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Abstract
Overwhelming evidence has been accumulating that materials informatics can provide a novel solution for 
materials discovery. While the conventional approach to innovation relies mainly on experimentation, the 
generative models stemming from the field of machine learning can realize the long-held dream of inverse design, 
where properties are mapped to the chemical structures. In this review, we introduce the general aspects of inverse 
materials design and provide a brief overview of two generative models, variational autoencoder and generative 
adversarial network, which can be utilized to generate and optimize inorganic solid materials according to their 
properties. Reversible representation schemes for generative models are compared between molecular and 
crystalline structures, and challenges in regard to the latter are also discussed. Finally, we summarize the recent 
application of generative models in the exploration of chemical space with compositional and configurational 
degrees of freedom, and potential future directions are speculatively outlined.
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INTRODUCTION
In the course of history, material innovation has always been in the spotlight of industrial revolutions and 
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has had an overwhelming impact on the economics. Before the 18th century, agriculture was at the core of 
human communities, and heavy reliance was placed on bronze and iron objects in agricultural activities 
[Figure 1A]. After the invention of the steam engine, mechanization began to take place, thus accelerating 
the industrialization of material production and creating the foundation of modern society. During this 
time, the technical progress of the steel manufacturing industry has made a substantive contribution to the 
development of railway and steamship transportation. At the end of the 19th century, electricity 
inaugurated its entrance on the historical scene, while the successful synthesis of organic polymers has 
served as another stimulus for the advancement of new technologies, such as automobiles and airplanes. 
Since then, the chemical industry has ushered in an era of high-speed development. Later in the 20th 
century came the third industrial revolution, where semiconductor materials are playing the vital role. The 
advent of computers and electronic technologies has revolutionized the industrial production globally and 
given rise to unprecedented opportunities for innovations in all aspects of our lives. To date, the uptake of 
computer science in material research and other realms has been highly advocated due to its unfathomable 
potential power. In silico materials design based on artificial intelligence and big data is becoming ever more 
feasible and realistic, which could constitute a new paradigm in the field of materials science[1-8].

The traditional materials discovery process is forward; that is, all the candidate materials that are expected 
to possess the desired properties will be directly synthesized and examined, until the most promising one is 
found. The whole process includes three steps: conjecture, synthesis, and test [Figure 1B]. Empirical 
physical and chemical rules are first employed to acquire the list of potential materials for study, which are 
then experimentally synthesized and characterized. The measured properties of these materials will be 
compared with each other, through which new knowledge is generated to refine the empirical rules[9]. This 
trial-and-error process is labor-intensive and time-consuming. In this context, inverse design is an 
appealing strategy to close the loop, which can help guide the exploratory research of materials discovery 
and mitigate the need for one-by-one material examination in the chemical space[10]. By definition, inverse 
design in materials science means that, given target functionality, the compositions and structures of 
potential materials are stringently optimized prior to experiments. To this end, we can rely on the advances 
in artificial intelligence, which can enable the long-held dream of fast inverse design in an arbitrarily large 
chemical space, identifying materials with a high probability of expected properties at the expense of 
acceptable computational complexity.

Machine learning, one of the most popular typologies of algorithms for artificial intelligence, has already 
been leveraged to achieve inverse design of both molecules and crystals[8,11-21]. This is a multidisciplinary 
endeavor that demands efficient structure encoding schemes and robust data management techniques. 
Despite being computationally efficient, this approach requires a plethora of material structures and 
properties for training, which generally constitutes a major obstacle for its practical application. However, 
the fast-paced developments in high-throughput ab initio calculations and the establishment of the 
corresponding database have made it possible to build machine learning models for a variety of materials. 
Consequently, inverse design by machine learning has risen to a prominence over conventional high-
throughput ab initio calculations and stood at the frontier of in silico materials design[10].

Generative models in machine learning are especially applicable to inverse design of materials. In this 
review, we focus on two generative models that are most widely used in the inverse design of inorganic solid 
materials: variational autoencoder (VAE)[22] and generative adversarial network (GAN)[23]. The frameworks 
for reversible coding of molecules and solid materials are elaborated and compared, with emphasis placed 
on the representation schemes for the generative models. Two directions for materials inverse design are 
specifically discussed: compositional and structural optimization with various levels of constraints. We 
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Figure 1. Historic overview of industrial revolution and the closed-loop paradigm for materials design: (A) evolution of human society 
and the key materials that play an essential role; and (B) the process of forward design and the incorporation of inverse design.

further highlight the major challenges and limitations faced by the inverse design of inorganic solid 
materials and suggest some possible solutions as well as directions worth further exploration.

INVERSE DESIGN
Inverse design in materials science requires the navigation in chemical space through calculation and 
simulation, for which there emerge three categories of methodologies exploited to enable material 
identification: (1) high-throughput screening; (2) global optimization; and (3) generative models.

High-throughput screening via ab initio calculations has been widely adopted for inverse design due to the 
development of ab initio calculation codes and high-performance computing hardware in the past two 
decades[24-26]. Starting from a portfolio of materials chosen on the basis of intuition, density functional theory 
or Hartree-Fock calculations are carried out for each of the materials to obtain the “predicted properties”. 
By sorting these materials according to the predicted properties, candidate materials can be readily found, 
thus obviating the need for synthesizing the whole set of chosen materials. The manual efforts spent on 
experiments can be greatly reduced. We would like to note that the process of high-throughput screening is 
akin to the forward design process, but the former relies only on computation and can be easily automated.

One of the most critical issues in high-throughput screening is to determine an appropriate chemical space. 
Too large chemical space will correspond to an enormous number of materials for calculation according to 
the permutation and combination, thus resulting in excessively high computational costs[27], while, with too 
small chemical space, researchers will risk disqualifying many opportunities that might actually lead to 
discovery of promising materials. Expertise is therefore of paramount importance in exploring the chemical 
space.

Global optimization is more efficient in navigating the chemical space than high-throughput screening. 
Unlike local optimization used in traditional ab initio calculations, global optimization algorithms focus on 
the entire feasible set and search for the global optimal solution by traversing all possible optimal structures 
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in the chemical space. Representative global optimization algorithms include simulated annealing, particle 
swarm optimization, genetic algorithm, and simplex method. Among them, the genetic algorithm is a 
popular choice to determine the optimal solution in the field of materials science. We take the global 
optimization of clusters[28] as an example. The atomic coordinates (“genotype”) of the cluster (“population”) 
that need to be optimized are perturbed (“variation” or “hybridization”), and cluster configurations passing 
geometrical evaluation (“fine adaptability”) are preserved. By iterating the above process, new cluster 
populations are generated, until convergence is reached from which the final configuration is selected to be 
the global optimal solution.

While global optimization is quite successful for inverse design of materials, data-driven approaches, e.g., 
machine learning as mentioned above, could further push the frontier of this field[29]. Material databases, 
such as the Inorganic Crystal Structure Database (ICSD)[30], the Open Quantum Materials Database[31], and 
the Materials Project (MP)[32] database, have provided a wealth of material data, which can remarkably 
facilitate the development of data-driven materials discovery. Moreover, the combination of simulated data 
and machine learning may lead to the conceptualization of new chemical rules[33], thus forming a novel 
perspective for materials design strategies.

Generative models in machine learning can effectively learn the real distributions and are therefore suitable 
for inverse design. Different from the discriminant models that calculate the conditional probability of the 
target variable under the premise of given observation variable values, the generative models emphasize on 
the total probability of all variables. Therefore, generation models can be used to simulate the distribution of 
any variable of interest. In the tasks of image generation[34-36], text generation[37-39], video generation[40], and 
audio synthesis[41-43], generative models have achieved amazing performance. As the common generative 
models, VAE and GAN are widely used in the field of materials science and have received extensive 
validation.

VAE is a deep generative model based on the autoencoder [Figure 2A]. An autoencoder can be applied to 
problems such as dimensionality reduction and feature extraction. Its basic framework is first mapping 
samples to hidden variables in low-dimensional space through encoder, and then restoring the hidden 
variables to reconstructed samples through decoder. To improve the ability of the decoder to generate new 
materials rather than to derive a unique mapping, VAE maps the material to a random variable obeying the 
explicit definition of multivariate normal distribution through a constraint encoder. Therefore, the hidden 
variable Z is actually the probability distribution of the material.

As compared with VAE, the probability density function of the hidden variables generated by GAN is 
implicit. GAN consists of generator and discriminator [Figure 2C], where the former is used to receive 
random variable Z and generate fake samples G(Z). The discriminator D receives the real sample X and the 
fake sample G(Z) generated by the generator at the same time and outputs the probability that G(Z) is 
considered to be a real sample. The results are fed back to the generator G to guide the training of G. In the 
process of GAN training, the generator and the discriminator update their own parameters to minimize the 
loss. A Nash equilibrium state is finally achieved, and the model is optimal after continuous iterative 
optimization.

REPRESENTATION
Despite the fruitful achievements in inverse design of molecules via generative models[20,44-46], their 
application in inorganic solid materials remains an outstanding challenge due to the difficulty in encoding 
the structures. In the following, we briefly outline some of the most typical structural representation 
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Figure 2. The network structures of typical generative models: (A) variational autoencoder; (B) conditional variational autoencoder; (C) 
generative adversarial network; and (D) conditional generative adversarial network.

schemes for generative models.

The wide application of generative models to the organic molecules[46,47] lies in the excellent representation 
schemes for molecules, which have both reversibility and symmetric invariance. Reversibility means that the 
digital space is mapped bijectively to real molecules, while symmetry invariance means that the 
representations after rotation, translation, and permutation can be identified as the same molecule before 
these operations. Simplified molecular input line entry system (SMILES) strings[48,49] and molecular graphs[50] 
are among the most renowned representation schemes [Figure 3A].

SMILES is a sequence-based text representation. Its power lies in the uniqueness of SMILES representation, 
namely, the standard SMILES representation can ensure that each chemical molecule has only one SMILES 
string, and it is a real language structure rather than just a computer data structure, which offers a natural 
advantage in using machine learning language models. For example, recurrent neural networks containing 
long short-term memory have been trained as generative models for molecules[45,55], which can generate 
valid SMILES strings with high accuracy. Gómez-Bombarelli et al.[19] reported a VAE model using SMILES 
to build multidimensional continuous molecule representation. Adversarial networks using SMILES 
representation are also investigated[56,57]. Because of its unique reversible mapping and clear meaning, 
SMILES has been most frequently applied in inverse molecular design[20,58,59].

In the molecular graph G = (V, E), atoms are represented as nodes vi∈V and chemical bonds as edges (vi, vj)
∈E. Nodes and edges are assigned with labels according to the type of atoms and chemical bonds. Many 
attempts have been made to construct generative models with the graph representation of molecules. 
Li et al.[60] proposed a new de novo molecular design framework based on a type of sequential graph 
generator, which demonstrates good accuracy. Novel generative models based on graph neural networks 
have also been reported, capable of representing synthetic graphs with certain topological properties and 
molecules[61]. It is worth noting that the training set appears to affect the way the model generates molecular 
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Figure 3. Representations of molecule and crystal in inverse design. (A) An example of weighted graph and SMILES string of molecule. 
(B) Bag-of-atoms representation for chemical composition. This figure is quoted with permission from Pathak et al.[51]. (C) Matrix 
representation for Mg-Mn-O ternary materials. This figure is quoted with permission from Kim et al.[52]. (D) Voxel grid representation of 
crystal with information from CIF file. This figure is quoted with permission from Hoffmann et al .[53]. (E) Image representation of atomic 
position by Gaussian kernel distribution. This figure is quoted with permission from Noh et al.[54].

graph. The visualization of the molecular generation processes indicates that a model trained with canonical 
ordering graph prefers to generate the molecular graph node by node, while a model trained with random 
ordering graph prefers to generate the graph piece by piece. To avoid the difficulty in optimizing the 
gradient on the discrete graph structures, GraphVAE can be employed to directly output a probabilistic 
fully connected graph that can predefine maximum size at once. The model has been successfully applied to 
the generation task of small molecular graphs[62].

Reversibility and symmetry invariance for the above representations of molecules come from the definite 
identification of chemical bonds, which determines the number of atomic connection (saturability) and 
orbital overlap direction (directivity). However, for inorganic solid materials, the chemical bonding is much 
more complicated. Therefore, saturability and directivity are often unsatisfied, leading to the failure of 
structure representation solely in terms of the connection between atoms. Although the crystal 
representation based on graph theory has been developed[63], it is not feasible to reconstruct the crystal 
structure from the graph, which restricts its application in generative models.
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Periodicity is another critical issue for crystal representations. Properties of crystals depend not only on the 
atomic arrangement in the structure unit, but also on the periodic repetition of the unit in the space. This 
would raise a new problem that is difficult to deal with: there are various choices for selecting the cell when 
representing one crystal structure and different choices would lead to large or even unacceptable errors in 
encoding crystals with similar or identical structures. Such a question is still not fully resolved in recent 
inverse design studies.

Various general descriptors for solid materials based on specific tasks have been developed, and some 
related studies have summarized these descriptors[5,64-67]. For conventional machine learning tasks, a good 
representation should not only satisfy the key criteria, namely, uniqueness, universality, and efficiency[68], 
but also be explicitly tailored to specific subfields (e.g., batteries[64,69], catalysts[70], or photovoltaics[71]). For the 
tasks of inverse design via generative models, however, the reversibility, symmetry invariance, and 
periodicity mentioned above are also indispensable, although it is quite difficult to fulfill all criteria at the 
same time. Here, we list some of the representative structure encoding schemes that have been used for 
inverse design of inorganic solid materials.

Bag-of-atoms representation is one of the efforts to encode inorganic crystals [Figure 3B][51], which 
considers a single structure and is only designed for optimization of compositions. Some generative models 
use the lattice vector and atomic position matrix in the crystallographic information files (CIFs) for 
structure representation [Figure 3C]. For example, Nouira et al.[72] trained a GAN model to generate novel 
ternary metal hydrides from observed binary structures. Ren et al.[73] embedded solid-state physics 
knowledge to construct descriptors which combine both the real space and the momentum space, and 
display lower error in predicting the formation energy and bandgap. The real space matrix was primarily 
constructed by the lattice vectors and the atomic coordinates, while the momentum space matrix involved 
the representative crystal planes that describe symmetry and periodicity. Other works try to convert the 
atomic position matrix into the density matrix[53,74,75] [Figure 3D], where the locations of atoms can be 
reconstructed by augmenting the training dataset via rotating and expanding the single unit cell. In their 
work, an error of 0.5 Å in atomic position between the predicted and real structures was guaranteed for 
nearly 99% of the atoms. Another approach is to let the neural network learn the encoding requirements by 
itself. Noh et al.[54] developed a 3D image representation [Figure 3E], which was similar in essence to the 
density matrix representation but relies on Gaussian kernel distribution of atoms. We note that data 
augmentation is applicable to solve the problem of symmetry invariance to a certain extent, yet it would 
significantly increase the computational burden. Efficient representation of inorganic solid materials for 
generative models is still a direction that requires more exploration.

TASK OF INVERSE DESIGN
Current research of inverse design in materials science is mainly centered on two topics: compositional 
optimization and structure prediction. These correspond to the exploration of chemical space by focusing 
on the compositional and configurational degrees of freedom.

A prohibitive computational cost would be expected if we try to explore the whole compositional space. For 
a four-element compound, a survey of the first 103 elements of the periodic table would result in a total of 
1012 different compounds through permutation and combination. The number would be reduced to 1010 if 
charge neutrality and electronegativity balance are taken into consideration[76]. In this case, generative 
models in machine learning can provide an affordable means to navigate the compositional space by 
implicitly learning the underlying chemical rules. Dan et al.[77] trained a GAN model with materials from the 
ICSD database, where two million chemical compositions were generated. Overall, 84.5% of the predicted 
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materials are charge-neutral and electronegativity-balanced, even though there were no chemical rules 
explicitly enforced. It is worth noting that inverse design of compositions is not restricted to representation 
schemes for encoding the atomic structures; that is, features not containing any structural information 
could also be utilized as input. On the other hand, Nguyen et al.[78] developed a hybrid generative-
discriminative model with partial phase diagram as the feature, which holds great promise for speeding up 
the compositional design of aluminum alloys by over 100,000 times.

As compared to compositional degrees of freedom in materials, the problem with configurational degrees of 
freedom is much more complex. Many challenges remain to be addressed for inverse design of crystal 
structures. Learning from the atomic positions in the training dataset, the generative models can estimate 
the probability of a specific atom occupying a certain position in the space. We highlight one such example, 
the image-based materials generator (iMatGen) framework designed by Noh et al.[54] The iMatGen first 
encodes the vanadium oxide CIFs into a 3D image and uses continuous representations as well as formation 
energies as inputs to the VAE for the construction of latent space for V-O binary compounds. By decoding 
the sampled points back to crystal structures, 26 out of the 31 previously known vanadium oxides were 
rediscovered, and over 40 entirely new V-O binary compounds with relatively high stability were generated.

It is generally anticipated that, for large spatial freedom, a huge training set would be needed to guarantee 
that the model can effectively learn the distribution laws of atoms in space. Court et al.[74] trained a VAE and 
UNet on 78,750 ternary perovskites, binary alloys, and Heusler compounds. The average mean absolute 
error (MAE) on validation dataset for the lattice parameters is as low as 0.06 Å, and the average earth-mover 
distance of atomic coordinates between encoding and decoding is 0.09 Å. In another work, 24,785 ternary 
compounds were screened from the MP database for VAE training[73]. The MAE for the atomic sites is 
0.001, and the percentage mean absolute errors for the length of lattice constant and the lattice angle are 
7.41% and 3.99%, respectively. After careful calculations for 27 predicted crystals, two of them exhibited 
power factors comparable to the best thermoelectric materials.

Given that crystals composed of the same elements often have similar structures, it is generally more feasible 
to train models with elemental constraints, which could reduce the reliance on large dataset. For metal 
organic frameworks[79], zeolites[75], and two-dimensional graphene/h-BN hybrids[80], the constituent elements 
are rather restricted, while there are a large amount of data for use in training the generative models. 
Nevertheless, a situation of high elemental diversity and low structural diversity is often encountered for 
inorganic materials datasets, which underlines the crucial role of element substitution[21,52,54], few-shot 
learning[73,81], and transfer learning[82,83] in tackling the inverse design tasks.

The inclusion of properties during the inverse design is still challenging, whether for the exploration of 
composition or structure. Generally, the constraints of the networks can only ensure that GAN and VAE 
can reconstruct materials with composition and structure close to the real materials. For an extremely large 
chemical space, the approach based on basic GAN or VAE are uncontrollable, and the predicted results 
could be meaningless. To solve the problem, the conditional generative models, such as conditional VAE[84] 
and conditional GAN[85], can be leveraged for material generation with desired properties 
[Figure 2B and D]. To be specific, the conditional generative models are trained with the real distribution P 
(x, y) of the material representation x (unit cell parameters, atomic positions, etc.) and properties y 
(formation energy, band gap, etc.). The distribution P’ (x, y) is learned such that it resembles P (x, y) as 
much as possible. Then, x can be obtained according to the conditional probability distribution P (x|y) and 
the expected properties y.
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The conditional deep-feature-consistent VAE was constructed recently, which employed the electron-
density maps as input and the formation energy per atom as condition[74]. Clustering effect related to the 
formation energy in latent space was shown. To perform both regressional and conditional tasks in GAN, 
Dong et al.[80] developed an improved CGAN called regressional and conditional GAN, which contains a 
regression convolution neural network between generator and discriminator to predict bandgap as well as 
output the latent features from material structures [Figure 4A]. In addition to the use of constraints in the 
generative model, Pathak et al.[51] suggested that additional predictive networks can be used to further filter 
materials with specific properties. They proposed a deep learning based inorganic material generator 
architecture consisting of a generator and a predictor [Figure 4B]. Long et al.[21] further integrated constraint 
network into GAN as a back propagator without embedding properties in input to realize automated 
optimization of generator and predictor. A constrained crystals deep convolutional GAN was thus 
established [Figure 4C], which is more efficient than traditional GAN in generating stable structures.

It is worth mentioning that, for GAN frameworks, in addition to the trouble of material representation 
mentioned above, another critical issue is that the training process of GAN can be very challenging to 
achieve convergence. The gradient disappearance[86] and mode collapse[87] could seriously hinder the 
application of GAN in material generation. Gradient disappearance means that, when the back propagation 
is used for neural network training, the gradient propagated to shallow network cannot give rise to 
numerical disturbance, which eventually leads to slow convergence or even fails to converge. Especially, an 
accurate discriminator is more likely to aggravate the issue of gradient disappearance[88]. Mode collapse 
refers to the situation that GAN cannot generate diversified materials; that is, only materials that strongly 
resemble or even belong to the real samples can be derived from the model. This issue is a great handicap to 
data augmentation tasks. The main reason for gradient disappearance and mode collapse in GAN training 
lies in that the Jensen-Shannon (JS) divergence is used to measure the distance between two distributions. 
One solution is to adopt Wasserstein GAN[89], which relies on Wasserstein distance instead of JS divergence 
and performs better when there is negligible overlap between both distributions. There are also variants 
such as Laplacian pyramid of GAN[90], boundary equilibrium GAN[91], and BigGAN[92], which differed in the 
cost function. Although the pros and cons of these models in image generation have been frequently 
discussed, the influence of cost functions is still an interesting topic in material generation.

It is worth mentioning that in the latent space of VAE, materials are represented as continuous and 
differentiable vectors, which is completely different from the way of generating materials with target 
property. To explore the unknown area in the latent space, a routine sampling strategy is to decode the 
random vector near the known material in the latent space. Apparently, the shape of the latent space and 
the sampling strategy will significantly affect the generation results. To enhance the sampling efficiency, 
iMatGen carried out a formation energy classification to latent vector. The crystals with formation energy 
greater than 0.5 eV/atom were regarded as stable materials[54], resulting in the separation of latent space into 
two regions [Figure 4D]. By executing the sampling strategy only in the stable region, the formation energy 
of vanadium oxides can be effectively constrained. Another effective approach to impose constraints when 
navigating in the latent space would be to train neural networks for property prediction from latent 
vector[19], after which the gradient optimization algorithm in the latent space could be applied.

Another noteworthy issue is the visualization of the latent space in VAE. In a standard visualization process, 
the encoder encodes high-dimensional material descriptors into low-dimensional latent vectors, and then 
dimension reduction algorithm is applied to map these vectors to two-dimensional space for visualization. 
Common dimensionality reduction algorithms include principal component analysis[93], multidimensional 
scaling[94], t-distributed stochastic neighbor embedding[95], sketch-map[96], etc. As the input of the 
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Figure 4. Networks for inverse design of inorganic solid materials. (A) Regressional and conditional GAN (RCGAN) framework. This 
figure is quoted with permission from Dong et al.[81]. (B) Deep learning based inorganic material generator (DING) framework consisting 
of a generator module and a predictor module. This figure is quoted with permission from Pathak et al.[51]. (C) Constrained crystals deep 
convolutional GAN (CCDCGAN) framework. This figure is quoted with permission from Long et al.[21]. (D) Materials generator module in 
iMatGen and the visualization of the latent space. This figure is quoted with permission from Noh et al.[54].

dimensionality reduction algorithm is a latent vector without manual selection of features, we are incapable 
of predicting the final performance of dimensionality reduction in advance, and hence the choice of 
algorithms is generally subjected to the characteristics of the dataset.

The most critical step in forward design is experimental synthesis. In a recent study, a machine learning 
model was constructed to quantify the probability of synthesis for virtual materials[97], in which an 87.5% 
true positive prediction accuracy was attained. Actually, even if we know the synthesizability of the 
materials, it is still hoped that the condition for material synthesis can also be predicted. As far as we know, 
there is no generative model available in this research direction, whereas most of the previous studies have 
been done using optimization methods[98-100]. One possible challenge is to obtain sufficient experimental data 
with small error. The establishment of generative models to predict the experimental condition for material 
synthesis is still an open challenge.

OUTLOOK
Inverse design is an important path for rapid materials discovery in the future. With the development of 
high-throughput computation and material databases, data-driven generative models promise to be 
powerful tools for inverse materials design. Although generative models have begun to show promise in the 
field of inverse design for organic molecules, their application in inorganic solid materials is still in the 
infancy period. Here, we proceed by listing some of the critical issues that require consideration.

First, the performance of the generative model is dictated by the size and quality of the training set. 
Although high-throughput ab initio calculations can be applied for the generation of a portfolio of materials 
with element substitution, it is notoriously time-consuming when complicated structures are involved. We 
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note that few-shot learning and transfer learning may improve the performance of inverse design of 
inorganic solid materials, but they are still far from satisfactory. For transfer learning, the inconsistent 
distribution of atomic positions in different types of crystals may be the key problem to be solved.

Secondly, the representation and encoding of inorganic solid materials could influence the sampling in 
latent space and the generation results. Periodicity is an important characteristic that inorganic solid 
materials differ from molecules. Relying solely on atomic coordinates and unit cell parameters as inputs of 
the material generation model is obviously not realistic. Although it can meet the requirements of 
reversibility, it cannot realize symmetry invariance and periodicity, in which case two cells representing the 
same crystal can be distinct from each other in latent space. This could jeopardize the predictive power of 
the model. To solve this problem, knowledge from mathematics and solid-state physics is indispensable[73].

Finally, generative networks themselves are an issue worth exploring. Currently, almost all results obtained 
from generation models are not directly usable and require post-processing, such as atomic trade-offs[54,75] 
and ab initio structural optimizations[52]. It is worth tackling how networks can be trained to produce 
materials that are usable with minimal optimization. In addition, reinforcement learning has been exercised 
in molecular generation[20,56,101]. It would be fruitful to evaluate its application in the generative models for 
inverse design of inorganic solid materials.
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