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Abstract
Aim: Angiogenesis is observed in acute myeloid leukemia (AML). AML cells abnormally proliferate and are 
resistant to death. Positive regulators of angiogenesis, VEGF-A and matrix metalloproteinases (MMPs) 2 and 9 are 
markers of disease status in AML. The natural phloroglucinol hyperforin (HF) displays antitumoral properties of 
potential pharmacological interest. Herein, we investigated the effects of HF on MMP-2/9 and VEGF-A expression 
and survival of primary AML cells.
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Methods: Blood and bone marrow samples were collected in 45 patients with distinct subtypes defined by French 
American British classification, i.e., M0, M1, M2, M3, M4, and M5. Levels of MMPs and VEGF-A in leukemic blood 
cells and culture supernatants were determined by RT-PCR, ELISA, and gelatin zymography (MMPs). The balance 
between cell death and survival was assessed by flow cytometry with analysis of phosphatidylserine 
externalization and caspase-3 activation.

Results: The administration of HF promoted a caspase-associated apoptosis in primary AML blasts (from blood 
and bone marrow), but not normal blood cells and monocytes. In addition, HF inhibited the levels of secreted 
proMMP-2, proMMP-9, and VEGF-A without altering transcripts. The induction of apoptosis by HF significantly 
paralleled the inhibition of MMP-2/9 and VEGF-A release by HF. No differences were seen in response to the 
deleterious effects of HF between AML cells of distinct subtypes.

Conclusion: Our results suggest that HF, through its proapoptotic and potential antiangiogenic properties (by 
inhibiting MMP-2/9 and VEGF-A) on primary AML cells, might be a useful experimental agent, in combination 
with existing drugs, for new therapeutic approaches in the treatment of this incurable disease.
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INTRODUCTION
Angiogenesis, characterized by the formation of new vessels from preexisting blood vessels, participates in 
the progression of many malignant tumors by supplying oxygen and nutrients[1]. Angiogenesis induction is 
observed in several hematologic malignancies including acute myeloid leukemia[2-4]. Endothelial cells (ECs) 
and tumor cells secrete proangiogenic molecules[5,6]. Among the positive regulators of angiogenesis, vascular 
endothelial growth factors (VEGFs), and more specifically VEGF-A, play a prominent role to sustain 
angiogenesis[1,5,6]. By binding to VEGF receptors at the surface of ECs, VEGF activates cell signaling 
pathways involved in the activation of the proliferation and survival of ECs[1,2,7]. In addition to VEGF, matrix 
metalloproteinases (MMPs) are regulators of pathologic angiogenesis[8-10]. MMPs enable extravasation and 
migration of newly formed ECs and release VEGF bound to the extracellular matrix[8-11]. In particular, the 
proteolytic activities of MMP-2 and MMP-9 are implicated in tumor-associated processes such as cell 
growth, survival, migration, invasion, and angiogenesis[8,12,13]. Moreover, by binding cell surface proteins, the 
proforms of MMP-2 and MMP-9 can directly trigger intracellular signaling pathways involved in the 
modulation of cell growth and survival, migration, or angiogenesis[8,14].

Of particular interest, some natural products display antiangiogenic effects and represent potential interest 
for the search of novel anti-cancer drugs[15-18]. Among these biologically active compounds, the 
phloroglucinol hyperforin (HF) isolated from the plant St John’s wort (Hypericum perforatum, Figure 1) 
acts as a multi-targeting agent[15,19-21]. HF displays anti-depressant, antibacterial, antioxidant, and anti-
inflammatory properties[15,19-22]. Moreover, HF exhibits anti-proliferative and proapoptotic activities towards 
a number of mammalian cancer cell lines in vitro[15,23-28]. The antiangiogenic properties of HF have been 
demonstrated in vitro and in vivo[29,30]. HF’s targets include MMP-2, MMP-9, and VEGF-A, all involved in 
cell survival and migration, and angiogenesis[31-33].

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic cancer characterized by the accumulation 
of malignant precursors of the myeloid lineage in the bone marrow (BM), interfering with the production of 
normal blood cells[34]. The latter are used to define distinct AML subfamilies[34]. Human AML cells show 
abnormally high levels of proliferation and survival, disseminating from bone marrow into peripheral blood 
and extramedullary organs[34]. The major cause of mortality of AML patients after allogeneic transplantation 
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Figure 1. Hyperforin (HF) is a bio-active acylphloroglucinol abundantly present in the apical flowers of St John’s wort (SJW) Hypericum 
perforatum L. SJW is a perennial flowering plant. HF is the primary active compound responsible for both the antidepressant and the 
anti-inflammatory properties of SJW. The chemical structure of HF is C35H52O4 (536 g/mol).

is graft-versus-host disease[4]. The conventional chemotherapeutic approach for AML patients is based on a 
treatment combining an anthracycline with cytarabine[35-37]. However, a majority of patients with AML are 
refractory to primary therapies or relapse later[35-37]. Both resistance and relapse are due to the heterogeneity 
of the disease, where high variability both among and within individual patients exist[35-37]. This underscores 
the need for alternative treatment options for AML patients, with increased tolerability and improved 
efficacy. Today, alternative strategies for the treatment of newly diagnosed AML patients include a new 
liposomal formulation of cytarabine and daunorubicin or the combination of venetoclax (a BH3 mimetic 
that inhibits the survival function of the B-cell lymphoma-2 anti-apoptotic protein) with hypomethylating 
agents or a low dose of cytarabine[36-38]. Unfortunately, these therapies are often still accompanied by adverse 
effects or favored mutations associated to drug resistance[36-38]. Therefore, novel therapies are needed to 
overcome resistance to these drugs, and the identification of new drugs in AML therapy is of great interest.

Increased BM angiogenesis in AML correlates with high levels of VEGF-A[39,40]. BM blasts from patients with 
AML express and secrete VEGF-A[39-42]. The transcript and protein levels of VEGF-A are highly variable in 
circulating AML cells from pediatric patients[43]. The enhanced VEGF-A levels observed in plasma from 
AML patients might be explained as the expression of VEGF-A release from blood AML cells, and it appears 
to be associated with worse event-free survival and poor overall survival in AML[44]. In contrast to normal 
BM immature CD34+ progenitor cells, BM AML blasts express MMP-2 and MMP-9 transcripts and release 
detectable levels of MMP-2 and MMP-9 proteins[45-47]. Similarly, blood AML cells express and secrete MMP-
2 and MMP-9[48]. To the best of our knowledge, there are no literature data reporting the co-expression of 
VEGF-A and MMP-2/9 in circulating AML blasts. In this study, we first analyzed the expression status of 
these factors in myeloid blasts from peripheral blood as a function of the latter’s French-American-British 
(FAB) subtype (M0, M1, M2, M3, M4, and M5). In addition, we investigated the ability of HF to exhibit 
anti-cancer activity in AML disease through the modulation of AML cell survival process and secretion of 
MMP-2/9 and VEGF-A. Understanding HF’s anti-leukemic activity in AML may provide a new model for 
the treatment of this disease.

METHODS
Patients, AML samples, and cell cultures
Peripheral blood was collected from 45 patients with AML according to standard clinical criteria and the 
FAB Committee’s cytological criteria (≥ 80% peripheral blood AML blasts CD33+ CD13+)[49]. The biological 
and clinical characteristics of AML patients are listed in Table 1. Bone marrow (BM) samples were collected 
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Table 1. Clinical characteristics of patients with AML

Characteristic No. (%)

Total 45 (100)

Age, years

Median (range) 60 [19-81]

Male 24 (53)

FAB subfamily

M0 3 (7)

M1 14 (31)

M2 11 (24)

M3 1 (2)

M4 7 (14)

M5 (including 2 M5b*) 9 (20)

Two AML patients (M0 and M4) were in relapse at the time of our analysis and responded to the effects of HF. FAB: French-American-British; 
M0: undifferentiated blast; M1: undifferentiated myeloblast; M2: myeloblast; M3: promyelocyte; M4: myelomonocyte; M5: monoblast; M5b*: 
monoblast with differentiation.

at the time of diagnosis from three AML patients. Control blood samples were collected from healthy, fully 
anonymized donors. Peripheral blood mononuclear cells (PBMCs) were isolated after Ficoll separation. 
More than 80% of AML PBMCs were CD33+ CD13+. Monocytes were isolated from normal PBMCs by 
adherence as described[50]. More than 95% of monocytes were CD14+.

Freshly isolated cells (106/mL) were cultured in RPMI 1640 medium (Life Technologies, Paisley, UK) 
supplemented with 10% heat-inactivated fetal calf serum (FCS) (Gibco; lipopolysaccharide levels < 
0.1 ng/mL), 2 μM L-glutamine, 1 μM sodium pyruvate, and 40 μg/mL gentamicin, in a 5% CO2 humidified 
atmosphere at 37 °C. The cells were then treated with purified hyperforin (1.4, 2, and 3 μg/mL, 
corresponding to 2.5, 3.6 and 5.4 μM, respectively) (Cayman Chemical Company, Ann Arbor, Michigan, 
USA) for 24-72 h. In negative control experiments with HF, cells were treated with the same volume of 
MeOH alone. After incubation, the cells were collected, washed once, and then used for flow cytometry 
assays and RT-PCR analyses. The culture supernatants from AML blood cells were harvested under sterile 
conditions and frozen before MMP-2, MMP-9, and VEGF-A contents were determined by ELISA and 
zymography. Cell morphology was assessed as previously described[51].

Flow cytometry
Intact cells were directly immunostained as previously described[52]. The balance between cell apoptosis and 
survival was assessed using the annexin V-FITC/propidium iodide (PI) cell death detection kit (Beckman-
Coulter, Les Ullis, France). Intracellular active caspase-3 was detected in permeabilized cells as described 
in[53]. Stained cells were analyzed with a Coulter Epics XL flow (Beckman-Coulter, Les Ullis, France) 
cytometer. Data were analyzed using LYSYS (Beckman-Coulter) software.

Reverse transcriptase PCR assays
RNA extraction from treated cells and cDNA synthesis were performed as described previously[52]. The 
cDNAs coding for human MMP-2, MMP-9, VEGF-A, and β2-microglobulin were amplified in PCRs, using 
primers synthesized by Sigma-Proligo according to the published sequences[52,54,55]. The PCR products were 
visualized as described previously[56].
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Measurement of MMP-2/9 gelatinolytic activity by zymography
Analysis of MMP-2/9 activities in culture supernatants was carried out in 7.5% (w/v) SDS-polyacrylamide 
gels containing 0.1% gelatin (w/v), as described in[52]. Gelatinolytic activities of MMPs were detected as 
transparent bands on the background of Eza-blue stained gelatin. The bands were acquired in a 
densitometer (Oncor).

ELISA analysis
Total MMP-2 (pro and active forms), total MMP-9 (pro and active forms), and VEGF-A (containing 125 
amino acid residues, VEGF125) contents in culture supernatants were determined using commercial ELISA 
kits provided by R&D (Abingdon, UK). Controls included culture medium alone incubated under the same 
conditions. Detection levels for MMP-2/9 was 1 ng/mL and for VEGF-A 5 pg/mL.

Statistics
Statistical analyses were performed using GraphPad Prism software (version 7.0, GraphPad Software, La 
Jolla, CA, USA). Groups were compared using Mann-Whitney tests or unpaired or paired Student’s t-tests. 
Correlations between variables were tested by calculating Spearman’s coefficient (r) and the P-value ≤ 0.05 
was considered statistically significant. All tests were two-tailed for greater stringency.

RESULTS
Expression of proMMP-2, proMMP-9, and VEGF-A in primary AML cells
We first examined the levels of transcripts of MMP-2/9 and VEGF-A in leukemic blood cells from 15 AML 
patients with different FAB subtypes M0, M1, M2, M4, and M5 (FAB M3 is not represented because of its 
low frequency in the cohort). Representative examples of PCR products are shown in Figure 2A. The PCR 
products for MMP-2/9 and VEGF-A were detected at various degrees in all AML samples tested (Figure 2A 
and data not shown). MMP-2 and VEGF-A transcripts were detected in all tested samples, whereas MMP-9 
transcript was detected in 12 of the 15 tested samples (Figure 2A and data not shown). The transcripts 
patterns showed no associations with the FAB subtype (Figure 2A and data not shown). As exemplified in 
Figure 2B, zymography analysis of the supernatants of AML cells (72 h of culture) showed the presence of 
proMMP-9 and proMMP-2 proteins at 92 and 72 kDa, respectively [Figure 2B], whereas the active forms of 
MMP-9 (at 82 kDa) and MMP-2 (at 65 kDa) were not detected [Figure 2B]. In some cases, an intermediate 
≃ 85 kDa MMP-9 form was seen [Figure 2B]. The release of these proteins by primary AML cells in vitro 
and under basal conditions was quantified in ELISAs: the mean (range) of total MMP-2, total MMP-9, and 
VEGF-A concentrations (after a 72 h of culture) released by AML cells were, respectively, 4.44 ng/mL 
(1-13 ng/mL) for 106 cells, 16.04 ng/mL (1-51 ng/mL) for 106 cells and 57.71 pg/mL (5-288 pg/mL) for 106 
cells [Figure 2C] and were not correlated with the FAB subtype (P > 0.05). Next, we tested for associations 
between the levels of released MMP-2, MMP-9, and VEGF-A. No correlations were found for MMP-2 and 
MMP-9 (r = 0.2859, P = 0.1483), MMP-2 and VEGF-A (r = 0.1046, P = 0.6867), or MMP-9 and VEGF-A (r = 
0.1817, P = 0.4811) [Figure 2D].

HF induces apoptosis in primary AML cells independently of the FAB subtype
We assessed the effects of HF on the viability of blood PBMCs obtained from 37 AML patients. Cell death 
was assessed by determining phosphatidylserine exposure at the cell surface (using annexin-V-FITC 
binding) and cell membrane disruption (using propidium iodide labeling). Initial studies showed that HF’s 
optimal effects in inducing death of AML cells occurred in a time-dependent manner (24-72 h). 
Consequently, the lethal effect of HF at 72 h was investigated in all subsequent experiments. As exemplified 
in Figure 3A, the proportion of total annexin-V+ cells (dead cells) by 72 h enhanced after treatment with 
increasing doses of HF (1.4, 2, and 3 μg/mL) compared to control (untreated) experiments. Accordingly, 
light microscopy observations revealed that AML cell treatment with HF led to a deterioration of the cell 
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Figure 2. Expression of MMP-2, MMP-9, and VEGF-A in primary AML cells. (A) PCR analyses of MMP-2/9 and VEGF-A transcripts. 
Samples were standardized for total cDNA content by assessing the presence of identical amounts of β2-microglobulin transcripts. (B) 
Expression profiles of MMP-2/9 (pro and active forms) were analyzed by zymography using 7.5% (w/v) SDS-polyacrylamide gels 
containing 0.1% gelatin (w/v) in the 72-h conditioned media (supernatant) from AML cells. The control medium was an FCS-
supplemented culture medium alone incubated under the same conditions; the culture supernatant from U937 (M5) cells was used as 
a positive control for proMMP-2/9 and active MMP-9 proteins. The assay’s sensitivity for MMP-2/9 gelatinolytic activity was 
25 ng/mL. (C) Total MMP-2 (first column, n = 27 samples), total MMP-9 (second column, n = 27 samples), and VEGF-A (third 
column, n = 17 samples) productions in the 72-h culture supernatants from AML cells were determined by ELISA. Mean concentrations 
± SEM are indicated. Spots are superposed in all columns. (D) Correlations among MMP-2, MMP-9, and VEGF-A levels in the 72-h 
culture supernatants from AML cells. Spearman’s correlation coefficient (r) and the P-value are shown for MMP-2 vs. MMP-9 (n = 27), 
MMP-2 vs. VEGF-A (n = 17), and MMP-9 vs. VEGF-A (n = 17).

morphology, with a decrease in the nuclear/cytoplasmic ratio at 1.4 μg/mL HF, an apparition of an enlarged 
cytoplasm at 2 μg/mL HF, and appearance of shrunken cells at 3 μg/mL HF, in a manner indicative of a 
typical apoptotic morphology [Figure 3B]. In contrast, and as previously reported for normal PBMCs[24], HF 
(2 μg/mL, 72 h) showed no marked toxic effects on normal PBMCs and isolated monocytes [Figure 3C]. As 
exemplified in Figure 3D, HF-mediated cell death similarly increased in blood cells and BM cells from the 
same patient with AML. In summary, the effects of HF (2 μg/mL, 72 h) were assessed on the viability of 37 
AML samples with M0, M1, M2, M3, M4, and M5 FABs. Two samples, from M1 and M4 patients, 
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Figure 3. HF induces resistance to apoptosis in AML cells. (A) Representative cytograms of AML blood cells treated for 72 h with HF 
(1.4, 2, and 3 µg/mL); detection of dead cells after annexin-V-FITC/PI staining and flow cytometry. The percentage of annexin-V-
positive cells is shown. (B) Light microscopy of non-treated and AML cells treated with HF: original magnification, 600×; May-
Grünwald stain; Scale bar, 10 µm. (C) Representative cytograms of PBMCs and isolated monocytes from two healthy donors, treated 
with 2 µg/mL HF for 72 h, and cell death was assessed as described in (A). (D) Representative cytograms of AML cells isolated from 
blood and bone marrow of one AML patient, treated with 2 µg/mL HF for 72 h, and cell death was assessed as described in (A). (E) Cell 
death levels (2 µg/mL, 72 h) were determined in untreated and HF-treated malignant cells from 35 AML patients. Mean concentrations 
± SD are indicated; P value was calculated using a Mann-Whitney U-test; ****P < 0.0001. (F) The percentage of HF-mediated AML cell 
death was determined for all FAB subtypes by subtracting the percentage of annexin-V-positive cells in the absence of HF from the 
percentage of annexin-positive cells in the presence of HF, and then dividing by the percentage of annexin-positive cells in the presence 
of HF × 100. Data are the mean ± SEM (M0, n = 3; M1, n = 8; M2, n = 14; M3, n = 1; M4, n = 5; and M5, n = 4). P values were calculated 
using one-way ANOVA (without M3 value); ns: not significant. (G&H) AML cells were treated with HF (2 µg/mL, 72 h) and the 
percentage of annexin-V-positive cells was determined as described in (A) (left). In parallel, active caspase-3 expression was measured 
by flow cytometry (right); cells were stained with FITC-rabbit Ig (control, dashed line) or anti-active caspase-3-FITC (solid line); the 
percentages refer to the percentage of active caspase-3. (G) Responder AML cells are sensitive to HF treatment with death induction 
(38% vs. 11% for untreated) and caspase-3 activation (34%). (H) Non-responder AML cells do not respond to HF treatment (no cell 
death and no caspase-3 activation).

respectively, exhibited high levels of basal death (> 70% annexin-V-positive cells) and did not respond to HF 
treatment [see Figure 3H (left) for M4 patient]. For the other 35 samples, cultured leukemic cells exhibited 
variable baseline levels of spontaneous death [Figure 3E]. Exposure to HF increased death in 33 of the 35 
blood samples [Figure 3E]. The paired-t test confirmed the significant enhanced death in HF-treated AML 
cells [Figure 3E]. The lethal effect of HF was found independent of the FAB subtype (P = 0.0735) 
[Figure 3F]. These data collectively indicate that HF induces apoptosis in cultured AML cells independently 
of FAB status.

We previously showed that HF induced caspase-dependent apoptosis in AML cell lines representative of 
primary AML cells through the mitochondrial (intrinsic) pathway[26]. Caspase-3 is the executioner caspase of 
intrinsic apoptosis[57]. To confirm the caspase pathway’s involvement in HF-induced apoptosis of primary 
AML cells, we investigated the level of active caspase-3 expression in two AML samples that, respectively, 
responded [Figure 3G] or not [Figure 3H] to the lethal action of HF. As expected, AML responder cells 
displayed higher levels of active caspase-3 than untreated cells [Figure 3G]; in contrast, the levels of active 
caspase-3 did not change in non-responder AML cells [Figure 3H]. Altogether, these results indicate that 
HF induces caspase-associated apoptosis in primary AML cells, independently of the FAB subtype.

HF inhibits the secretion of proMMP-2/9 and VEGF-A in primary AML cells
We assessed the ability of HF (2 μg/mL, 72 h) to modulate the spontaneous release of MMP-2, MMP-9, and 
VEGF-A by primary AML cells. ELISA data show that HF did not affect the basal levels of MMP-2/9 ≤ 
1 ng/mL and VEGF-A ≤ 5 pg/mL. In contrast, in the group of AML samples with detectable concentrations 
of MMP-2/9 (> 1 ng/mL) and VEGF-A (> 5 pg/mL), the levels of proteins release fell after treatment with 
HF [Figure 4A]. This decrease appeared to be independent of FAB subtype (P > 0.05). The Mann-Whitney 
test confirmed the significant downregulation of the release of MMP-2/9 and VEGF-A by HF-responsive 
AML cells [Figure 4A]. Decrease of MMP-9 levels by HF was associated with reduced gelatinolytic activity 
of the 92 kDa form of proMMP-9 accompanied by the accumulation of the truncated 85 kDa form 
independently of the FAB subtype tested (Figure 4B and data not shown); the increased amounts of 85 kDa 
form seemed to be inversely associated with the amounts of the 92 kDa form in HF-treated AML samples. 
PCR reactions indicated that HF did not markedly affect the transcription levels of MMP-2/9 and VEGF-A 
(when normalized to β2-microglobulin levels) in representative AML samples from distinct FAB subtypes 
[Figure 4C]. Altogether, these experiments strongly suggest that HF inhibits, in a post-transcriptional 
manner, MMP-2/9 and VEGF-A production in AML cells. Furthermore, the correlations between the levels 
of released proteins on the one hand and cell death on the other hand were evaluated in samples from both 
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Figure 4. HF inhibits the production of proMMP-2/9 and VEGF-A by AML cells. (A) Total MMP-2 (n = 11), total MMP-9 (n = 8), and 
VEGF-A (n = 13) productions in the 72-h culture supernatants from AML samples untreated or treated with HF (2 μg/mL) were 
determined by ELISA. P value was calculated using a Mann-Whitney U-test; *P < 0.05; **P < 0.01. (B) The gelatinolytic activities of 
MMP-2/9 were analyzed using zymography (see Figure 2) in the supernatants from four AML cell samples treated or not with HF 
(2 μg/mL, 72 h). (C) PCR analyses of MMP-2, MMP-9, VEGF-A, and β2-microglobulin transcripts from 5 AML samples treated or not 
with HF (2 μg/mL, 24 h). (D) Correlations between the levels of HF-mediated release of MMP-2/9 or VEGF-A and HF-mediated death 
in AML cells (n = 11 for MMP-2; n = 8 for MMP-9; and n = 13 for VEGF-A). The percentage of HF-mediated AML cell death was 
determined as described in Figure 3. The percentage of HF-mediated release was determined by subtracting the percentage of 
MMP/VEGF-A release in the absence of HF from the percentage of MMP/VEGF-A release in the presence of HF, and then dividing by 
the percentage of MMP/VEGF-A release in the absence of HF × 100. Spearman’s correlation coefficient (r) and the P-value are shown.

the untreated AML group and the HF-treated group. The levels of released MMP-2/9 and VEGF-A were 
not correlated with basal apoptosis in the group of unstimulated AML cells (P > 0.05). In contrast, we 
identified in the group of HF-treated AML cells a negative correlation between HF-mediated proteins’ 
release and HF-mediated apoptosis [Figure 4D]. HF-mediated AML cell death was significantly (negatively) 
correlated with the release of MMP-2 (r = -0.856, P = 0.0016) and MMP-9 (r = -0.881, P = 0.0072) but not 
with that of VEGF-A (r = -0.542, P = 0.0588) [Figure 4D]. These results indicate that HF induces the release 
of MMP-2/9 and VEGF-A in AML cells.
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DISCUSSION
Enhanced angiogenesis participates in the progression of AML, and pharmacological targeting of pro-
angiogenic proteins (including MMPs and VEGF-A) might be a possible antileukemic strategy. HF exhibits 
antiangiogenic and proapoptotic activities towards various cancer cells[15,19,29,30]. AML cells abnormally 
proliferate and escape apoptosis. Our present study provides evidence that primary blood AML cells co-
express proMMP-2, proMMP-9, and VEGF-A proteins. The major finding of our study indicates that HF is 
able to inhibit two biological events related to AML progression and angiogenesis, i.e., survival and 
secretion of MMP-2/9 and VEGF-A in AML patients’ cells.

Peripheral blood blasts from AML patients express detectable levels (transcript and secreted protein) of 
MMP-2, MMP-9, and VEGF-A. As previously reported for BM AML blasts[45], circulating AML cells release 
the proforms of MMP-2 (72 kDa) and MMP-9 (92 kDa) proteins. An additional 85 kDa form of MMP-9 is 
observed in some AML samples (independently of the FAB subtype). A previous study reported that BM 
AML blasts with the subtypes M4/M5 express an ≃ 85 kDa MMP-9 at their cell surface[58]. Breast cancer cells 
express an 85-kDa MMP-9 devoid of complex carbohydrates, which might result from deglycosylation[59]. 
Interestingly, active MMP-3 and active MMP-13 can cleave proMMP-9 to generate an 86-kDa 
intermediate[60,61]. The origin of this MMP-9 variant and its role in AML remain to be defined.

We observed no intercorrelations among the levels of MMP-2, MMP-9, and VEGF-A secreted by AML 
cells, likely reflecting their variable expression both among and within individual AML cells. MMP-2 
transcription is mainly regulated by signal transducer and activator of transcription 3 (STAT3)[62,63], whereas 
MMP-9 transcription is regulated via NF-κB, AP-1, and SP-1[64]. VEGF transcription can be regulated by 
STAT3 and HIF[62,63,65]. Our data strongly suggest that the heterogeneity found in the release profiles of 
MMP-2/9 and VEGF-A proteins may be related to the distinct gene regulations of MMP-2/9 and VEGF in 
AML cells. Moreover, the released levels of MMP-2/9 and VEGF-A do not appear to depend on the 
differentiation stage of AML cells. Our data agree with studies in which the levels of MMP-2 (plasma), 
MMP-9 (BM), or VEGF-A (BM) and FAB subtypes are not associated[39,40,45,46,66]. In contrast, other studies 
have shown an association between MMP-9 or VEGF-A (BM) and AML-M4/M5[43,46], as well as between 
VEGF-A (BM) and AML-M0[42]. Larger studies are mandatory to fully address this question.

We previously showed that HF exhibits proapoptotic activities in AML cell lines of distinct FAB 
phenotype[26]. In particular, HF did not activate the enzymatic activities of caspase-3/8/9 directly (B. Bauvois, 
unpublished results) but promoted caspase-mediated apoptosis involving BAD and Noxa activation in AML 
U937 (M5) cells[26]. BAD is a direct downstream target of Akt1[67]. We previously presented the first evidence 
that HF, by directly inhibiting Akt-1 kinase activity, prevents BAD phosphorylation, which in turn activates 
its proapoptotic role in U937 cells[26]. Primary AML cells overexpress Akt1[67]. Activated Akt signaling 
protects AML cells from apoptosis[67]. In this study, the proapoptotic effect of HF in AML cell lines is 
confirmed in primary AML cells, independently of the latter’s FAB subtype; HF-mediated AML cell death 
occurred in 33 of the 35 AML samples tested, accompanied by caspase-3 activation. Whether HF activates 
the proapoptotic function of BAD through Akt1 inhibition in primary cells remains to be confirmed. HF 
exerts selective cytotoxicity on AML cells but not on normal PBMCs and monocytes. Importantly, BM 
AML cells appear as sensitive as circulating AML cells toward the apoptotic effect of HF, suggesting that HF 
might be of interest for the therapy of AML through its potential capacity to eradicate BM leukemic stem 
cells. Moreover, the induction of apoptosis by 2 μg/mL of HF parallels the inhibition of secretion of MMP-
2/9 and VEGF-A by HF at the same concentration. Suppression of released MMP-2/9 and VEGF-A proteins 
by HF does not appear correlated with their transcript levels, suggesting a post-transcriptional inhibition. 
Our observations strongly suggest that HF induces simultaneously: (1) suppression of MMP-2/9 and VEGF-
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A production; and (2) apoptosis in primary AML cells. However, to what extent are apoptosis and secretion 
interdependent or related? A previous study showed that the stable dicyclohexylammonium salt of HF (HF-
DCHA, 0.5 μM) inhibits MMP-2 release by two human epithelial cell lines (HT-1080 and SK-N-BE), while 
apoptosis in these cells is induced at concentration 16-fold higher (IC ≥ 8 μM), suggesting that HF-DCHA 
induces two separate events in these tumor models[68]. The effect of HF at ≤ 2 μg/mL on MMP-2/9 and 
VEGF-A release remains to be assessed in AML cells. Furthermore, the decreased production of these 
hemoregulators might result from the apoptotic process. Conversely, the inhibition of MMP-2/9 and 
VEGF-A might impact the survival of AML cells. Indeed, VEGF-A signaling (via PI3K/Akt activation) 
favors autocrine AML cell proliferation, survival, and chemotherapy resistance[69,70]. Moreover, proMMP-2 
and proMMP-9 have the ability to directly activate signaling pathways modulating cell survival, migration, 
and angiogenesis[8]. For example, the binding of proMMP-9 to its docking receptors α4β1 integrin and CD44 
induces an intracellular signaling pathway (STAT3/Lyn/Mcl-1) that favors the survival of circulating 
chronic lymphocytic leukemia cells[71]. Similarly, the binding of proMMP-2 or proMMP-9 to the integrins α
Lβ2 and αMβ2 induces the migration of human AML cell lines[72]. Although AML cells from the majority of 
patients (at diagnosis or relapse) express chains of integrins and CD44[73], the potential roles of proMMP-2/9 
in AML cell survival remain to be shown. Alternatively, HF might induce two simultaneous but distinct 
events (apoptosis and secretion inhibition) in AML cells. Due to its physicochemical properties, HF is easily 
incorporated into the membrane lipid bilayer, where it can function as a protonophore[74]. Lipid rafts 
modulate Akt/BAD signaling in cancer cells[75,76] and regulate exocytosis/endocytosis pathways[77-80]. Whether 
HF disrupts lipid rafts in AML cells, which in turn simultaneously lead to cell apoptosis (through activation 
of Akt1/BAD) and blockade of secretion of MMP-2/9 and VEGF-A (through exocytosis inhibition) remains 
to be established. In view of this possibility, HF could join the family of natural compounds (including 
quercetin, epigallo catechin-3-gallate, resveratrol, and genistein) that induce apoptosis of tumor cells and 
block cytokine secretion through alteration of lipid rafts[75,76,81-84].

In conclusion, among the search for novel therapeutics for AML, there is a need for the development of 
drugs that block angiogenesis associated with the AML disease. The inhibition of VEGF-A and/or MMP-2/9 
may provide a therapeutic benefit in AML. Antiangiogenic strategies have sought to target the MMPs’ 
catalytic activity[85]. The failure of MMP inhibitors as cancer drugs in the clinic may be explained by their 
lack of selectivity towards MMPs (including MMP-2/9). New approaches are focusing on more selective 
MMP inhibitors that target motifs outside the active site (the “exosite”) of individual MMPs; these newly 
designed inhibitors include peptides that block exosite-mediated cell surface interactions and function-
blocking anti-MMP antibodies[85-87] to target proMMP-9-mediated cell migration in vitro[88-90]. To date, no 
efficient therapy based on MMP inhibition has been made available for targeting angiogenesis in cancers 
including AML, and new strategies are currently developing MMP-responsive drug delivery vehicles[87]. 
Studies with various VEGF inhibitors are currently underway in a number of tumors[1,91,92]. Bevacizumab, a 
humanized monoclonal antibody, binds to all circulating forms of VEGF, and thus it prevents VEGF 
binding to VEGF receptors. In addition to bevacizumab, other drugs have been reported to inhibit the 
binding of VEGF to its receptors (aflibercept) or block the signaling pathway mediated by VEGF receptors 
(ramucirumab, pazopanib, and axitinib)[1,91]. Bevacizumab treatment of AML patients with 
refractory/relapsing disease reduced VEGF expression at the level of BM but failed to show any significant 
clinical antileukemic activity[36]. Other clinical trials incorporating antibodies against VEGF or VEGF 
receptors-2 have not produced results supporting a significant clinical benefit[36]. These inhibitors share 
toxicity and other side effects[1,91,92]. Therefore, the development of new efficient antiangiogenic therapies is 
necessary. Utilization of natural compounds can be an alternative and/or an additional possibility to inhibit 
tumor development and associated angiogenesis[75,76,82-84]. By blocking in vitro the proliferation of primary 
blood endothelial cells, and reducing tumor vascularization and tumor-induced lymphangiogenesis in rat 
models[30,32,93], HF could already be qualified as a putative antiangiogenic agent. Pharmacokinetics studies in 
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humans have demonstrated oral bioavailability of HF[94]. However, two aspects limit the pharmacological 
use of purified HF, which concern: (1) its poor solubility and instability[30,95]; and (2) its interference with 
other therapeutic drugs via activation of liver CYP450 enzymes involved in the metabolism of 
pharmaceutical drugs (notably, CYP3A4)[94,96,97]. Oral administration by healthy volunteers of SJW extracts 
(300-2700 mg containing 14.8-70 mg of HF) results in the detection of 0.15-1.45 μg/mL (0.28-2.68 μM) HF 
concentrations in blood 3 h after absorption[94,98-100]. An SJW treatment period of 12.5-21 days using high HF 
extracts (> 27 mg/day) demonstrates a significant CYP3A induction[97]. Altogether, these data strongly 
suggest that the maximal concentration of HF in blood should not exceed 0.3 μg/mL (0.56 μM) to reduce the 
frequency of drug interactions. With regard to our data obtained in vitro, it remains to examine whether or 
not apoptosis and inhibition of secretion of AML cells in vivo can be triggered by a such low dose of HF. In 
the last years, various chemical derivatives of HF have been developed with improved stability and 
solubility, in the hope of removing HF drug metabolism stimulatory activities without affecting its 
antitumor properties. Thus, HF-DCHA, tetrahydro-HF-DCHA, octahydro-HF-DCHA, and O-(carboxy 
methyl)-HF have been shown to retain the antitumor and antiangiogenic properties of HF without inducing 
toxicity in laboratory animals[28,68,101,102]. Whether these HF derivatives retain the antileukemic properties of 
parental HF in vitro in AML primary cells and in experimental animals should be established. In parallel, 
the effects of these analogs on CYP3A activity have yet to be evaluated on healthy volunteers. Ongoing 
therapeutic strategies involve encapsulation of HF into polymeric nanoparticles for overcoming hurdles that 
hamper the bioactivity and bioavailability of the drug[103-106]. In conclusion, although further studies are 
undoubtedly required, all these data highlight that HF and its derivatives deserve further study to evaluate 
them in association with chemotherapy in the treatment of AML.
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