Energy Materials

1 Supplementary Material

- 22 Supplementary Figure S1. (A) SEM images of MoS₂/AB composites collected after
- 23 hydrothermal reaction of (A) 6 h, (B) 12 h, and (C) 18 h

25 Supplementary Figure S2. XRD patterns of MoS₂/AB composites collected after

26 hydrothermal reaction of (A) 6 h, (B) 12 h, and (C) 18 h

28 Supplementary Figure S3. Raman spectrum of MoS₂/C@CNs

29

27

30 Supplementary Figure S4. (A, B) TEM and (C) HR-TEM images of MoS₂/C

33 Supplementary Figure S5. N₂ adsorption-desorption isotherms of MoS₂/C

36 Supplementary Figure S6. TGA analysis of (A) MoS₂/C@CNs and (B) MoS₂/C

Supplementary Figure S7. *Ex-situ* XRD analysis on MoS₂/C@CNs electrode
during discharging: (A) XRD patterns at angles of 3-80°, (B) Zoomed XRD
patterns at angles of 3-39°, (C) corresponding voltage-time curves

46 Supplementary Figure S8. Discharge-charge profiles of MoS₂/C tested at 200 mA

g-1

Supplementary Figure S9. Electrochemical performance of pure MoS₂ electrode. (A) cycle performance at 200 mA g⁻¹ and (B) Rate performance

Supplementary Figure S10. (A-D) Capacitive contributions at various scan rates of 0.3, 0.5, 0.7, 1.0 mV s⁻¹ for MoS₂/C@CNs.

66 Supplementary Figure S12. EIS spectra of MoS₂/C@CNs and MoS₂/C for PIBs.

68 Supplementary Figure S13. FT-IR spectra of discharged MoS₂/C@CNs electrodes

- 72 Supplementary Figure S14. EIS spectra of MoS₂/C@CNs electrodes in the
- 73 concentrated electrolyte after different cycles
- 74

	Materials	Current density	Cycles	Reverse capacity	Reference
84	with previously repor	ted PIB anodes.			
83	Supplementary Table 1. Comparison of the electrode performance of MoS ₂ /C@CNs				
82					
81					
80					
79	6M KFSI in EC : DI	EC			
78	collector cycled at 20	00 mA g ⁻¹ after 500	cycles in	1M KFSI in EC : DI	EC, (C) and
77	Supplementary Figu	ire S15. SEM image	es of (A) c	lean empty copper, ((B) copper
76					

	$(mA g^{-1})$		$(mAh g^{-1})$	
MoS ₂ @HPCS	500	100	254.9	[S1]
MoS ₂ /N-doped-C	100	200	212	[S2]
MoS ₂ /C@NDG	1000	150	220.7	[S3]
PCP30@MoS ₂	500	100	248.43	[S4]
MoS₂⊂C	2000	150	192.01	[S5]
MoS ₂ /NGA	100	80	349	[S6]
MoS ₂ /SNC	500	1200	106	[S7]
MoS ₂ -WS ₂ -C	200	100	350	[S8]
E-MoS ₂ /NOC TC	250	300	220	[S9]
Sn-MoS ₂ /C	100	50	239	[S10]
MaSalC@CNc	200	400	315	This work
141052/C@CINS	2000	2000	164	I IIIS WUFK

REFERENCES

87	[S1]	Hu J, Xie Y, Zhou X, et al. Engineering hollow porous carbon-sphere-confined MoS_2 with
88		expanded (002) planes for boosting potassium-ion storage [J]. ACS applied materials &
89		interfaces, 2019, 12(1): 1232-1240.https://doi.org/10.1021/acsami.9b14742.
90	[S2]	Jia B, Yu Q, Zhao Y, et al. Bamboo-like hollow tubes with MoS ₂ /N-doped-C interfaces boost
91		potassium-ion storage [J]. Advanced Functional Materials, 2018, 28(40): 1803409.
92		https://doi.org/10.1002/adfm.201803409.
93	[S3]	Zhang J, Cui P, Gu Y, et al. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-
94		doped graphene network for high-performance potassium-ion storage [J]. Advanced Materials
95		Interfaces, 2019, 6(22): 1901066. https://doi.org/10.1002/admi.201901066.

96	[S4]	Jiang Q, Wang L, Chen J, et al. Enhancing potassium-ion battery performance by MoS ₂ coated
97		nitrogen-doped hollow carbon matrix [J]. Journal of Alloys and Compounds, 2021, 855:
98		157505. https://doi.org/10.1016/j.jallcom.2020.157505.
99	[85]	Hu R, Fang Y, Zhu K, et al. Carbon coated MoS2 hierarchical microspheres enabling fast and
100		durable potassium ion storage [J]. Applied Surface Science, 2021, 564: 150387.
101		https://doi.org/10.1016/j.apsusc.2021.150387.
102	[S6]	Dong X, Xing Z, Zheng G, et al. MoS ₂ /N-doped graphene aerogles composite anode for high
103		performance sodium/potassium ion batteries [J]. Electrochimica Acta, 2020, 339: 135932.
104		https://doi.org/10.1016/j.electacta.2020.135932.
105	[S7]	Du Y, Zhang Z, Xu Y, et al. Metal sulfide-based potassium-ion battery anodes: storage
106		mechanisms and synthesis strategies [J]. Acta Phys-Chim Sin, 2022, 38(11): 2205017.
107		https://doi.org/10.3866/PKU.WHXB202205017.
108	[S8]	Choi J H, Park G D, Kang Y C. Potassium-ion storage mechanism of MoS2-WS2-C
109		microspheres and their excellent electrochemical properties [J]. Chemical Engineering Journal,
110		2021, 408: 127278. https://doi.org/10.1016/j.cej.2020.127278.
111	[S9]	Zheng N, Jiang G, Chen X, et al. Rational design of a tubular, interlayer expanded MoS ₂ -N/O
112		doped carbon composite for excellent potassium-ion storage [J]. Journal of materials chemistry
113		A, 2019, 7(15): 9305-9315. https://doi.org/10.1039/C9TA00423H.
114	[S10]	Yin D, Chen Z, Zhang M. Sn-interspersed MoS ₂ /C nanosheets with high capacity for Na ⁺ /K ⁺
115		storage [J]. Journal of Physics and Chemistry of Solids, 2019, 126: 72-77.
116		https://doi.org/10.1016/j.jpcs.2018.10.029.