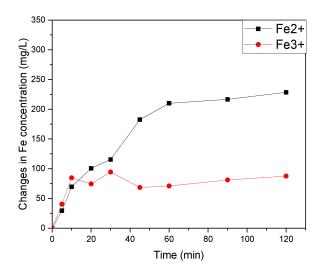
Supplementary Material


An insight into the fate of Cu²⁺ and zero-valent iron during removal of Cu²⁺ by nanoscale zero-valent iron

Emmanuella Anang¹, Hong Liu^{1,2}, Xianyuan Fan^{1,2}

¹College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

²Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

Correspondence to: Prof. Hong Liu. College of Resource and Environmental Engineering, Wuhan University of Science and Technology, 115 Rookie Street, WUST, Wuhan 430081, Hu Bei, China. E-mail: liuhong64@126.com

Supplementary Figure 1. Changes in Fe²⁺ and Fe³⁺ concentrations of nZVI during reaction with Cu^{2+} (pH = 4, temperature = 25 ± 1 °C, reaction time = 2 h).