Supplementary Material

Dynamic Evolution of HZSM-5 Zeolite Framework under Steam Treatment

Lin-Hai He^{1,2}, Jun-Jie Li³, Song-Yue Han^{1,2}, Dong Fan¹, Xiu-Jie Li³, Shu-Tao Xu^{1,*}, Ying-Xu Wei¹, Zhong-Min Liu^{1,2,3}

¹National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.

²University of Chinese Academy of Sciences, Beijing 100049, China.

³State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.

*Correspondence to: Prof. Shutao Xu, National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China. E-mail: xushutao@dicp.ac.cn

ZSM-5 zeolite preparation

The ZSM-5 zeolite was synthesized following the procedure described in the literature^[1]. The molar composition of the synthesized gel was 1 SiO₂/0.0125 Al₂O₃/0.20 TPABr/1 Ethylamine/17 H₂O. The synthesis procedure is as follows. TPABr and seeds were added into silica sol (30 wt % in H₂O) at 35 °C and stirred for 0.5 h to dissolve fully to obtain silica gel. Then, AlCl₃·6H₂O solution was added dropwise into the silica gel to obtain the silica-aluminum gel. Finally, ethylamine aqueous solution (65 wt % in H₂O, as alkali source) was poured into the silica-aluminum gel to obtain the mother gel, which was transferred into a Teflon-lined stainless- steel autoclave and crystallized at 170 °C for 72 hours. The product was collected by centrifugation, washed three times with deionized water, and dried overnight at 100 °C. The as-synthesized sample was calcined in air at 550 °C for 6 hours to obtain the HZSM-5 zeolite, whose Si/Al ratio was about 36, as measured by XRF.

Ammonium ion exchange treatment

The steamed samples (HZSM-5-T-X) were dispersed in a 1 mol/L solution of ammonium nitrate at a concentration of 30 g/L and stirred at 80 °C for 2 hours. Subsequently, the mixtures were centrifuged and washed three times with deionized water. This procedure was repeated three times, and the final samples in ammonium form (denoted as HZSM-5-T-X-NH₄) were dried overnight at 100 °C.

Autoclave

Supplementary Figure 1. Schematic diagram of high-temperature and high-pressure hydrothermal treatment of HZSM-5 zeolite.

Supplementary Figure 2. Pulse-sequences of (A) ²⁷Al MQ MAS NMR^[2,3]; (B) ¹H-¹H DQ-SQ MAS NMR with the POST-C7 pulse sequence^[4,5]; (C) ¹H-²⁷Al S-RESPDOR MAS NMR^[6,7] and (D) ²⁷Al-²⁷Al DQ-SQ MAS NMR with the BR2¹₂ dipolar recoupling^[8].

Supplementary Figure 3. (A) XRD patterns of HZSM-5 zeolite before and after steam treatment; (B) expanded XRD patterns in the range 22.0°–25.0° 2θ.

Supplementary Figure 4. SEM images of HZSM-5 (A), HZSM-5-100-2 (B), HZSM-5-200-2 (C), HZSM-5-300-2 (D), HZSM-5-400-2 (E) and HZSM-5-500-2 (F).

Supplementary Figure 5.²⁷Al single-pulse MAS NMR spectra of HZSM-5 zeolite after steam and ammonium ion exchange treatment.

Supplementary Figure 6. Deconvolution of 1D projection at F1 = 63.5 ppm in ²⁷Al MQ MAS NMR spectra of HZSM-5-300-2.

Supplementary Figure 7. ¹H-²⁹Si MAS NMR spectrum of HZSM-5 zeolite.

Supplementary Figure 8. ¹H-²⁷Al S-RESPDOR fraction curve of $\delta({}^{1}\text{H}) = 2.5$ ppm on HZSM-5-300-2 sample. The signal fraction was determined by integrating signal at 2.5 ppm. The points represent the experimental signal fraction, whereas the continuous curve is the best fit to equation $\left(\frac{\Delta S}{S_{0}} = \frac{f}{2I+1} \left\{ 2I - \frac{\pi\sqrt{2}}{4(2I+1)} \sum_{k=1}^{2I} \left[4I - 2(k - 1) \right] J_{1/4} \left(\frac{k\pi\lambda}{4}\right) J_{-1/4} \left(\frac{k\pi\lambda}{4}\right) \right\} \right]^{[7]}$ with DCC(¹H-²⁷Al) = 3666 ± 652 Hz, with the pre-factor fixed to f = 0.73.

Supplementary Figure 9. NH₃-TPD profiles of HZSM-5 zeolite before and after steam treatment.

Supplementary Figure 10. (A) The N₂-physisorption curves and (B) pore-size distributions curves of HZSM-5 zeolite before and after steam treatment.

Samples	Species	δf1	δ_{F2}	δ_{iso}	CQ	η	PQ
		(ppm	(ppm	(ppm	(MHz)		(MHz
HZSM-5	Al(IV)a-1	54.0	53.5	55.6 ^a	2.73	0.60	2.89 ^b
	Al(IV) _b -1	56.5	55.8	57.7 ^a	2.70	0.60	2.86 ^b
HZSM-5-200-2	Al(IV) _a -1	54.0	53.6	55.6 ^a	2.75	0.60	2.91 ^b
	Al(IV) _b -1	56.8	55.7	57.7 ^a	2.72	0.58	2.87 ^b
HZSM-5-300-2	Al(IV) _a -1	54.5	53.8	55.8 ^a	2.75	0.60	2.91 ^b
	Al(IV) _b -1	56.8	56.0	57.8 ^a	2.70	0.60	2.96 ^b
	Al(IV)-2	63.5	47.0	60.2 ^a	5.90	0.65	6.30 ^b
HZSM-5-300-2- NH4	Al(IV) _a -1	54.2	53.8	55.3ª	2.63	0.58	2.77 ^b
	Al(IV) _b -1	56.9	55.9	57.7 ^a	2.63	0.58	2.77 ^b
	Al(IV)-2	63.4	49.4	58.5ª	5.60	0.65	5.98 ^b
HZSM-5-500-2	Al(IV)a-1	54.5	53.8	55.0 ^a	2.73	0.60	2.89 ^b
	Al(IV) _b -1	56.8	56.0	58.0 ^a	2.70	0.60	2.86 ^b
	Al(IV)-2	63.5	47.0	61.0 ^a	5.80	0.65	6.19 ^b
	Al(V)	40.0	32.0	37.0 ^c			4.53 ^d
	Al(VI)	7.0	3.0	5.5°			3.20 ^d

Supplementary Table 1. NMR parameters extracted from ²⁷Al MQ MAS NMR.

^aIsotropic chemical shift values (δ_{iso}) obtained by fitting sliced spectrum, as shown in Supplementary Figure 6. ^b $P_Q = C_Q \sqrt{1 + \eta^2/3}$.

Due to poor signal-to-noise ratio for Al(V) and Al(VI) species, δ_{iso} and P_Q calculated by the formula: ${}^{c}\delta_{iso} = (17\delta_{F1} + 10\delta_{F2})/27$ and ${}^{d}P_{Q} = \frac{\nu_{L}}{25} \times \sqrt{85(\delta_{F1} - \delta_{F2})/1296}$.

Samples	Si-OH	Si(1Al)	Si(0Al)	Total	Framework
	(%)	(%)	(%)	(%)	Si/Al ratio ^a
HZSM-5	0.62	10.81	88.56	100.00	37.00
HZSM-5-100-2	0.56	10.72	88.72	100.00	37.31
HZSM-5-200-2	0.46	10.73	88.82	100.00	37.28
HZSM-5-300-2	0.36	10.78	88.87	100.00	37.11
HZSM-5-400-2	0.20	5.63	94.17	100.00	71.05
HZSM-5-500-2	0.16	2.96	96.88	100.00	135.14

Supplementary Table 2. Relative percentage of Si species in different chemical environments by deconvolution of the ²⁹Si MAS NMR spectra.

^aThe values of the framework Si/Al ratio were obtained from the formula:

 $(Si/Al)_{NMR} = \frac{I_4 + I_3 + I_2 + I_1 + I_0}{I_4 + 0.75I_3 + 0.5I_2 + 0.25I_1}$, where I_n represents the area of the NMR peak corresponding to the Si(nAl) unit.^[9]

Supplementary Table 3. Concentrations of different hydroxyl groups of HZSM-5 zeolite before and after steam treatment by quantifying and deconvoluting the ¹H MAS NMR spectra.

Samples	4.6 ppm	BAS	Al-OH	Si-OH	Total
	(mmol/g)	(mmol/g)	(mmol/g)	(mmol/g)	(mmol/g
HZSM-5	0.262	0.107	0.042	0.087	0.498
HZSM-5-100-2	0.221	0.101	0.033	0.071	0.440
HZSM-5-200-2	0.146	0.109	0.025	0.058	0.339
HZSM-5-300-2	0.101	0.082	0.041	0.045	0.269
HZSM-5-400-2	0.053	0.036	0.031	0.033	0.153
HZSM-5-500-2	0.026	0.024	0.025	0.030	0.105

REFERENCES

1. Li J, Liu M, Li S, Guo X, Song C. Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. *Ind Eng Chem Res* 2019;58:1896-905.[DOI:10.1021/acs.iecr.8b03969]

2. Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. *J Am Chem Soc*

1995;117:12779-87.[PMID: WOS:A1995TM48300015]

3. Amoureux J-P, Fernandez C, Steuernagel S. ZFiltering in MQMAS NMR. *J Magn. Reson Ser A* 1996;123:116-8.[DOI:10.1006/jmra.1996.0221]

4. Hohwy M, Jakobsen HJ, Edén M, Levitt MH, Nielsen NC. Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. *J Chem Phys* 1998;108:2686-94.[DOI: 10.1063/1.475661]

5. Stephane Mananga E. Criteria to average out the chemical shift anisotropy in solidstate NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences. *Solid State Nucl Magn Reson* 2013;55-56:63-72. [PMID: 24060139 DOI: 10.1016/j.ssnmr.2013.08.003]

 Chen L, Wang Q, Hu B, et al. Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR. *PCCP* 2010;12. [DOI: 10.1039/b926546e]

7. Lu X, Lafon O, Trebosc J, Amoureux JP. Detailed analysis of the S-RESPDOR solid-state NMR method for inter-nuclear distance measurement between spin-1/2 and quadrupolar nuclei. *J Magn Reson* 2012;215:34-49. [PMID: 22257437 DOI: 10.1016/j.jmr.2011.12.009]

8. Wang Q, Hu B, Lafon O, et al. Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. *J Magn Reson* 2009;200:251-60. [PMID: 19646906 DOI: 10.1016/j.jmr.2009.07.009]

9. Zhan B-Z, White MA, Lumsden M, et al. Control of particle size and surface properties of crystals of NaX zeolite. *Chem Mater* 2002;14:3636-42. DOI: 10.1021/cm011635f]