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Abstract
Gastric cancer (GC) is a major cause of cancer-related deaths worldwide. The existence of cancer stem cells (CSCs) is 
known to be the main reason for resistance to anticancer agents as well as for the development of distant metastases. 
Although CSCs themselves harbor self-renewal and differentiation abilities, the tumor microenvironment that surrounds 
CSCs provides secreted factors and supports angiogenesis and is thus responsible for the maintenance of their CSC 
properties. The current review provides information regarding the impact of the tumor microenvironment on gastric CSCs, 
which will support the development of novel therapeutic strategies for targeting gastric CSCs. 
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INTRODUCTION
Although the proportion of individuals with gastric cancer (GC) has declined for decades, GC continues to 
be a major cause of cancer-related deaths worldwide[1-3]. Despite improvements in the treatment of GC, the 
clinical outcome of patients with advanced GC after curative resection is still poor, which is mainly due to 
recurrence and metastasis[4]. Therefore, new treatment options for this disease must be developed.

Recent evidence has increasingly indicated that the heterogeneity of the tumor is a consequence of cancer 
stem cells (CSCs), which are deeply involved in tumor progression and metastasis[5-7]. Malignant tumors have 
been reported to exhibit obvious histologic heterogeneity. In 1937, Furth et al.[8] demonstrated that a single 
leukemia cell could cause systemic disease in recipient mice. However, it took a long time for the concept of 
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CSCs to be widely recognized. CSCs of acute myelogenous leukemia (AML) were first identified by Bonnet 
and Dick[9] in 1997, and they also determined that the CD34+ CD38- fraction of AML tumor cells enhances 
tumorigenicity after continuous transplant into immunodeficient mice. CSCs have subsequently been found 
in various types of solid tumors[10-12]. Gastric CSCs (GCSCs) have been vigorously investigated in studies 
using GC cell lines and primary GC tissues[13-15].

The current review provides recent evidence for the regulation of GCSCs in the tumor microenvironment 
and for GCSC-targeted treatments.

MARKERS OF GCSCS
CD44
CD44 was first identified as a potential GCSC marker in a study using GC cell lines. The CD44-positive 
fraction in these GC cell lines showed the ability to form spheroids in vitro and demonstrated tumorigenicity 
in vivo when injected into the stomach wall or when injected subcutaneously into immunodeficient mice[16]. 
Furthermore, a combination of the cell surface markers CD44 and CD24 has been examined in GC cell lines 
and primary GC tissues from five patients using fluorescence-activated cell sorting. The authors of that study 
found that the CD44+/CD24+ fraction demonstrated a higher tumorigenicity compared with the CD44-/
CD24- fraction when injected into immunodeficient mice. Therefore, not only do these cells have the ability 
to self-replicate and produce differentiated offspring, the combined expression of CD44+/CD24+ acts as a 
putative GCSC marker[17]. CSCs were isolated from the peripheral blood of GC patients using the cell surface 
markers CD44 and CD54, and tumors similar to the original human tumor were generated when the cells 
were injected into immunodeficient mice. The same cells differentiated into gastric epithelial cells in vitro 
and self-renewed in vivo and in vitro. These results suggest that the combination of CD44+/CD54+ can also 
be used as a potential cell surface marker for GCSCs[18]. Epithelial cell adhesion molecule (EpCAM) and 
CD44 have also been identified as CSC markers in various types of tumors. The EpCAM+/CD44+ fraction 
from human GC tissues grew into tumors in immunodeficient mice, maintained a differentiated phenotype 
and reproduced the morphological and phenotypical heterogeneities of the original gastric tumors. These 
cells acquired greater tolerance to anticancer agents than other subtypes of cells[19].

Lgr5
Lgr5 has received substantial attention as a new GCSC marker. Initially, Lgr5 was identified in stem cells 
within hair follicles, the small intestine, large intestine and stomach[20,21]. Lgr5+ stem cells in the intestinal 
crypts are interspersed among terminally differentiated Paneth cells, which act as guardians of the stem cells 
by providing essential niche signals[22], but the role of Lgr5+ cells in the stomach is not fully understood. In 
addition, Notch signaling regulates gastric antral Lgr5 stem cell function. An analysis of gastric organoids 
revealed that Notch signaling is intrinsic to the epithelium and that it regulates growth. Furthermore, in one 
study, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-
GFP stem cells, which indicates the regulation of stem cell function by Notch. Moreover, the authors of that 
study showed that, compared with control stem cells, stem cells in which Notch signaling was activated 
competed more effectively for niche spots, as they rapidly spread within the stem cell niche[23]. More recently, 
Lgr5-positive chief cells were defined as a major cell-of-origin of gastric cancer. That study revealed Lgr5 
expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated 
Lgr5-2A-CreERT2 mouse model, the authors demonstrated that the division of these Lgr5-positive cells 
depended on the occurrence of Wnt signaling at the time of injury. It has become clear that Lgr5-positive 
cells generate all the cells that form the stomach tissue and that they are able to repair wounds within the 
stomach. Additionally, it was also found that gastric cancer developed when cancer-associated genes were 
activated in Lgr5-positive stem cells. This suggests that tissue stem cells are necessary for the repair and 
regeneration of the injured stomach might change to CSCs[24]. As described above, LGR5 acts as a GCSC 
marker of gastric cancer progression.
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CD133
One study examined the expression of three putative CSC markers, including ATP-binding cassette sub-
family B member 1, ATP-binding cassette sub-family G member 2, and CD133, in 90 human GC tissue 
samples and three human GC cell lines. The authors concluded that the expression levels of these markers 
in GC varied with the degree of differentiation, while poorly differentiated GC expressed high levels of these 
markers. Furthermore, CD133 expression in GC cells could be divided into two forms: luminal expression in 
the gland and cytoplasmic expression. A multivariate analysis revealed that the expression of CD133 in the 
cytoplasm was an independent prognostic factor in GC[25,26].

Other GCSC markers
In addition, aldehyde dehydrogenase 1 (ALDH1) has been identified as a marker of GCSCs. ALDH1+ cells 
derived from a diffuse-type GC cell line had a higher tumorigenic capacity in vitro and in vivo compared 
with ALDH1- cells and were capable of self-renewal and the generation of heterogeneous cell populations. 
Moreover, regenerating islet-derived family member 4 (REG4) was overexpressed in ALDH1+ GCSCs, 
and ALDH1 and REG4 expression were down-regulated by transforming growth factor-b (TGF-b), which 
correlated with a reduction in the GCSC population and tumorigenicity[27,28]. CD90+ cells, which possessed a 
greater ability to initiate tumors in vivo compared with CD90- cells, could re-establish the cellular hierarchy 
of tumors from single-cell implantation, which demonstrates their self-renewal properties. In addition, 
previous studies on chemo-resistance revealed that ERBB2 was overexpressed in approximately 20%-
25% of the gastric primary tumor models, which correlated with the higher level of CD90 expression in 
these tumors[29,30]. Moreover, trastuzumab treatment could decrease the CD90+ population in these tumor 
masses and could suppress tumor growth when combined with traditional chemotherapy. Taken together, 
this evidence suggests that CD90 may be another potential candidate marker of GCSCs[30]. The CD71- 
fraction of GC cells was enriched after treatment with 5-fluorouracil and accumulated during the G0/G1 
cell cycle phase. This cell subtype also exhibited high drug resistance to conventional chemotherapy, which 
demonstrates its stem cell-like properties. Limiting dilution and serial transplantation assays revealed that 
the CD71- cell fraction had higher tumorigenicity than the CD71+ cell fraction[31].

More recently, new tissue stem cell markers have been proposed. Lrig1, which is a marker of proliferative 
and quiescent stem cells in the skin and intestine, is a marker of gastric corpus epithelial progenitor cells that 
are capable of repopulating the damaged oxyntic mucosa via differentiation into normal gastric lineage cells 
in the mouse stomach. Lineage labelling using Lrig1-CreERT2/+; R26R-YFP/+ (Lrig1/YFP) or R26R-LacZ/+ 
(Lrig1/LacZ) mice demonstrated that the Lrig1-YFP-marked cells were gastric progenitor cells[32]. Likewise, 
Mist1 is a marker of quiescent stem cells in the gastric corpus isthmus. Mist1-positive stem cells serve as a 
cell-of-origin for intestinal-type GCs, and have the combination of Kras and Apc mutations; Mist1-positive 
cells are also the cell-of-origin of diffuse-type GCs when E-cadherin expression is lost[33]. Potential GCSC 
markers are summarized in Table 1.

GCSC REGULATION IN THE TUMOR MICROENVIRONMENT
The tumor microenvironment consists of various types of cells including immune cells, endothelial cells, and 
fibroblasts, in addition to the extracellular matrix, and has a large impact on tumor progression[34,35]. Cancer 
cells remodel their microenvironment through the secretion of growth factors and proteases, while stromal 
cells also affect cancer cells through the secretion of soluble factors such as matrix metalloproteinases, 
TGF-β1, Wnt ligands, bone morphogenetic proteins, stromal cell-derived factor 1 and exosomes[36-38]. Tissue 
stem cells are located beside the surrounding environment termed a “stem cell niche” where they play critical 
roles in tissue homeostasis by maintaining their ability to self-renew and differentiate[39,40].

In the tumor microenvironment, myofibroblasts, which are also known as cancer-associated fibroblasts 
(CAFs), share characteristics with smooth muscle cells and fibroblasts. CAFs enhance tumor progression 
through the secretion of soluble factors such as growth factors and cytokines in various tumor types[41-43]. 
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One study showed that CAFs significantly increased the number of spheroid colonies, the expression 
level of CSC markers and the fraction of side population cells in scirrhous GC cell lines. The influence 
of CAFs was significantly inhibited by TGF-b inhibitors, but not by fibroblast growth factor receptor or 
cMet inhibitors. These findings suggest that CAFs might promote CSC properties in scirrhous GC through 
TGF-b signaling[44]. IL-17B induced the expression of the self-renewal-related genes Nanog, Sox2, and Oct4 
in mesenchymal stem cells and promoted tumor progression. After treatment with exogenous IL-17B, the 
supernatant from cultured mesenchymal stem cells promoted the proliferation and migration of GC cells. 
This suggests that IL-17B might promote the production of soluble factors by mesenchymal stem cells, which 
leads to GC progression[45].

A recent compelling study demonstrated that nerves help to regulate both normal and neoplastic stem 
cell dynamics in the gastrointestinal stem cell niche. The authors of that study utilized a series of Dclk1-
CreERT mouse models to show that acetylcholine from nerves and from Dclk1+ tuft cells, which acted as 
intermediary niche cells to coordinate neural input to help regulate subsequent stem cell activity, induced 
nerve growth factor in gastric epithelial cells; this in turn promoted neuron expansion and tumorigenesis[46].

CURRENT TREATMENT OF GC AND THE POTENTIAL FOR TARGETING GCSCS
Surgical resection is currently the only curative modality to eliminate GC. Endoscopic screening has become 
widespread, however, GCs are frequently diagnosed at an advanced stage, when the clinical outcomeis still 
poor. Even after curative surgery, patients with advanced GC still experience recurrence, which implies that 
undetectable GC cells exist in the blood at the time of surgery. Based on this possibility, definitive evidence 
has been found that multimodal treatments consisting of surgery with neoadjuvant chemotherapy, adjuvant 
chemotherapy, or chemoradiation would improve the poor outcomes compared with surgery alone. 

In recent years, several molecular-targeted agents have been investigated in various combinations with 
conventional treatment as a first-line chemotherapy against advanced GC. The Trastuzumab for Gastric 
Cancer (ToGA) trial revealed that trastuzumab, a recombinant monoclonal antibody against HER2 (also 
known as ERBB2), combined with fluoropyrimidine plus cisplatin provided a significant survival advantage 
compared with fluoropyrimidine plus cisplatin alone in patients with HER2-positive advanced GC[29,47,48]. 
The ramucirumab for patients with previously treated advanced gastric or gastro-esophageal junction 

Table 1. Gastric cancer stem cell markers

Marker General function Significance Therapeutic targets References
CD44 Cell adhesion molecule, hyaluronic acid 

receptor
Tumorigenicity, spheroid 
formation, chemoresistance

Glutathione metabolism 
(CD44v)

[16,28,58]

CD24/CD44 Cell adhesion molecule Tumorigenicity [17]

CD54/CD44 Cell adhesion molecule Tumorigenicity, hierarchical 
organization

[18]

Lgr5 Wnt target gene, restriction to the crypt 
base

Tumorigenicity Notch-mTOR signal
miR-132

[21,23,24,46,59-62]

Lrig1 Regulatory factor of cell cycle Tumorigenicity Not shown [32]

Mist1 Transcriptional regulator Tumorigenicity Not shown [33]

EpCAM/CD44 Cell adhesion molecule Tumorigenicity, phenotypical 
heterogeneity, chemoresistance

Not shown [19]

ALDH1 Detoxifying enzyme Tumorigenicity, phenotypical 
heterogeneity

Not shown [27,28]

CD90 Immunoglobulin superfamily Tumorigenicity, trastuzumab 
reduce the CD90+ population

CD90 [29,30]

CD71 Transferrin receptor Tumorigenicity, 
chemoresistance, tumor cell 
invasion

Not shown [31]

CD133 Pentaspan transmembrane glycoprotein Poorly differentiated gastric 
cancer, independent prognostic 
factor

CD133 [25,26,56,63]
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adenocarcinoma (RAINBOW) trial showed that the combination of ramucirumab and paclitaxel significantly 
improved overall survival compared with placebo plus paclitaxel and that this combination could be regarded 
as a new standard second-line chemotherapy for patients with advanced GC[49,50].

Immune checkpoint blockade is new topic in cancer therapy. The immune checkpoint pathways, which 
basically maintain self-tolerance and limit collateral tissue damage during anti-microbial immune 
responses, can be co-opted by cancer to evade immune destruction[51]. Nivolumab is a human monoclonal 
IgG4 antibody that blocks the human programmed cell death-1 (PD-1) receptor. Preliminary data from 
a double-blinded, randomized, phase III trial (ONO-4538/BMS-936558) demonstrated the efficacy of 
nivolumab as salvage treatment as a third- or later line of treatment in 493 patients with advanced gastric 
or gastroesophageal junction cancer compared with placebo (NCT02267343). Finally, a clinical study 
demonstrated that nivolumab was effective as the salvage treatment for pretreated advanced GC with 
significantly improved clinical outcomes compared with the placebo[52].

To develop a treatment strategy to target GCSCs, we must select critical molecules that regulate the biological 
characteristics of CSCs [Figure 1]. Several molecules have been investigated as possible targets including 
those associated with specific signaling pathways, cell surface markers, and microenvironmental factors. We 
previously used K19-Wnt1/C2mE mice, a transgenic GC mouse model, to demonstrate that the CD44 variant 
isoform (CD44v), one of the cell surface markers of GCSCs, contributed to the defense against reactive 
oxygen species by stabilizing the glutamate-cystine transporter subunit xCT and promoting the synthesis of 
the primary intracellular antioxidant glutathione[53,54]. Moreover, we found that CD44v expression was up-
regulated in these gastric tumor cells. We also showed that the inhibition of the cystine transport system 
xc(-) with sulfasalazine, an inhibitor of xCT-dependent cystine transport, suppressed the progression of 
gastric tumors in these transgenic mice[55]. Our findings suggest that targeted therapy against the CD44v-xCT 
system may provide a strategy for the targeting of CD44v positive GCSCs. CD133 was a potential therapeutic 
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Figure 1. GCSCs in the microenvironment and the activated pathway in GCSCs. GCSCs: Gastric cancer stem cells; CAF: cancer-associated 
fibroblasts; TGF: transforming growth factor; IL: interleukin



target for antibody-drug conjugates (ADC), which was proven by binding mouse anti-human CD133 
monoclonal antibody to highly cytotoxic monomethyl auristatin F, ultimately inducing apoptosis in cancer 
cells with high levels of CD133 expression[56]. However, a recent study demonstrated that the hierarchical 
organization that involves CSCs and non-CSCs may be reversible through epigenetic gene regulation, which 
suggests that therapeutic strategies that target GCSCs themselves might be insufficient to eliminate cancer 
cells[57].

CONCLUSION
Molecular-targeted agents have been developed as a new treatment strategy and have been applied to 
various types of solid tumors. These developed agents have been assessed in diverse combinations with 
conventional chemotherapy as a treatment against advanced tumors including GC. However, the success 
of molecular-targeted agents for GC has been limited, and the prognosis of patients with advanced GC is 
still poor. Based on accumulating evidence, GCSCs are deeply involved in GC progression. Moreover, the 
tumor microenvironment that surrounds GCSCs forms the CSC niche and allows the stem cells to give rise 
to a hierarchy of proliferative and non-GCSC cells. Targeting the critical pathways and molecules between 
GCSCs and their environment may therefore represent a promising therapeutic strategy, and may provide a 
complementary approach to conventional therapies that target the malignant cells themselves. This review 
describes recent progress and evidence concerning the markers of GCSCs, related molecules within the 
GCSC niche and treatment targets. Further elucidation of the molecular mechanisms of GCSC regulation 
may lead to the development of novel treatment strategies that target GCSCs.
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