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Supplementary Figure 1. '"H NMR spectra of v-TPP, v-TPPMg, and BIL.
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Supplementary Figure 2. 3C NMR spectra of v-TPPMg and BIL.
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Supplementary Figure 3. TG curves of POP-TPPMg-BIL-x.

Supplementary Figure 4. (A) SEM and (B) high-resolution TEM images of
POP-TPPMg.
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Supplementary Figure 5. (A) Mg 1s, and (B) Br 3d spectra of the as synthesized
POP-TPPMg-BIL-1.57 catalyst.

>

250 200 150 100 50 O
Chemical shift (ppm)

Supplementary Figure 6. 3C MAS NMR spectrum of POP-TPPMg-BIL-1.57.
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Supplementary Figure 7. (A) CO; sorption isotherms at different temperatures for
POP-TPPMg-BIL-1.57 and (B) the calculated isosteric heat (Qs) by Virial Method.
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Supplementary Figure 8. N> sorption isotherms for POP-TPPMg-BIL-3.66. The BET
surface area and pore volume were calculated to be 174 m?/g and 0.26 cm’/g,

respectively.



Supplementary Figure 9. For simplicity in the calculations, the structure of
POP-TPPMg-BIL-1.57 is represented by the simplified structures shown (white: H,
gray: C, blue: N, yellow: Mg, red: Br).
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Supplementary Figure 10. DFT-calculated free energy profiles and the optimized
geometries of key intermediates and transition states for the POP-TPPMg-BIL-1.57

catalyzed CO: cycloaddition with 1,2-epoxybutane (white: H, gray: C, blue: N, yellow:
Mg, red: Br).



Supplementary Figure 11. Proposed mechanism of cycloaddition between CO> and

epoxides over bifunctional heterogeneous catalysts.
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Supplementary Figure 12. 'H NMR spectra of various products.
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Supplementary Figure 13. Conversion and selectivity during recycling tests in the
cycloaddition of 1,2-epoxybutane with CO: using the POP-TPPMg-BIL-1.57 catalyst.
Reaction conditions: 1,2-epoxybutane (10 mmol), POP-TPPMg-BIL-1.57 (44.4 mg),
50 °C, and 1 atm CO..
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Supplementary Figure 14. (A) N 1s spectrum, (B) Mg 1s spectrum, and (C) Br 3d
spectrum of the POP-TPPMg-BIL-1.57 catalyst after six recycling cycles.
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Supplementary Figure 15. N> sorption isotherms of POP-TPPMg-BIL-1.57 before
and after the catalytic reaction. The BET surface area and pore volume were calculated
to be 534 m?/g and 0.96 cm?/g for the as-synthesized POP-TPPMg-BIL-1.57 catalyst,
and 453 m?/g and 0.86 cm?/g for the recycled catalyst.

Supplementary Figure 16. TEM image of POP-TPPMg-BIL-1.57 after six recycling

cycles.
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Supplementary Figure 17. Yield versus reaction time for the cycloaddition reaction
between 1,2-epoxybutane and CO;. Reaction conditions: 1,2-epoxybutane (10 mmol),
POP-TPPMg-BIL-1.57 catalyst (44.4 mg), and CO2 (1 atm) at 50 °C. After 24 hours of
reaction, the catalyst was removed via filtration, and the reaction mixture was allowed

to proceed for an additional 24 hours. Yields were determined by 'H NMR

spectroscopy.

Supplementary Figure 18. SEM images of (A) POP-Bpy and (B)
POP-BpyCu-BIL-0.86.
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Supplementary Figure 19. N> sorption isotherms of POP-Bpy and
POP-BpyCu-BIL-0.86 collected at 77 K. The BET surface areas and pore volumes

were calculated as follows: 1123 m?/g and 2.14 cm?/g for POP-Bpy, and 182 m?/g and
0.36 cm?/g for POP-BpyCu-BIL-0.86.
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Supplementary Table 1. Comparison of catalytic performance between
POP-TPPMg-BIL-1.57, TPPMg&BIL, and the POP-TPPMg&BIL binary system in the
cycloaddition of CO2 with 1,2-epoxybutane®.

Entry Catalyst Time (h) Conv. (%)P
1 POP-TPPMg-BIL-1.57 48 99
2 BIL/TPPMg 48 99
3 BIL/POP-TPPMg 48 95

®Reaction conditions: 1,2-epoxybutane (10 mmol), POP-TPPMg-BIL-1.57 catalyst
(44.4 mg, 0.333 mol% and 1.046 mol% based on Mg and Br species, respectively), and
CO; (1 atm). *Product yield determined by '"H NMR spectroscopy.
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Supplementary Table 2. Comparison of the catalytic performance of this study with
other catalytic systems from literature in the cycloaddition of CO> with

1,2-epoxybutane.

Entry Catalyst T(C) Time(h) Conv. (%) Ref.

1 POP-TPPMg-BIL-1.57 50 48 89.0 This work
2 POP-PA-NH; 60 48 69.4 Ref. S1
3 POP-PA-COOH 60 48 53.6 Ref. S1
4 POP-PA-OH 60 48 54.6 Ref. S1
5 POP-BnCI-CP 60 48 90.1 Ref. S2
6 POP-BnCl-PB 60 48 70.9 Ref. S2
7 POP-BnCl-PP 60 48 61 Ref. S2
8 POP-PBnCI-TPPMg-4 40 48 52.4 Ref. S3
9 POP-PBnCI-TPPMg-12 40 48 89.3 Ref. S3
10 PCP-Cl 100 12 98 Ref. S4
11 Al-iPOP-1 40 6 99 Ref.S5
12 POF-PNA-Br 40 48 98 Ref. S6
13 pPI-1/pPI-2 80 72 98/90 Ref. S7
14 HIP-COOH-TMG 110 8 99 Ref. S8
15 AC-IL-NTf2 120 13 83 Ref. S9
16 IP 1 70 6 99.9 Ref. S10
17 IP 2 70 6 85.4 Ref. S10
18 IP 3 70 6 74.6 Ref. S10
19 P-DBTMGH 100 4 96 Ref. S11
20 CoPor-HIP 80 6 96 Ref. S12
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Supplementary Table 3. Comparison of catalytic performances across different

catalytic systems in the cycloaddition of CO2 with 1,2-epoxybutane®.

Entry Catalyst Time (h) Conv. (%)P
1 POP-BpyCu-BIL-0.86 48 70.4
2 v-BpyCu&PBIL 48 99.0
3 v-BpyCu&v-BIL 36 99.0
4 POP-BpyCu&PBIL 48 44.8
5 POP-BpyCu-BIL-0.14 48 43.5

aReaction conditions: 1,2-epoxybutane (1.08 g, 15 mmol), POP-BpyCu-BIL-0.86
catalyst (24.6 mg, corresponding to 0.067 mol% Cu and 0.115 mol% Br based on
catalyst content), COz (1 atm), and 50 °C. Product yield determined by 'H NMR.
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