breast cancer tissues using Agilent miRNA assay[54] or Agilent SurePrint 
G3 Human miRNA microarray[55] in cohorts of 14 and 40 HER2-positive breast cancer patients. Patients 
were treated with trastuzumab. DFS[54] and pCR[55] were reported. Tumor cell fraction was not reported in 
one study[54] and was at least 80% in the other[55].

Study of genome-wide lincRNA expression profile and response to targeted treatment
Characteristics of the single study that examined the association between genome-wide lincRNA expression 
profile and response to targeted treatment in HER2-positive trastuzumab-treated breast cancer patients are 
presented in Supplementary Table 6. The study had a retrospective design. lincRNA expression was 
measured genome-wide in fresh frozen breast cancer tissues using the Illumina HiSeq 2500 platform in a 
cohort of 13 HER2-positive breast cancer patients. Patients were treated with trastuzumab and pCR was 
reported. Tumor cell fraction was not reported.
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Study of genome-wide CNA profile and response to targeted treatment
Characteristics of the two studies that examined the association between genome-wide CNA profile and 
response to HER2-targeted therapies in HER2-positive breast cancer patients are presented in 
Supplementary Table 7. The studies had a prospective design[48,56]. CNA profile was assessed genome-wide in 
fresh frozen breast cancer tissues using Affymetrix Genome-wide Human SNP array[48] or Illumina HiSeq[56] 
in cohorts of 68 and 11 HER2-positive breast cancer patients. Patients were treated with trastuzumab, 
lapatinib or both in one study[48] and trastuzumab in the other[56]. pCR was reported. Tumor cell fraction was 
not reported.

Study of genome-wide protein expression profile and response to targeted treatment
Characteristics of the only study that examined the association between genome-wide protein expression 
profile and response to targeted treatment in HER2-positive trastuzumab-treated breast cancer patients are 
presented in Supplementary Table 8. The study had a retrospective design[57]. The protein expression profile 
was assessed genome-widely in blood using TMT-6 plex Isobaric Label Reagent Set in a cohort of 6 HER2-
positive breast cancer patients. Patients were treated with trastuzumab. pCR was reported.

Study of genome-wide mutation profile and response to targeted treatment
Characteristics of the two studies that examined the association between genome-wide somatic or germline 
mutation profile and response to targeted treatment in HER2-positive breast cancer patients are presented 
in Supplementary Table 9. The studies had a prospective design[58,59]. Somatic mutation profile was assessed 
genome-wide in fresh frozen breast cancer tissues for the two studies. Germline mutation profile was 
assessed genome-widely in blood using Illumina HiSeq 2000[59], and whole genome sequencing (WGS) and 
whole exome sequencing (WES) + Illumina HiSeq 2000 platform[58] in cohorts of 48 and 203 HER2-positive 
breast cancer patients. Patients were treated with trastuzumab. pCR was reported. Tumor cell fraction was 
not reported in one study[58] and was at least 10% in the other study[59].

Risk of bias in studies
Overall, studies ranged on average from low to critical risk of bias [low (n = 2)[53,59], moderate (n = 4, 
including our study)[47,49,57], serious (n = 1)[54], and critical (n = 9)][45,46,48,50-52,55,56,58], most commonly due to 
confounding. The bias evaluation of each included study is presented in Supplementary Table 10.

Results of individual studies
Genome-wide gene expression profile in breast cancer tissues and response to anti-HER2 agents in HER2-
positive breast cancer patients
The genes reported to be differentially expressed in breast cancer tissues of cases compared to controls for 
each identified study are presented in Supplementary Table 11. Higher expression of the following genes 
was consistently observed in two different studies: ESR1[49,50], RBP1, SLP1[46,50], EPS8L1[50,52], MEP1B, UTP15, 
RRAS2, GRB10, FAM98A, RBMS2, RPL9, RPAIN, MORF4L1, LLPH, MTMR1, FRYL, FLCN, CLINT1, 
ERICH1[47,52], ZNF281, ANKRD52, PIAS3, BRD1, RNF146, CLDN12, PROM2, COMMD5, VMP1, DEDD, 
ZNF439, CRIP2, PRSS16, GUK1, RRN3, PLEKHG3, JUN, BCL9, SLC25A37, CRYZ, RNF24, PSMG3, PAQR7, 
ABT1, WNT7B, SLC35B2, SYTL4, NUPR1, DPY19L1, DAZAP1, EEF1D, SGPP1, GALNT2, SPA17, RAD51, 
MBD6, KIF1C, C1QTNF3, BLOC1S2, SLC2A10, ZNF740, ADCK2, SLC41A1, RAB4A, CRIP1, ZNF552, 
CARHSP1, POFUT1, EMC10, BAX, HOXC4, DDR1, CTSD, FEN1, SULT1A1, DUSP14, IRF9, TMC4, 
MUC1, LMAN2, LASP1, SHROOM1[50,52], NSL1, ENAH, UBE2Q2, GNPAT, THBS2, TBCEL, FAM46A, 
ZNF678, TSEN15, ZNF674, CNIH4, ASAH1, SELT, ARFGAP3, TATDN3, FBLN1, MOSPD1, PPCS, 
NUCKS1, PGBD2, ACBD3, ORMDL2, AMMECR1, TNFRSF19, FOSL2, PYCR2, WSB1, TROVE2, 
RWDD3[47,50], LYSMD3[47,50], APOB, SLC3A2, CST3[52,57], BOC[45,52], DDX27, IL17RC, PKP3, WNK2[52,53] AGRN, 
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ATRN, NACC1, PCSK6, PIR, PLAUR, QSOX1, RHBDL2, SEC22B, SERPINH1, TCEAL1[50,53], CSDE1, 
SCUBE3, TMEM167A[47,53]. Lower expression of the following genes was consistently reported in two 
d i f f e r e n t  s t u d i e s :  ORMDL3[49,50], NME1[46,50], SLC35B1[46,50], UTP18[46,50], PHB[46,50], S100B, TOM1L1[50,52], 
HIST1H2BG, PRR13[47,50], NXPH1, CKS2, NETO2, SLC12A2[46,52], ACSL5, CD3E, GIMAP7, GZMK, PPARG, 
SELL, VCAM1[50,53], CLEC10A, CTLA4, FGL2, TSPAN7[52,53], DENND3, TIAM1[47,53]. The following genes were 
reported to be higher expressed in breast cancer samples of cases compared to controls in two different 
studies but were reported to be lower expressed in another study: SFRP1[45,46,50], ACTR1B, FASTK, 
TMEM219, NDUFA3[47,50,52], ATP5I[47,50,52]. The following genes were reported to be lower expressed in breast 
cancer samples of cases compared to controls in two different studies but were reported to be higher 
expressed in another study: PABPC1[47,50,52], ARPC1A, TXN[47,50,52], TOB1[46,50,52]. Higher expression of the 
GOLGA2[47,50,52] and PHF21A[47,50,52] genes was consistently observed in three different studies.

Gámez-Pozo et al. and Sorokin et al. identified several pathways associated with response to trastuzumab, 
including those involved in EGF receptor signaling, PI3K, apoptosis signaling, and p53[47,52]. 
Gámez-Pozo et al. observed that the PI3K pathway was the most strongly associated with treatment 
response[47] [Supplementary Table 12]. Sorokin et al. identified several pathways associated with response to 
trastuzumab. The most statistically and significantly upregulated ones in the trastuzumab-sensitive group 
were PPAR Pathway and cAMP Protein Retention Pathway[52]. Triulzi et al. and Sorokin et al. reported that 
breast cancer samples of patients with a lower risk of early relapse showed higher expression of genes 
enriched in immune system-related pathways and proliferation-associated pathways[49,52]. For two[46,48] out of 
the four included studies that did not report pathway analysis[45,46,48,50], we performed gene ontology analysis 
using the list of genes reported as being differentially expressed by the authors using PANTHER. We 
observed that the Notch signaling pathway was overrepresented in both studies[46,48], an observation also 
reported by Sorokin et al.[52]. We observed that Wnt signaling was overexpressed in Khoury et al.[46], as 
reported by Sorokin et al.[52]. We did not perform pathway analysis for the two remaining studies[45,53], as the 
number of differentially expressed genes (n = 11) was too small to perform the analysis[45] or not reported[53].

In our study, we observed overlap between the identified differentially expressed genes and the strongly 
differentially methylated (i.e., |log2FC| > 2.0) genes. PRKACA was hypermethylated in our study (within the 
TSS region as well as the gene body), upregulated in one study[50], and downregulated in another study[47].

Genome-wide miRNA expression profile in breast cancer tissues and response to trastuzumab in HER2-
positive breast cancer patients treated with trastuzumab
Du et al. identified seven upregulated and two downregulated miRNAs in breast cancer tissues of cases 
compared to controls[54]. Ohzawa et al. identified four upregulated and ten downregulated miRNAs in breast 
cancer tissues of cases compared to controls[55] [Supplementary Table 13]. Regarding the miRNAs identified 
by Du et al., 902 genes were predicted to be targeted by miR-150-5p, 47 genes by miR-4734, 570 genes by 
miR-361-5p, 1,134 genes by miR-26a-5p, 416 genes by miR-365a-3p, 701 genes by miR-155-5p, 737 genes by 
miR-205-5p, 1,384 genes by miR-106b-5p, and 187 genes by miR-424-3p (as illustrated in a database for 
miRNA target prediction and functional annotations available online at www.mirdb.org)[54]. For the 
miRNAs reported by Ohzawa et al., 484 genes were predicted to be targeted by miR-210, 242 genes by miR-
31-3p, 891 genes by miR-449a, 801 genes by miR-449b-5p, 21 genes by miR-106b-3p, 263 genes by miR-
1180, 242 genes by miR-1238-5p, 1,133 genes by miR-142-5p, 902 genes by miR-150-5p, 1,409 genes by 
miR-181c-5p, 1,266 genes by miR-182-5p, 438 genes by miR-20a-5p, 1,084 genes by miR-218-5p, 1,249 
genes by miR-3609, 270 genes by miR-362-5p, 420 genes by miR-3620-3p, 676 genes by miR-4418, 272 genes 
by miR-4506, 410 genes by miR-4657, 406 genes by miR-505-3p, and 392 genes by miR-505-5p[55].
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We observed that among the 344 genes that were reported to be differentially expressed (at the mRNA level) 
between breast cancer tissues of cases and controls in at least two studies, 170 were predicted to be targeted 
by miRNA identified as differentially expressed between breast cancer tissues of cases and controls in 
Ohzawa et al.[55] or Du et al.[54] [Supplementary Table 14]. We observed that among the 15 genes identified 
as differentially methylated in our study, five (KCNH7, ADAMTS2, SIX2, DOCK1 and ZNF598) were 
predicted to be targeted by miRNA identified as differentially expressed in breast cancer tissues of cases 
compared to controls in the study of Ohzawa et al.[55] or Du et al.[54] [Supplementary Table 14].

Genome-wide lincRNA expression profile in breast cancer tissues and response to targeted treatment in HER2-
positive breast cancer patients treated with trastuzumab
Merry and collaborators observed that 371 lincRNAs were differentially expressed in non-pCR samples 
compared to pCR samples, where 33 lincRNAs showed decreased expression and 338 increased 
expression[50] [Supplementary Table 15]. Among these 371 genes, 97 were reported to be differentially 
expressed at the mRNA level in breast cancer tissues of cases compared to controls in at least two studies: 
FAM84B, PHF21A, NDUFV3, COMMD6, SRP9, S100B, WDR26, LYSMD3, CSTB, C5orf39, FOXA1, GALM, 
ITGB2, SP140, UTRN, SAA2, SHB, ZFP64, ZC3H12B, NADSYN1, B4GALNT4, AP2B1, USP16, ARL4D, 
SYNPO2, FAIM3, CBR1, EFR3B, IL18, LOC389493, FBXO16, FAM114A1, MAP3K9, TOX3, ZNF681, 
IDH3B, TPBG, PRKACB, UBE2A, ID2, IRX3, CILP, COL5A2, WRB, MBOAT1, GCA, SATB2, HERC6, 
RALGPS2, NUF2, MIA3, FAM91A1, FAM5C, C1orf227, RPP4, MYOT, PRKAA2, MAP1LC3B, PEX3, MEST, 
F13A1, CREB1, LRCH2, PCF11, POLR3G, RORA, USP3, TSHZ3, CXCR4, CCNH, CCM2, ZNF814, RAPH1, 
ZPBP2, FBXW4, ODF3B, CROCC, S H 3 R F 2 ,  HEATR6, CDK13, ATF3-1, ATF3, DTL, IARS2, R C 3 H 1 ,  
RC3H1, URB2, RHOU, RC3H1, RC3H1, SUPT3H, ABI1, OTUD7B, GPATCH2, RNF2, IRF2BP2.

Among the differentially expressed lincRNAs reported by Merry et al.[50], we observed 44 genes that were 
predicted to be target genes of miRNA identified as differentially expressed in the study of Ohzawa et al.[55] 
or Du et al.[54] [Supplementary Table 14].

None of the genes whose lincRNAs were reported to be differentially expressed between patients showing 
pCR and those showing non-pCR in Merry et al. was reported as differentially methylated with a 
|log2FC| > 2.0 between cases and controls in our study[50]. However, when we consider the entire list of 
differentially methylated genes in our study, regardless of log2-fold change, we identified six overlapping 
genes. Among these six genes, five were hypermethylated (GABRA5, ZIC5, GRAMD4, RSPH3, and VCAN), 
and one was hypomethylated (CSMD1) in breast cancer samples of cases compared to controls.

Genome-wide copy number alterations in breast cancer tissue and response to targeted treatment in HER2-
positive breast cancer patients treated with anti-HER2 agents
In their analysis of the association of genome-wide CNA in breast cancer tissues of HER2-positive breast 
cancer patients who received trastuzumab, lapatinib, or both, with response to anti-HER2 treatment, 
Guarneri et al. reported that, unlike pCR patients, non-pCR patients showed a CNA signature[48]. Overall, 
the authors observed CN alterations, mainly CN gains, in 557 genes located on chromosomes 1, 8, 17, 20 
[Supplementary Table 16]. We observed that among the 344 genes that were reported to be differentially 
expressed in breast cancer tissues of cases compared to controls in at least two studies, 23 genes showed CN 
alterations in non-pCR samples compared to pCR-samples in Guarneri et al.[48]: FAM84B[46,48], SRP9[50,52], 
WDR26[47,50], BATF3[47,50], EDARADD, ENPP2, LAX1, NUAK2, PTPRC[53], KIF21B, RNF19A, ZNF831, 
NR5A2[52,53], KIF26B, LAMB3, C1orf133[50,53], LAMC2[52,53], FAIM3[50], MIA3[47], OTUD7B, GPATCH2, RNF2, 
IRF2BP2[50].
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We observed that among the 557 genes that were reported to show CN alteration in non-pCR samples 
compared to pCR-samples in the study of Guarneri et al.[48], 279 were predicted to be targeted by miRNA 
identified as differentially expressed in breast cancer tissues of cases compared to controls in the study of 
Du et al.[54] or Ohzawa et al.[55] [Supplementary Table 14].

Among the genes showing CN alterations in non-pCR samples compared to pCR-samples in the study of 
Guarneri et al.[48], 18 genes (FAM84B, SRP9, WDR26, MIA3, FAM91A1, FAM5C, C1orf227, ATF3, DTL, 
IARS2, RC3H1, URB2, RHOU, RC3H1, OTUD7B, GPATCH2, RNF2, IRF2BP2) showed higher lincRNA 
expression and one (FAIM3) showed lower lincRNA expression in Merry et al.[50].

No overlap was observed between genes showing CN alterations in non-pCR samples compared to pCR-
samples in Guarneri et al. and genes identified as differentially methylated with a |log2FC| > 2.0 in our 
study[48]. However, when we consider the whole list of differentially methylated genes, we identified 27 genes 
that were differentially methylated in breast cancer tissues of cases compared to controls in our study 
among the 557 genes showing CNV variations in the study of Guarneri et al.[48]. Of these 27 differentially 
methylated genes, nine were hypomethylated (PLD5, GJD2, C20orf85, APCDD1L, VASH2, PSEN2, FMN2, 
EDN3, ACTN2) and 18 were hypermethylated (TRAF5, TSEN15, TRIB1, TMEM206, SNX31, SMG7, RGS1, 
PRG4, PGBD5, NID1, KCNV1, GPATCH2, EXT1, CDK18, CAPN9, ADSS, ABR, C1orf55).

Genome-wide protein expression profile in blood of breast cancer cases compared to controls
Out of the 18 genes that were reported as differentially expressed (five downregulated and 13 upregulated) 
in the blood of breast cancer cases compared to controls by Yang et al.[57] [Supplementary Table 17], three 
(APOB, SLC3A2, CST3) were differentially expressed in breast cancer tissues of cases compared to control in 
at least two studies. Three (LDHA, DBF4B, and MASP1) were predicted to be targeted by miRNA identified 
as differentially expressed in breast cancer tissues of cases compared to controls in the study of Du and 
collaborators[54] or Ohzawa and collaborators[55] [Supplementary Table 14].

None of the differentially expressed genes in the study of Yang et al. were differentially methylated in our 
study[57].

Genome-wide somatic and germline mutations profile in breast cancer tissues of cases compared to controls
Whereas Shi and collaborators observed that higher somatic mutation frequency in the PIK3CA gene in the 
breast tissues of cases was associated with trastuzumab resistance[59], Lesurf et al. reported that no somatic or 
germline mutations were associated with response to trastuzumab in breast cancer tissues of cases compared 
to controls[58] [Supplementary Table 18].

DISCUSSION
In a cohort of 12 HER2-positive breast cancer patients treated with trastuzumab, interrogation of DNA 
methylation using the Infinium HumanMethylation450 BeadChip allowed identifying genes that were 
differentially methylated between trastuzumab-resistant and trastuzumab-sensitive HER2-positive breast 
cancer patients. Interestingly, among the strongly differentially methylated genes, we observed genes 
associated with human cancer, including DOCK1, ADAMTS2, PLEC1, USP4, and PRKACA[60-69].

The guanine nucleotide exchange factor DOCK1 (Dedicator of cytokinesis protein 1) is involved in 
cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell mobility[70]. A recent study 
reported that DOCK1 inhibition leads to suppressed migration of the triple-negative breast cancer cell lines 
MDA-MB-157 and MDA-MB-231[68,71]. ADMATS2 (ADAM metallopeptidase with thrombospondin type 1 
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motif 2) belongs to the ADAM metallopeptidase with thrombospondin type 1 motif and processes collagen 
precursors into mature collagen molecules[72]. It has been proposed that ADAMTS2 exerts an anti-tumor 
effect by inhibiting intratumoral vascularization[73]. The PLEC gene encodes the pectin protein, which plays 
a role in maintaining tissue integrity[74]. A recent study suggests that a PLEC gene polymorphism 
(rs138924815) might increase the risk for familial testicular cancer[75]. USP4 (Ubiquitin carboxyl-terminal 
hydrolase 4) is a deubiquitinating enzyme that removes conjugated ubiquitin from target proteins[76]. It has 
been reported that USP4 expression was decreased in breast cancer tissue samples compared to paired 
normal breast tissues[63]. Moreover, USP4 expression was associated with decreased proliferation in two 
HER2-negative breast cancer cell lines (MCF7 and BT549)[63]. The PRKACA gene encodes for a protein 
kinase that plays a role in controlling cellular processes such as glucose metabolism and cellular division[72]. 
Of note, one recent study suggests that PRKACA expression might be associated with the development of 
trastuzumab resistance in HER2-positive breast cancer patients[64]. The authors observed that in a subgroup 
of HER2-positive breast cancer patients who developed trastuzumab resistance (three out of five patients), 
PRKACA expression was highly increased in the breast cancer sample obtained after the onset of 
trastuzumab resistance compared to the pre-treatment sample. Considering that in our study, the PRKACA 
gene was hypermethylated within the gene body and that hypermethylation within this gene region often 
promotes gene elongation and, therefore, gene expression, we can postulate that our results might be 
concordant with those reported by Moody et al.[64]. Although in our study, DNA methylation was 
exclusively measured in pre-treatment samples and Moody et al. observed increased PRKACA expression 
only in breast cancer samples obtained after the onset of recurrence[64].

Among all genes that we identified as strongly differentially methylated between trastuzumab-resistant and 
trastuzumab-sensitive HER2-positive breast cancer patients, one of them, PRKACA, was reported as being 
higher expressed in breast cancer tissues of cases compared to controls in the study conducted by Merry 
and collaborators[50] and as being lower expressed in breast cancer tissues of cases compared to controls in 
the study of Gámez-Pozo et al.[47]. In our study, the PRKACA gene was hypermethylated within the TSS 
region and the gene body. Our observation could be partly concordant with the results reported by 
Merry et al.[50] (but not with those of Gámez-Pozo et al.[47]), as hypermethylation in the gene body (but not 
within the TSS region) is usually associated with increased gene expression[34]. Interestingly, the results of 
Merry and collaborators[50] (but not those of Gámez-Pozo et al.[47]) are concordant with the study above[64], 
where the authors observed that PRKACA expression was increased in breast cancer samples of HER2-
positive trastuzumab-resistant breast cancer patients.

In one of the studies retained in our systematic review, the authors created a predictive model to 
differentiate HER2-positive trastuzumab-treated breast cancer patients with a higher risk of relapse from 
those with a lower risk in a cohort of 53 patients[49]. The validity of this predictive model was then confirmed 
in an independent and bigger data set. The authors observed that differentially expressed genes in the breast 
cancer tissues of patients identified as at low risk for relapse in the independent data set using this model 
were associated with the immune system. When we performed gene enrichment analysis of genes showing 
CN alteration in the study of Guarneri and collaborators, we observed that pathways associated with the 
immune response (inflammation mediated by chemokine and cytokine signaling pathway) were 
overrepresented. The immune system's involvement in response to anti-HER2 agents in HER2-positive 
breast cancer patients has also been reported in other studies[77-82].

To our knowledge, we conducted the first systematic review on the association of epigenetic and genetic 
alterations in breast cancer tissues or blood with the response to anti-HER2 agents in HER2-positive breast 
cancer patients. Sixteen studies were included in this review, and very few overlaps between studies were 
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found. The most consistent results were the higher expression of GOLGA2 and PHF21A genes and the 
higher expression and CN gain of MIA3, WDR26 and C1orf133 genes observed in three different studies. 
Among these five genes, WDR26 has been shown to promote breast cancer growth and metastasis via the 
PI3K/AKT signaling pathway[83]. Gámez-Pozo and collaborators also observed that genes identified as 
differentially expressed in breast tumor tissues of cases compared to controls were overrepresented in the 
PI3K pathway[47]. Interestingly, the study by Shi and collaborators[59] also reported that PI3K mutations were 
associated with response to anti-HER2 agents in HER2-positive breast cancer patients and other previously 
published studies[84-86]. Taken together, these results suggest that genes of the PI3K pathway might play a 
relevant role in the development of resistance to anti-HER2 agents in breast cancer patients. Exploring the 
ramifications of these and other findings in larger cohorts or datasets like TCGA should be considered in 
future studies.

Several factors might explain why we only observed a few overlaps in our systematic review. Tumor cell 
content varied from > 40% to > 80% between studies, and in several publications (n = 4), this information 
was not provided. Contamination with cell types other than breast cancer cells can modify the observed 
pattern of genetic and epigenetic markers, as DNA methylation and other epigenetic or genetic markers 
widely vary across tissues and cellular types[87]. Moreover, the type of outcome evaluated in the study might 
also play a role, as the assessment of pCR in the neoadjuvant setting might mainly identify patients who did 
not primarily respond to targeted treatment (primary resistance), whereas the evaluation of DFS in the 
adjuvant setting might allow identifying patients who initially respond to targeted treatment but who 
develop resistance over time (acquired resistance). Moreover, epigenetic and genetic markers can be 
influenced by clinicopathological data, including age, stage, ER status, menopausal status, and ethnicity[88-96]. 
Unfortunately, it was difficult to evaluate this aspect, as patients’ clinicopathological data were not 
extensively reported in the majority of the included studies. The risk of bias in most studies was due to 
confounding.

CONCLUSION
In conclusion, although the sample size of the present pilot study was small and despite the lack of 
validation cohort, using a high-throughput analysis, we identified genes that were differentially methylated 
in breast cancer tissues of HER2-positive trastuzumab-treated breast cancer patients who developed 
resistance toward this drug compared to those who responded to targeted therapy. One of the most 
differentially methylated genes, PRKACA, has been reported to be differentially expressed in breast cancer 
tissues of trastuzumab-resistant compared to trastuzumab-sensitive HER2-positive breast cancer patients in 
two studies included in our systematic review. Although we identified very few genes that overlap between 
studies, our review suggests that some of the genes acting in the PI3K pathway, such as PRKACA[97], might 
play an important role in developing resistance to anti-HER2 agents in breast cancer patients. Although the 
associations between PI3KCA mutations and PI3K dysfunctions and anti-HER2 treatment resistance are 
well documented in the literature[86,98-100], further studies on this topic are needed, which may help to unveil 
carcinogenic mechanisms involved in this pathway.

Although the observations reported in the retained studies were only marginally concordant, our work and 
the studies presented in this article suggest that knowledge gathered from these high-throughput studies 
could be useful for the identification of novel biomarkers of trastuzumab resistance. This might promote the 
development of new targeted drugs that could be administered to trastuzumab-resistant HER2-positive 
breast cancer patients.
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