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Abstract
Along with the rapid progress of wearable and portable electronic devices including electrical sensors, flexible 
displays, and health monitors, there is an ever-growing demand for wearable power sources. Supercapacitors, as a 
new kind of energy storage device, have received considerable attention for decades due to their high power 
density, excellent cycling stability, and easy fabrication. To fulfill the demand of wearable power sources, wearable 
supercapacitors are also further developed and studied. New electrode materials that play a significant role in 
determining both the wearability and electrochemical performance of wearable supercapacitors are also 
extensively explored. Herein, the recent progress on wearable soft electrode/electrolyte materials and the 
structure design strategies for developing wearable supercapacitors are summarized. Additionally, the existing 
challenges in current technologies and research are highlighted and discussed with the hope of inspiring future 
studies.
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INTRODUCTION
Nowadays, along with the rapid growth of the electronic industry, portable/wearable electronics including 
health monitors, electronic sensors, and human healthcare equipments are becoming a noticeable 
technological trend that has experienced rapid growth[1,2]. In this regard, wearable energy storage devices are 
obviously indispensable parts for portable/wearable electronics[3-5]. The design and fabrication of the power 

https://creativecommons.org/licenses/by/4.0/
https://softscijournal.com/
https://dx.doi.org/10.20517/ss.2021.07
http://crossmark.crossref.org/dialog/?doi=10.20517/ss.2021.07&domain=pdf


Page 2 of Jiang et al. Soft Sci 2021;1:5 https://dx.doi.org/10.20517/ss.2021.0734

supply systems with high flexibility and high energy and power densities is needed in current rechargeable 
energy storage markets. The most applied, Li-ion batteries are not very suitable for portable/wearable 
electronics due to the issues of rigid and bulky electrode and the toxic Li+ electrolyte[2]. Additionally, studies 
also indicated that the heat generated from the commercially available Li-ion batteries would affect biologic 
tissues and limit their application in portable/wearable electronics[6,7].

In this context, high-performance and functional supercapacitors (SCs), as a kind of newly developed 
energy storage device, have already been extensively applied to meet the pressing demand for future 
wearable electronics due to their long-term stability, rapid charge - discharge capability, and temperature 
tolerance[8,9]. To further fulfill the specific energy demands of the aforementioned external and in vivo 
portable electronics, wearable supercapacitors (WSCs) that can be stretched, compressed, bent, twisted, and 
deformed into arbitrary shapes provide a promising alternative. However, on the one hand, most 
commercial SCs are fully or partially composed of planar and rigid materials, which require the use of 
obtrusive, hard supports and easily cause discomfort and instable power output. On the other hand, the 
electrolytes for commercial SCs are most commonly aqueous electrolytes including salt, acid, and alkaline 
solutions, which are toxic when used in external or in vivo wearable electronics[10,11]. Thus, the replacement 
of the bulky, rigid, and toxic materials is needed. The enhancement of the wearability and functionality of 
SCs is also significant to accelerate the investigation and design of WSCs.

WSCs for external or in vivo wearable electronics should provide user comfort, compliant mechanics, soft 
integration, multifunctionality, and, especially, the stable and intimate contact to the soft human tissues 
without adding any mechanical and thermal loading or causing tissue breakdown. Therefore, advanced soft 
materials that are designed or fabricated for the utilization of electrodes and electrolytes of WSCs are 
extremely desirable and significant. Tremendous research efforts have been directed at the design of 
advanced soft electrode materials and electrolytes for WSCs that could partly address the aforementioned 
functions of WSCs.

This review summarizes the recent progress in WSCs with flexible, stretchable, and textile characteristics. 
We discuss the most widely applied electrode materials (graphene, carbon nanotubes, conductive polymers, 
metal compounds, etc.) for WSCs, the newly developed electrode materials (hydrogels, MOFs, and 
MXenes), and solid-state electrolytes for WSCs with an emphasis on the configuration, design principles, 
and electrochemical performance [Figure 1][12-17]. Additionally, the prospects and challenges for the 
development of WSCs for wearable and implantable electronic devices are highlighted and discussed, with 
the aim of inspiring further research and development in the field of bioelectronics.

STRUCTURAL CHARACTERISTICS AND ENERGY STORAGE PRINCIPLES OF SCS
SCs have attracted notable scientific attention in the past decades due to their potential of clean energy, easy 
assembly, and high performance. The advantageous characteristics of SCs have also contributed to the rapid 
growth of low-power electronics, including wearable and portable electronic devices[18,19]. Figure 2A 
schematically illustrates the structure and energy storage mechanisms of supercapacitors: (1) 
Electrochemical double layer capacitance (EDLC) presents the immediate formation of an electrical double 
layer on the surface of the electrodes [Figure 2B]. EDLCs exhibit higher energy densities than conventional 
capacitors with their high effective surface space and minimal charge separation distances. (2) 
Pseudocapacitance presents fast reversible redox reactions or reversible intercalation on the surface of the 
active electrode materials. Reversible redox chemical reactions combine with dynamic equilibrium 
oxidation, the adsorption and desorption of ions on the surface of electrochemical active materials 
[Figure 2C], while the reversible intercalation and exfoliation processes move ions in the electrolyte between 
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Figure 1. A graphic overview of this review. Section 2 introduces the structural characteristics and energy storage principles of SCs. 
Section 3 discusses the required properties of soft materials for WSCs. Section 4 presents soft electrode materials for wearable 
supercapacitors. Section 5 introduces studies on solid-state electrolytes for WSCs. Section 6 introduces recent studies on all-in-one 
wearable supercapacitor devices. The photographs on top are reproduced with permission[12-17]. WSCs: Wearable supercapacitors; SCs: 
supercapacitors.

the electrodes during the electrochemical energy storage process[20-22] [Figure 2D].

According to the above-mentioned energy storage mechanisms, the performance of SCs is primarily 
dependent on the electrode materials and the interactions between the electrode and the electrolyte. The 
electrochemical properties, conductivity, and specific surface areas of the electrode materials, as well as the 
ion conductivity of the electrolyte, are all key factors that determine the electrochemical performance of 
SCs, which is usually reflected by capacitance, energy density, and power density. For capacitance, including 
gravimetric specific capacitance (F g-1), area capacitance (F cm-2), and volume capacitance (F cm-3), which 
are chosen depending on the shape or structure of the SCs, can be calculated from the cyclic voltammetry 
(CV) or the galvanostatic charge-discharge data. For energy density and power density of SCs, their units 
depend on the unit of capacitance. Equations (1)-(3) are taken as examples to calculate the gravimetric 
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Figure 2. (A) Schematic structure of a supercapacitor. Energy storage mechanisms illustration: (B) EDLC; (C) reversible redox reaction; 
and (D) reversible intercalation and exfoliation process. EDLC: Electrochemical double layer capacitance.

specific capacitance [Cs, Equation (1)], energy density [Es, Equation (2)], and power density [Ps, Equation 
(3)] based on CV data.
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where I is the constant current, m is the total mass of the active materials, v is the scan rate, and ΔV is the 
width of the voltage window[17].

Numerous attempts have been made to improve the electrochemical performance of SCs through these 
aspects[23-28]. Moreover, considering the structural characteristics of SCs, achieving advanced multifunctional 
WSCs depend on the specific characteristics of the electrode materials. Meanwhile, replacing the aqueous 
electrolytes in conventional SCs is also significant for preparing WSCs for wearable and portable electronics.

REQUIRED PROPERTIES OF SOFT MATERIALS FOR WSCS
To further meet the requirements of external/in vivo WSCs, both the electrode materials and electrolyte 
materials need to be deformed into arbitrary shapes to adapt to the human physiological and 
musculoskeletal environment. Conventional brittle and rigid electrode materials could result in fractures 
when accommodating a small amount of imposed strain, which is inappropriate for fully stretchable 
devices. Thus, some special properties, different from those of traditional bulk and rigid materials, are 
highly needed for SCs.

Table 1 summarizes the required properties of electrode materials for WSCs. Young’s modulus is a 
mechanical property that measures the tensile stiffness of a solid material. It quantifies the relationship 
between tensile stress and strain [(proportional deformation) in the linear elastic reign of a material 
Figure 3A][29,30]. Corresponding to the Young’s modulus value of the skin or other human soft tissues, a 
small value (101-106 kP) in a broad stress range is required for WSCs[31], However, the most used electrode 
materials including carbon and metal oxides exhibit higher Young’s modulus values, as shown in Figure 3B. 
To address this issue, downscaling the electrically active materials and embedding them in or onto soft 
materials that have lower Young’s modulus values is one of the most popular strategies to fabricate 
WSCs[32,33]. Stretchability is also significant for WSCs because biological tissues are capable of enduring high 
dynamic and mechanical stress. For example, the skin, muscles, and peripheral nerves can experience 30% 
tensile strain and displacement during exercise in conventional postures[34,35]. Thus, high stretchability is 
needed for soft materials for WSCs which could be deformed into arbitrary shapes. Similar to the case of 
Young’s modulus performance, the normally used electrode materials for SCs possess low stretchability 
[Figure 3C], which could also be improved by downscaling the dimension of active materials or embedding 
them in or onto soft materials with higher stretchability[36-39]. Conductivity is also an essential property, 
which determines the electrochemical performance of SCs, especially the cycle stability and rate 
performance. As shown in Figure 3D, active materials with low Young’s modulus and high stretchability 
usually possess low conductivity. Therefore, many studies have been committed to improving the 
conductivity through doping or combining materials with high conductivity[17,40-43]. In addition, due to the 
direct contact with human skin, active materials with high biocompatibility are also desired, especially for 
implantable SCs[44-46]. According to these requirements, the following sections summarize conventional 
“soft” electrode materials and recently developed “soft” electrode materials for WSCs, from the aspects of 
material properties and preparation strategies.

SOFT ELECTRODE MATERIALS FOR WEARABLE SUPERCAPACITORS
According to the storage mechanism of SCs discussed above, the most significant part that determines the 
electrochemical property of SCs is the electrode material, which is also the key part to meet the demands of 
wearable electronics. In the following, conventional electrode materials including carbon-based electrodes, 
polymer-based soft electrodes, and metal-containing soft composites and their specific preparation 
strategies are summarized and discussed. Moreover, some newly developed soft electrode materials are also 
highlighted.
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Table 1. Necessary mechanical and physicochemical properties for WSCs

Properties Description Typical strategies Proper values Ref.

Young’s 
modulus

Proper value is required for direct contact with 
human skin or implantable SCs

Embedding inorganics in/onto the organic 
substrate/hydrogels

101-106 kP [32,33]

Downscaling the dimension of active 
materials/electrode materials (0D, 1D, 2D)

Being printed onto plastic substrates Higher than 100

Stretchability Essential when being deformed into arbitrary 
shapes

Strain-tolerant electrode/collector

[36-39]

Carbon-based composite materials

Bimetal oxides

Conductivity High conductivity is required for high cycle stability 
and rate performance

Metal compounds (metal nitrides, metal 
sulfides, etc.) 
Conductive metal-organic frameworks 
(MOFs) 
MXene

 
Higher than 
10-2 (S m-1)

[17,40-
43]

Encapsulation or compositing with 
biocompatible materials

No toxicity to 
cells or tissues

Adopting natural or intrinsically nontoxic 
polymers and metal oxides

Biocompatibility Low toxicity or nontoxicity is required for long-term 
retention of WSCs on human skin or in the human 
body

Biodegradable materials

[44-46]

Figure 3. Summarized required properties for WSCs. (A) Stress-strain profiles of brittle and ductile materials and the description of 
important material properties[29]. (B-D) The compliance, deformability, and electrical conductivity of widely used materials for WSCs, 
respectively[30]. WSCs: Wearable supercapacitors.

Carbon-based soft electrodes for wearable supercapacitors
As the most developed electrode materials, carbon-based materials with EDLC behavior have attracted huge 
attention as electrode materials for SCs. The mostly widely used are active carbons or porous carbons 
derived from natural mass (e.g., wood[47], coal[48], nutshell[49], loofah[50], etc.) by physical or chemical process, 
which are not available for WSCs due to their bulkiness and brittleness. Thus, according to Figure 3 and 
Table 1, to further adapt them to the development of WSCs, down scaling the dimension, embedding them 
on or into organic substrates/hydrogels, and specific structures would endow them with the appropriate 
material properties (low Young’s modulus, high deformability, and high conductivity) as soft electrodes for 
WSCs.
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Graphene-based electrodes for WSCs
Graphene has already been widely studied as an electrode for SCs due to its excellent electrical, mechanical, 
and capacitance properties[51,52]. Furthermore, its easy assembling onto different soft substrates property 
makes it a promising candidate electrode for WSCs. In this section, recent advanced research on graphene-
based soft electrode for WSCs is reviewed.

1. Flexible and free-standing graphene-based electrodes

Graphene can be easily assembled into mechanically strong films due to its two-dimensional (2D) structure 
and stacking trend[53]. Thus, flexible and free-standing graphene-based electrodes have been wildly prepared 
as electrodes for flexible SCs. Reduced graphene oxide (rGO) produced by chemical redox process is the 
most widely used electrodes for SCs due to its lower production cost, and it can be easily modified and 
assembled into strong films or onto different flexible substrates[54,55].

Vacuum filtrating and chemical reduction process were first used to prepared rGO papers, which possess a 
Young’s modulus of 41.8 GPa, a tensile strength of 293.3 MPa, and an electrical conductivity of 118 S 
cm-1[56]. This study showed the feasibility of rGO to be applied as a free-standing and flexible electrode for 
SCs. Freeze-drying processes were also applied to prepare free-standing and flexible rGO papers[57]. The 
obtained rGO electrode also possessed good conductivity of 18 S cm-1 and capacitance of 172 F g-1 at current 
density of 1 A g-1 capacitance. These results prove the potential application of rGO paper-like electrode 
materials for WSCs. To further improve their electrochemical performance, strategies also focus on 
improving the conductivity of these rGO papers when used as electrodes for WSCs[58]. However, the tightly 
stacked nature of free-standing rGO films lowers the electrolyte accessible surface area and blocks the 
formation of electrical double layers, leading to lower electrochemical capacitance performance.

To address this issue, the most common strategy is to introduce a porous structure into rGO layers, which 
can effectively increase the electrolyte accessible surface area and improve the electrochemical performance 
of flexible and free-standing paper-like graphene electrodes. One typical porous structure is graphene 
hydrogels/aerogels[59-62]. These studies proved that this interconnected porous structure could improve the 
electrochemical performance of graphene-based electrodes by lower rGO sheet stacking, more accessible 
specific surface area, and rapid ion diffusion and electron transport throughout the entire interconnected 
porous network. Moreover, according to the energy storage principle (EDLC and pseudocapacitance) of 
SCs, the introduction of pseudocapacitive components into rGO sheets during the preparation process can 
not only hinder the re-stacking of rGO sheets but also further improve either the mechanical or 
electrochemical properties of as-prepared free-standing and flexible electrodes for WSCs[63-67]. Our groups 
prepared ternary composite free-standing and flexible rGO-based films. The vaporing process was carried 
out to firstly produce free-standing and flexible rGO-TiO2 films. TiO2 nanoparticles were introduced to 
hinder the stacking of rGO sheets and contribute their pseudocapacitance. To further improve the 
capacitance performance while still keeping the flexibility of rGO films, conductive polymers (CPs) were 
deposited on the surface of rGO-TiO2 films to form ternary free-standing and flexible rGO-TiO2-CPs 
composite films. The results indicate not only the synergistic effects of materials with different capacitance 
behavior in improving the electrochemical performance of rGO-TiO2-CPs composite electrodes but also 
their functional retention after combining with different materials[21,68]. These results indicate the synergistic 
effects EDLC and pseudocapacitance, as well as the universal strategy to prepare flexible and free-standing 
graphene-based electrodes for WSCs. However, the mechanism property of flexible graphene-based 
supercapacitors is also an important factor that determines their application in flexible and wearable 
devices.
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2. Flexible and elastic substrates supported graphene-based electrodes

Although these above flexible and free-standing graphene-based films have already been applied as 
electrode materials for WSCs, the fabrication of fully flexible electronics with both satisfactory 
electrochemical performance and mechanical stretchability remains a significant technological hurdle for 
graphene-based SCs. Thus, some flexible and stretchable substrates such as elastic substrates and textiles 
provide proper strategies to fabricate flexible and stretchable graphene-based electrodes for WSCs[69,70]. El-
Kady et al.[71] produced rGO films (reduced by laser-scribe) on a polyethylene terephthalate and 
nitrocellulose membrane (with 0.4 um pore size). The as-prepared films exhibit excellent specific surface 
area (~1520 m2 g-1) and conductivity (~1738 S m-1), which contributed to the high electrochemical 
performance when used as electrodes for SCs. In addition to the plastic substrates, new strategies are also 
developed to directly coat graphene-based SCs on textiles to obtain WSCs. Afroj et al.[72] produced highly 
conductive, ultra-flexible, and machine-washable graphene-based wearable e-textile electrodes by a simple 
and scalable pad-dry-cure method [Figure 4A and B]. The as-prepared graphene-based e-textile has a very 
low sheet resistance (11.9 W sq-1) even after 10 home washing cycles. The assembled wearable 
supercapacitor also possessed good electrochemical performance (2.7 mF cm-2 at 0.1 mA cm-2) and stable 
cycle stability (98% capacitance retained after 15,000 cycles).

Printing technology is also an attractive way to manufacture WSCs being low-cost, time-saving, versatile, 
and environmentally-friendly[73]. During this process, inkjet printing[74], screen printing[75], and 3D 
printing[76,77] are usually applied to print the desirable structure on different elastic substrates (papers[78,79], 
plastic substrates, textiles[80], etc.) to fabricated WSCs. Graphene and graphene-based composite ink was 
widely used to fabricate WSCs through this method. Figure 4C displays a printed supercapacitor on flexible 
glass. Seven printed layers of graphene flakes acted as electrodes and PVA-H3PO4 gel acted as electrolyte. 
The device has small capacitance decay upon bending conditions (from 8.7 to 8.1 mF cm-2 at a curvature 
radius of 2.75 cm and a scan rate of 50 mV s-1)[81]. To further improve the restack tendency of graphene 
flakes, Pham et al.[82] added a chemical leavening agent in rGO ink to suppress this restacking during the 
printing process [Figure 4D and E). Hyun et al.[83] processed a scalable, self-aligned inkjet printing process to 
manufacture flexible graphene SCs in a high-throughput manner. This strategy offers a promising process 
and desirable operation metrics including high areal specific capacitance (268 µF cm-2), excellent lateral 
spatial resolution (20 µm minimum feature size), small footprint (< 1 mm2 active device area), and 
outstanding reliability (44 devices with 100% yield) [Figure 4F]. However, the utilization of electrode 
materials and the plastic substrates, the breathability, and comfort of the aforementioned studies are not 
good enough when integrated in wearable devices, especially for skin-touching devices. Therefore, further 
efforts need to be put into improving these properties. Additionally, strategies from the material point of 
view including the stretchable, washable, and wear-resistant electroactive materials, stretchable and robust 
solid-state electrolyte, and proper packaging materials are also extensively needed.

3. Graphene-based textile fiber electrodes

Graphene-based fiber electrodes have also been widely applied in WSCs, due to their mechanical flexibility 
for textiles, light weight, and especially the improved breathability and comfort[84,85]. Meng et al.[86] designed 
a unique all graphene core-sheath fiber, in which a core of graphene fiber is covered with a sheath of three-
dimensional (3D) porous graphene network [Figure 5A-C]. High conductivity and greater electrolyte 
accessible surface area were provided by this hierarchical hybrid structure. The as-prepared flexible all-
solid-state fiber supercapacitor was assembled by intertwining two as-prepared graphene fibers with H2SO4-
PVA (polyvinyl alcohol) gel as polyelectrolyte [Figure 5D]. The flexibility is shown in Figure 5F. 
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Figure 4. (A) Schematic cross-sectional view of graphene coated, compressed, and encapsulated fabric (top) and a real sample after 10 
washing cycles (bottom). (B) Finger joint motion detection, wrist joint detection, and elbow joint motion detection by compressed and 
encapsulated graphene textile[72]. Flexible transparent micro-supercapacitor before electrolyte deposition[81]. (B) A snapshot of the GO 
ink printing on a glass slide. (C) Assembled reduced graphene oxide (rGO) supercapacitor on flexible PET substrate[82]. (D) Photograph 
of a 4 × 11 array of graphene MSCs printed on a flexible PET film. (E) Schematic circuit diagram (top) and optical image (bottom) of 
three devices in a series connection. (F) Galvanostatic charge-discharge (GCD) profiles for the three devices connected in series and 
parallel, respectively, in comparison with the GCD profiles for a single device. The GCD profiles were acquired at a current of 0.21 µA[83].

Additionally, Figure 5G and H presents the woven textile and further demonstrates the use of the fiber 
supercapacitor in electronic textile or clothing integrated devices.

To further improve the capacitance performance of graphene fiber electrodes, specific structures and 
materials with pseudocapacitance behavior were combined[87,88]. Qu et al.[89] produced hollow rGO-
conductive polymer composite fibers. The high electrical conductivity (4700 S m-1) determines their 
excellent electrochemical performance (fiber shape supercapacitor device with the capacitance and energy 
density of 304 mF cm-2 and 6.8 µW h cm-2, respectively). Moreover, the as-prepared SC can also be tied into 
knots, rolled up, and woven into textiles owing to the high flexibility. Although graphene-based fibers have 
been widely investigated and possess good flexibility and comfort, their stretchability is rarely studied, 
especially in different temperature conditions. Moreover, the washability of the as-integrated wearable 
textiles also needs to be further proved, and, to fabricate a proper textile electrode, more textile technologies 
also need to be developed.

4. Graphene-based hydrogel electrodes for WSCs

Graphene-based hydrogels - a kind of porous graphene matrix that can endow electron transfer along the 
graphene chains, while ions can conduct through the aqueous part within the graphene hydrogels - have 
attracted lots of attention in the research on WSCs because of their high specific surface area, suitable nano 
- to micropores and pore network, high conductivity, and multidimensional electron transport 
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Figure 5. (A) A photograph of a distorted graphene fiber. (B) SEM images of as-prepared graphene fiber. (C) Cross-section view of a 
graphene fiber showing the core graphene network surrounded by standing graphene sheets. (D) Schematic illustration of a wire-
shaped supercapacitor fabricated from two twined graphene fibers with a polyelectrolyte. (E, F) Photographs of fiber supercapacitor in 
free and bending states. (G, H) Photographs of the textile embedded with two graphene fiber supercapacitors in flat and bending states, 
respectively[86].

pathways[90,91]. Figure 6 displays a graphene hydrogel film electrode for WSCs, fabricated by a facile 
hydrothermal process. The as-prepared graphene hydrogel-based flexible all-solid-state supercapacitor 
presented good electrochemical performance due to the highly interconnected 3D network structure of 
graphene hydrogels[59,61]. Important advances have also been made to further improve the electrochemical 
performance and multifunctionality of graphene hydrogel electrodes, including graphene hydrogels 
composed with 1D or 2D metal-compound[92-94] and graphene hydrogels combined with conductive 
polymers[95-97]. Although graphene-based hydrogels have been widely investigated and possess good 
flexibility and compressivity, their other mechanical properties are still unsatisfactory, especially the poor 
stretchability, which is caused by the weak π-π stacking and hydrogen bonding within the reduced graphene 
oxide matrix that formed during the hydrothermal process.

For decades, although impressive progresses on flexible graphene SCs have already been obtained, the 
functionality of supercapacitors has always been gained by sacrificing electrochemical performance. Thus, it 
is still a big challenge to gain flexibility or other functions while still retaining or even improving the 
capacitance performance of graphene-based electrodes.
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Figure 6. (A) Digital photograph of a flexible FGH thin film electrode. (B) low- and (C) high- magnification SEM images of interior 
microstructures of the FGH film. (D) Digital photograph of an FGH-based flexible solid-state supercapacitor. (E) A schematic diagram 
of the solid-state device with H2SO4-PVA polymer gel as the electrolyte and separator. (F) Cyclic voltammetry (CV) curves at 10 mV s-1 
of the FGH-based flexible solid-state supercapacitor at different bending angles. (G) One cycle of galvanostatic charge-discharge 
(GCD) curves at 1 A g-1 of a three-supercapacitor in-series group. The inset shows a photograph of a green LED turned on by the 
tandem device[61].

Carbon nanotube electrodes for WSCs
Carbon nanotubes (CNTs) are another wieldy developed carbon-based electrode material for WSCs and 
have attracted lots of attention during the preparation of supercapacitors owing to their unique pore and 
fiber structure, superior electronical properties, and good mechanical and thermal stability[98,99]. Tremendous 
studies have explored CNT-based fiber SCs corresponding to the fibrous structure nature of CNTs[100,101]. 
Other electroactive materials have also been exploited to combine with CNTs to fabricate fibrous structures 
for textile SCs and improve the electrochemical performance[102-104].
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Similar to graphene, combining CNTs with elastomer substrates is the most common strategy to fabricate 
flexible or stretchable electrodes for WSCs by transferring[105,106] or coating[107-109] methods. Recently, 
seamlessly connected graphene/carbon nanotube hybrids with covalent interconnections were developed by 
growing vertically aligned CNTs on graphene layers. This special 3D structure could efficiently prevent the 
aggregation and possess large surface area and excellent electrical properties. A free-standing tubular 
structure of seamless graphene/CNTs textile structure was obtained by etching off the original nickel textile. 
After being deposited with polyaniline (PANi), this as-prepared electrode material exhibited a high area 
specific capacitance of 164 mF cm-2. Due to the unique textile-like structure, the assembled supercapacitor 
exhibited not only excellent flexibility but also high stretchability of 200%[110].

Printing technology is also a popular way to fabricate CNT-based electrodes for WSCs. Lee et al.[80] 
assembled printed SCs composed of multiwalled carbon nanotube electrodes and ionic liquid/thiolene 
polymer network skeleton/SiO2 nanoparticle-based gel electrolytes on a T-shirt by printing-assisted 
aesthetic clothing designs [Figure 7]. This simple and scalable printing process, combined with the properly 
designed electrodes and electrolytes, make the printed WSCs possess excellent form factors, mechanical 
flexibility, and thermal stability. Furthermore, the printed T-shirts maintain their electrochemical activity 
even upon exposure to laundering, wringing, ironing, and folding, which are common activities for 
clothing, demonstrating their potential in wearable electronics. This study provided a useful strategy to 
produce washable and comfortable WSCs, however, the wearable demand in the everyday-use level still has 
not been investigated and efforts still need to be done to realize the commercial WSCs.

Polymer-based electrodes for WSCs
Conductive polymer-based electrodes for WSCs
Conductive polymers, such as polypyrrole (PPy), PANi, polythiophene (PTh), and poly(3,4-
ethylenedioxythiophene) (PEDOT), are another kind of electrode materials that have been widely applied in 
supercapacitors owing to their pseudocapacitance behaviors[111-113]. As shown in Figure 3, the Young’s 
modulus, deformability, and conductivity of conductive polymers is more suitable than those of carbon- or 
metal oxide-based materials for WSCs. Especially the conductivity can reach up to 104 S cm-1 by different 
doping levels or dopants[112].

However, the poor stability of conductive polymers, which comes from their backbone shrink and 
deterioration during the electrochemical process, will decline the power density and energy density of the 
whole devices and hinder their further applications[1,21,112]. Thus, fabricating conductive polymers on a 
designed surface structure or combined with other electroactive materials such as carbon-based ones or 
metal compounds are the most popular strategies to utilize the advantages of each material and achieve high 
electrochemical performances. For WSCs, the above-mentioned method is applicable and achievable by 
using elastic substates. Vertical PPy nanotube arrays and carbon nano-onions grown on spandex fabric to 
fabricate a flexible and stretchable electrode for WSCs are shown in Figure 8A. The assembled stretchable 
supercapacitors exhibit 64 F g-1, and they also present capacitance retention of 99% at a strain of 50% after 
500 cycles. This as-prepared stretchable supercapacitor device can provide a stable energy supply under 
different bending conditions for practical applications [Figure 8E-G][114].

Printing technology is also applied in fabricating conductive polymer-based electrodes for WSCs. Recently, 
a low-cost, easy-to-fabricate, and air-stable PANi ink was developed through a facile assemble-disperse 
strategy. The printable SC derived from as-prepared CP ink, as shown in Figure 9A, delivers high areal 
capacitance of 96.6 mF cm-2, large volumetric capacitance of 26.0 F cm-3, and considerable energy density of 
2.4 mWh cm-3 at 238.3 mW cm-3 [Figure 9][115].
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Figure 7. (A) Schematic representation illustrating an SC-printed T-shirt and its major components [SS thread current collector, printed 
electrode (AC/MWCNT/ionic liquid), printed gel electrolyte (ionic liquid/thiolene polymer network skeleton/SiO2 nanoparticles), and 
packaging film]. (B) Schematic representation depicting the printing-based, stepwise fabrication procedure of the SC-printed T-shirt. 
Application of a SC-printed T-shirt as a potential electronic garment. (C) Photographs and a conceptual illustration of the bulb-shaped 
SC (3.0 V/15 mF cm-2, scan rate = 2.0 mV s-1) that powered an LED lamp. The SC was directly printed on a white T-shirt and connected 
to the LED lamp using conductive SS thread. (D) Photographs of the SC-printed T-shirt upon exposure to various wearable test modes 
(walking, running, laundering, wringing, ironing, and folding) encountered in the daily wear of garments[80].
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Figure 8. (A) Photograph of a large-area piece of spandex fabric after the growth of the PPy structure. (B) Schematic illustration of the 
conductivity retaining mechanism of the stretchable WSC based on a textile electrode during stretching. (C) CV and (D) GCD curves of 
the stretchable SC composed of multiple devices in series and parallel under scan rate of 10 mV s-1 and current density of 0.2 A g-1. The 
inset is the cartoon of a stretchable SC device composed by four single devices in series. (E1-E4) Photographs of a red LED lit up by the 
stretchable SC as a wearable power supply attached on the human hand and finger under the original and stretchable states. (F1, F2) 
Photographs of a red LED bubble lit up by the as-prepared SC under stretch and twist condition. (G) Photographs of an electronic watch 
powered by a stretchable supercapacitor[114].

Figure 9. (A) Flexible WSC array derived from air stable conductive polymer ink. (B) Schematic illustration for the fabrication of printed 
WSCs with a mask-assisted spray-coating method. (C) Integrated circuit of a WSC wristband that can successfully power a green LED 
bulb. (D) Air-stable conductive CP ink can be easily prepared through a facile assemble-disperse strategy, in which PANi and citric acid 
assemble into hydrogel in the assemble stage and sequentially disperse well in water to form CP ink in the disperse stage[115]. PET: 
Polyethylene terephthalate; CP: conductive polymer.
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Although the deposition of conductive polymers on stretchable elastic substrates, such as polyurethane, 
polydimethylsiloxane, and thermoplastic copolyester, is the most common strategy to obtain flexible and 
stretchable electrodes for WSCs, these conventional stretchable electrodes are limited by the deformability 
of the substrate during the stretching or deformation process[116,117]. Recently, Yang et al.[118] developed an 
additive-free,  free-standing stretchable electrodes by a 3D printing process based on 
poly(3,4ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) ink. Figure 10A displays the 
schematic illustration of the fabrication process of the conducting polymer electrode. Different 3D patterns 
were firstly prepared on a glass substrate; after being pulled off, different free-standing stretchable electrodes 
were obtained [Figure 10B]. These well-designed arc-shaped microstructures provided a uniform stress area 
and reduced the peak strain in the electrode, which led to excellent flexibility and extreme stretchability 
(maximum elongation of 150%; Figure 10C). The quasi-solid-state symmetric supercapacitor, further 
assembled by hybrid polymer/CNT electrode, exhibited a high energy density of 0.065 mW h cm-2 and 
maintained excellent capacitance after 14,000 cycles. However, the mass loading of the ink during the 
printing process still hinders their development. Furthermore, the comfort also needs to be further 
considered.

Conductive polymer-based hydrogels for WSCs
The intrinsic soft/wet properties of hydrogels provide an excellent interface between the electronic 
transporting phase (electrode) and the ionic transporting phase (electrolyte), between biological and 
synthetic systems, and between soft and hard materials[29,88]. Moreover, according to the mechanical 
properties of gels [Figure 3], hydrogels are very promising electrode materials for WSCs. Therefore, 
hydrogel electrodes are recently widely explored. However, most hydrogels with unconducive polymer 
backbones cannot fulfill the demands of SCs. To resolve this issue, the most common strategy is using 
conductive polymers, e.g., PTh, PEDOT, PANi, and PPy, as backbones to fabricate hydrogels with unique 
structural and electronic properties (conductivity and pseudocapacitance behavior)[119-122]. PANi matrix 
hydrogels [Figure 11A and B] were first reported by using phytic acid as the gelator dopant. These as-
prepared PANi hydrogels show excellent conductivity of about 0.11 S cm-1 and high capacitance as electrode 
for supercapacitors (480 F g-1 and 83% capacitance retention after 10,000 cycles)[123,124]. Similar studies using 
acid-linked conductive polymer-based hybrid hydrogels can also combine functional particles to form 
functional hydrogel electrodes for WSCs, For example, Ag nanoparticles were introduced into a folic acid 
cross-linked PANi hydrogel to improve the conductivity and energy storage property of the as-prepared 
hydrogels[125]. To further improve the electrical property of conductive polymer based hydrogels, multivalent 
metal ions (Fe3+, Mg2+, and Cu2+) were also used to cross-link the conductive polymer chains as the gelator 
dopant to form conductive polymer-based electrode hydrogels free of insulating components[122,126,127].

In conductive polymer-based hydrogels, the conjugated structures of polymers are inherently rigid and 
fragile, which impairs the mechanical properties that are also significant factors for WSCs. New double 
network and low temperature strategies were applied to prepare great stretchable conductive polymer-based 
hydrogels with a hierarchical micro-/nanostructure[128]. The as-prepared hydrogels possess good toughness 
(29-fold enhancement) and electrochemical performance (specific and areal capacitance is 888 F g-1 and 
2097 mF cm2, respectively) while slightly sacrificing the conductivity (5.99 mS cm-1; after adding phytic acid, 
the conductivity is 91 mS cm-1). However, it is still a challenge for researchers to prepare conductive 
polymer-based hydrogels with high stretchability and high conductivity simultaneously. Other functions, 
such as biocompatibility, can be realized by introducing biomolecules into conductive polymer-based 
hydrogels[129]. Few works have applied such hydrogel electrodes in biocompatible or implantable 
supercapacitors. Hence, it is also important to further modify the conductive polymer hydrogels or combine 
other electroactive materials to endow more unconventional functions or specific properties for conductive 



Page 16 of Jiang et al. Soft Sci 2021;1:5 https://dx.doi.org/10.20517/ss.2021.0734

Figure 10. (A) Schematic illustration of the fabrication process of the conducting polymer electrode. (B) Images of as-printed electrodes 
with di�erent structures. Scale bars: 5 mm. (C) S-hinged and re-entrant structure electrodes in the maximum stretch state. Scale bars: 6 
mm. (D) Photographs of the wearable PEDOT:PSS/CNT quasi-solid-state symmetric supercapacitor lighting up a red LED bubble. The 
inset shows magnified optical image of the electrode. The scale bar is 1 mm[118].

Figure 11. (A) Schematic illustrations of the 3D hierarchical microstructure of the gelated PANi hydrogel where phytic acid plays a role 
as a dopant and a crosslinker. The three-level hierarchical porosity of angstrom, nanometer, and micron size pores is highlighted by red 
arrows. (B) A photograph of the PANi hydrogel inside a glass vial[123]. PANi: Polyaniline.

polymer-based hydrogel electrodes for WSCs.
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Metal-containing electrodes for WSCs
Metal compound electrodes for WSCs
Tremendous efforts have been made in the investigation of metal compound electrode materials for SCs, 
including meta oxides, metal nitrides, metal sulfides, and metal carbides[26]. According to the energy storage 
mechanism of supercapacitors, metal-based electrodes which possess pseudocapacitance behavior could 
obtain higher electrochemical performance compared with carbon-based electrodes, which present EDLC 
behavior. However, the deformability and Young’s modulus of bulk and rigid metal compounds cannot 
meet the demands of electrodes for WSCs. Down scaling is the most common strategy to improve the 
properties of metal compounds for WSCs. Nano/microstructure metal compounds are the most popular 
candidate electrodes, but they have to face the decline of conductivity. Thus, metal compounds composed 
with carbon-based or conductive polymers are the most popular strategy, which not only improves the 
conductivity of the whole electrode for WSCs but also enhances the electrochemical performance by the 
synergistic effect of both pseudocapacitance behavior and EDLC behavior. In our previous work, metal 
oxides (nano-TiO2 and Co3O4) composed with graphene and conductive polymers (PPy, PANi, and PTh) 
were applied as free-standing, flexible electrodes for WSCs [Figure 12A-C][21,130,131]. To further improve the 
conductivity and electrochemical properties of the metal oxides, series of metal compound electrodes 
consisting of metal oxides, bimetal oxides, and metal nitrides (NiCoO2 @Co3O4@Co2N, NiMoO4 @MoO3

@Mo2N, and NiFe2O4 @Fe3O4@Fe2N) were also combined with rGO to produce electrodes for flexible all-
solid-state supercapacitors [Figure 12D-F]. These studies not only proved the synergistic effects of different 
capacitance behaviors but also proved a universal designed strategy to produce hybrid materials for high-
performance functional WSCs[17,132].

In addition to the free-standing, flexible, and paper-like metal compound-containing hybrid electrodes for 
WSCs, fiber-shaped hybrid electrodes have been developed[133,134]. Salman et al.[135] integrated tungsten with 
rGO to fabricate hybrid fiber supercapacitors with high electrochemical performance (16.29 F cm-3 at 0.05 A 
cm-3, energy density of 1.448 mW h cm-3, and 84.7% capacitance retention after 10,000 cycles). To further 
improve the stretchability of metal compound-based electrodes, printing technology and elastic substrates 
have also been applied[136,137]. Recently, an implantable and biodegradable printed micro-supercapacitor was 
prepared by a facile super-assembly manufacturing and screen-printing strategy. The produced and 
optimized implantable and biodegradable supercapacitor which was super-assembled by a patterned 
Zn@PPy electrode and NaCl/agarose electrolyte exhibits energy density of 0.394 mW h cm-2 and can be fully 
degraded in vivo in 30 days without any adverse effects in the host organism[46]. This work gives us 
inspiration to study transient electronics for further implantable electronics. However, the design and 
choice of electrodes and electrolytes of implantable SCs is still the most challenging part. The materials must 
possess high biocompatibility, be soft (compatible with soft organs and tissues), and have no toxicity. For 
electrolytes, NaCl or phosphate-buffered saline could be proper since they already exist in the human body. 
Additionally, to further adapt to the unique physiological environment of the human body, implantable SCs 
with the ability to be stretched, compressed, bent, twisted, and deformed into arbitrary shapes must be 
further studied and developed.

Metal-organic frameworks based electrodes for WSCs
Metal-organic frameworks (MOFs) have attracted significant interests since the studies conducted by 
Hoskins and Robson[138,139]. These structures are defined by their assembly from metal/cluster-ligand 
coordination with multimodal ligands to fabricate extended, different dimensional porous networks with 
characteristics of high surface area, permeability to foreign entities, and structural tailorability[140-143]. MOFs 
as an important family of metal-containing materials have also been well studied as electroactive materials 
for SCs due to their porous structure and active sites, which could contribute both EDLC behavior and 
pseudocapacitance behavior.
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Figure 12. (A) Photographs of rGO and rGO-based composite films including free-standing and flexible rGO films (denoted as G), TiO2-
rGO film, and TiO2-rGO-PPy film. (B) Bent flexible TiO2-rGO film. (C) Bent flexible TiO2-rGO-PPy film[130]. (D) Schematic illustration of 
the as-assembled hybrid high-performance, flexible, and all-solid-state supercapacitor. (E) CV curves of FSS at different curvatures. (F) 
Photographs of FSS under different bending conditions and an LED light bulb lit up by FSS at the curvature of δ = 327 mm m-1 [17]. rGO: 
Reduced graphene oxide; PPy: polypyrrole.

The utilization of MOFs include two aspects: On the one hand, MOFs are utilized as novel templates for 
preparing porous metal compounds or carbons. They can be applied as electrode materials for WSCs 
engaging with wearable substrates due to the nano/microscale nature of MOFs. Zhou et al.[144] directly grew 
MIL-88-Fe MOF-derived spindle-like Fe2O3@C on oxidized CNT fibers to produced fiber-shaped electrodes 
for WSCs. The assembled wearable asymmetric supercapacitor possessed high specific capacitance of 201.4 
mF cm-2, energy density of 135.3 μWh cm-2, and good stability (97.1% retains after 4000 cycles). 
Zhou et al.[145] prepared PPy-coated conductive bacterial cellulose (BC) membranes via a ZIF-67 sacrificing 
polymerization process. This flexible and binder-free electrode exhibits high electrochemical performance 
due to the recovered electrolyte accessible channels afforded by the well-ordered PPy alignments along the 
BC nanofibers [Figure 13A]. However, in these studies, most MOFs only serve as the sacrificial 
templates/precursors with facile structural collapse and loss of intrinsically large surface area and pore 
volume.

On the other hand, MOFs with pseudocapacitive redox centers can be directly used as electrode 
materials[146-149]. Although the specific structure of MOFs can be kept, the poor intrinsic conductivity of 
pristine MOFs is also a challenging issue that needs to be resolved. To solve this issue, an extensively studied 
strategy is combining with other electronically conducting materials including conductive polymers and 
carbon-based materials which possess both good electronic conductivity and excellent redox or EDLC 
characteristics[150-152]. Another effective strategy is exploring novel MOFs with intrinsic conductivity[153]. 
Figure 13B and C shows intrinsically conductive Cu-MOF nanowire arrays on a free-standing PPy 
membrane electrode. The conductive Cu-MOFs nanowire arrays endowed the electrode with high 
conductivity and high surface area for the accessibility of electrolyte, whereas the PPy membrane provided 
flexibility, efficient charge transfer skeleton, and extra capacitance. The assembled flexible supercapacitors 
possessed exceptional electrochemical performance (areal capacitance of 252.1 mF cm-2, energy density of 
22.4 µWh cm-2 , power density of 1.1 mW cm-2 , and 90% capacitance retention after 8000 cycles)[154]. 
Additionally, to further improve the stretchability of MOF-based electrodes for WSCs, printing strategies 
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Figure 13. (A) Illustration of PPy-coated conductive bacterial cellulose (BC) membranes via a ZIF-67 sacrificing polymerization 
process[145]. (B) Illustration of the preparation of Cu-MOF nanowire arrays on free-standing PPy membrane electrode. (C) Simulated 
crystal structure of Cu- MOF[154]. PPy: Polypyrrole.

have also been applied to print MOF hybrids on elastic substrates[152,155].

MXene-based electrodes for WSCs
Since the first discovery of MXene in 2011[156] (a family of 2D transition metal carbides or nitrides), it has 
been intensively investigated, resulting in the discovery of more than 30 compositions including Ti2CTx, Nb2

CTx, V2CTx, Ti3C2Tx, Mo2TiC2Tx, Mo2Ti2C3, TiyNb2-yCTx, and NbyV2-yCTx, along with dozens more explored 
by computational methods[157,158]. The general formula of MXene is Mn+1XnTx(n = 1-4), where M represents 
transition metals, A is an element of Groups 13-15 in the periodic table, X is carbon or nitrogen, and Tx is 
surface functional groups (OH, O, Cl, and F)[159,160]. Owing to the above unique structure and components, 
MXenes possess specific physical and chemical merits such as great miscibility, high surface area to volume 
ratio, accessible active sites, surface charge state and electron-rich density, and absorption of 
electromagnetic waves, indicating their potential in electrochemical energy storage and conversion, 
electromagnetic shielding, wearable sensors, and personal thermotherapy[161,162]. Moreover, the presence of 
surface termination groups is responsible for the hydrophilicity and excellent reactivity of MXene, which 
also facilitates stable colloidal solution preparation in aqueous medium and different solvents[163-165]. Similar 
to the above-mentioned metal compounds and MOFs, MXenes have also been integrated into various 
elastic substrates for WSCs via coating[166,167], chemical and physical vapor deposition[168,169], and 
printing[170-173].

For instance, Wang et al.[13] developed a tailorable and foldable solid-state asymmetric supercapacitor 
through one-step scalable chemical oxidization and Ti3C2Tx MXene ink painting of N-doped carbon fiber 
textile (NCFT) substrate. By regulating the oxidization time and MXene loading, the active layer of MXene-
decorated NCFT (MNCFT) and O-functionalized NCFT (ONCFT) electrodes analogously presented tight 
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skin structure, avoiding the risk of active materials detaching from the support during mechanical 
deformation. The as-prepared MNCFT/ONCFT supercapacitor possessed high electrochemical 
performance (extended voltage window of 1.6 V, high areal energy density of 277.3 μWh cm-2, and 90% 
capacitance retention after 30,000 cycles) and could be tailored into suitable size or shape for conformable 
integration without impairing its performance [Figure 14A-G]. However, to ensure the electrochemical 
properties of the as-prepared MXene-carbon fiber textile electrodes, the textile had to be coated with a large 
amount of MXenes. Therefore, it remains challenging to convert the electrical insulative textiles into highly 
conductive textiles at low MXene loading. Some studies tried to resolve this issue by combining MXenes 
with conductive polymer[174,175] or carbon-based materials[176-178]. Zheng et al.[179] reported a novel and facile 
vapor-phase polymerization and spray-coating strategy to produce PEDOT/MXene-decorated cotton 
fabrics (PMF). The condensed PEDOT contributed continuous electron pathways and pseudocapacitance to 
improve both the electrical conductivity and electrochemical performance of textiles [Figure 14H and I]. 
Additionally, in addition to combining with conductivity polymer and carbon-based materials, the 
aforementioned metal compounds and MOFs were integrated to further improve the electrochemical 
performance of MXene-based electrodes of WSCs[180-182]. Although the above studies of flexible textiles make 
metal-based materials a promising electrode for WSCs, it remains a big challenge to fabricate soft electrodes 
with the ability to deform into arbitrary shapes with the human body under the moving condition and 
without sacrificing the electrochemical performance of WSCs. Novel strategies for producing low-cost, 
environment-friendly, and soft composite materials also need to be further developed.

SOLID-STATE ELECTROLYTES FOR WSCS
Aqueous electrolytes such as salt, acid, and alkaline solutions are still the most commonly used electrolytes 
for commercial SCs[10,11]. However, these aqueous electrolytes are unable to adapt to WSCs because of the 
leakage of toxic component when dynamically deformed or implanted into the human body. Thus, solid 
electrolytes have attracted lots of attention[11,183-185]. Hydrogel-based electrolytes are the most studied solid 
electrolytes as both electrolytes and separators for all-solid-state SCs. Their typical swollen porous structure 
with absorbed aqueous endows them with high ionic conductivity and less electrolyte leakage possibility. In 
addition to their highly flexible and stretchable nature, hydrogel-based electrolytes are becoming the most 
indispensable unit for the rapid development of portable/wearable electrical devices.

PVA is the most widely used solid electrolyte due to its high structural integrity and good mechanical 
properties[186-191]. Moreover, the easy gelation process and the large water content absorbed in the PVA 
polymer matrix also helps it offer proper ionic conductivity, which makes it widely used in WSCs[192-194] and 
stretchable SCs[195,196]. In addition to PVA hydrogel electrolytes, polyacrylic acid (PAA)[197-199] and natural 
polymers, such as gelatin[200-202], lignin[203,204], and cellulose[205,206], were also developed to further improve the 
high retention of water in the polymer matrix to make sure the ionic conductivity[183,207]. For example, cross-
linked networks of lignin-based hydrogel electrolytes showing high ionic conductivity (10.4 mS cm-1 at room 
temperature) and mechanical integrity (swelling capability of 532% water) were prepared for free-standing, 
flexible SCs[203]. Additionally, these biopolymer-based electrolytes could also be applied in implantable 
devices, because of their unique merits such as good compactivity, biodegradability, naturel abundance, and 
sustainability[46,208].

Recently, along with the appearance of smart SCs, self-healable electrolytes are also being investigated to 
fulfill the demands of self-healable SCs. A smart ionic conductive and self-healable sodium 
alginate/polymethylacrylic acid hydrogel electrolyte (SPMA-Zn: ZnSO4) was developed for flexible hybrid 
supercapacitors. The as-prepared SPMA-Zn exhibits an excellent self-healing ability and can recover its 
electrochemical performance after multiple mechanical damages. The assembled supercapacitor displays 
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Figure 14. (A) Schematic illustration of the scalable synthesis protocol of the positive ONCFT electrode and negative MNCFT electrode. 
(B) The assembled MNCFT/ONCFT ASC. (C) Photographs of an MNCFT/ONCFT ASC at different bending angles of 45 and 180. (D) A 
square MNCFT/ONCFT ASC (2 cm × 2 cm) normally powers a fan under different damage states. (E) Photograph of two 
MNCFT/ONCFT ASCs connected in series which can drive an indicating arrow containing 10 red LED lights. (F) Images of an 
MNCFT/ONCFT ASC driving an electronic watch at different deformable status. (G) Wearable exhibition of an energy storage 
watchband[13]. (H) Schematic illustration of the fabrication of Ti3C2Tx MXene. (I) Fabrication of PMFs[179]. MNCFT: MXene-decorated 
N-doped carbon fiber textile; ONCFT: O-functionalized N-doped carbon fiber textile.

excellent electrochemical performance with a wide and stable working voltage range of 0-2.2 V, high energy 
density of 164.13 Wh kg-1 at the power density of 1283.44 Wh kg-1, and good stability with a capacity 
retention of 95.3% after 5000 charge-discharge cycles at 10 A g-1[209]. However, self-healable is a passive 
process that requires meticulous manual alignment of electrodes and electrolytes, and sometimes even 
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requires external stimuli to ensure more effective healing. The mechanical strength is usually greatly 
deteriorated and thus brings the risks of performance decay and device failure. This is still a big challenge 
that needs to be overcome to be further applied in smart WSCs.

Thermal stability of hydrogel electrolytes is also a research challenge because of the polymer/monomer 
nature and the aqueous electrolyte contained within the hydrogels. Recently, all-temperature hydrogel 
electrolytes have also been developed to further adapt to harsh environments, especially in severe cold and 
hot regions, in which WSCs need to work[192,208,210-213]. Peng et al.[214] prepared a phosphoric 
acid/chitosan/PAA (CS-PAAm) hydrogel electrolyte. The as-prepared CS-PAAm hydrogels possess 
extremely high ionic conductivity and wide range of temperature tolerance from -60 to 100 °C. 
Additionally, this electrolyte also possesses good adhesiveness, toughness and flexibility, which is also 
important to further apply it for WSCs. The realization of all temperature self-healing hydrogel electrolytes 
could promote the development of existing WSCs.

ALL-IN-ONE WEARABLE SUPERCAPACITOR DEVICES
The most common way to fabricate all-in-one WSCs, whose structure is different from the traditional 
sandwich structure, is to deposit or in situ grow conductive polymers[212,215,216]/active materials[217,218] on both 
the upper and lower side of a multifunctional hydrogel electrolyte. For example, Wang et al.[219] produced an 
all-in-one supercapacitor by in situ growing PANi on high-strength PVA hydrogels [Figure 15A-D]. The as-
prepared all-in-one SC also had high electrochemical properties (the highest volumetric capacitance is 2220 
mF cm-3 at an aniline concentration of 0.5 mol L-1, the capacitance remains 90% after 7000 cycles, and 
energy density and areal power density are 42 µWh cm-2 and 160 µW cm-2, respectively). Furthermore, the 
mechanical properties including flexibility, toughness, and stretchability are all dependent on the hydrogel 
electrolyte.

Hence, based on such investigation, all-in-one SCs with specific functions were also developed along with 
the development of hydrogel electrolytes. Self-healing, fatigue-resistant, and self-recovering all-in-one 
supercapacitors were produced through PANi-decorated supramolecular PVA/poly(N-hydroxyethyl 
acrylamide) (PVA/PHEA) hydrogel electrolyte[212]. The multiple hydrogen bonding between PVA and 
PHEA and the ionic interaction among PANi not only endow excellent mechanical properties (tensile 
strength of 1.07 MPa and tearing energy of 2492 J m-2) but also facilitate the transfer of charge and ions, 
which enhances the good electrochemical performance of the as-prepared all-in-one SC (98 mF cm-2 at 
current density of 0.2 mA cm-2). Inspired by the temperature-tolerance hydrogel electrolytes, anti-freezing 
all-in-one SCs were also developed by one-step in situ growth of PANi onto a hydrogel electrolyte from 
cross-linked PAM networks soaked in ethylene glycol/water/H2SO4

[220]. The as-prepared supercapacitors 
possess high mechanical (stretchability of 200% at -30 °C and can be repeatedly stretched for 100 cycles 
without significant capacitance loss) and electrochemical properties (91.7% capacitance retention after 
100,000 cycles at -30 °C).

To further increase the skin-friendliness and safety of all-in-one SCs, moderate acids and biodegradable or 
natural polymers were applied in the investigation of all-in-one supercapacitors. All-in-one configured 
flexible and autonomously self-healable supercapacitors were prepared by in situ polymerizing and 
depositing rGO and PANi onto both sides of the tannic acid-treated gelatin mathacrylate and cellulose 
hydrogels[221]. The as-prepared all-in-one supercapacitor not only has good electrochemical performance 
(the volume capacitance, energy density, and power density of the as-prepared SC reached 1861 mF cm-3, 
20.65 mW cm-3, and 595.59 mWh cm-3, respectively) and mechanical properties but also give inspiration to 
the further study of biocompatible or implantable SCs. However, the stretchability, especially the 



Page 23 of Jiang et al. Soft Sci 2021;1:5 https://dx.doi.org/10.20517/ss.2021.07 34

Figure 15. (A) Schematic of the device preparation process of SCs based on a single hydrogel electrolyte. (B) Image of a PANi-PVA SC. 
(C) Optical microscopy cross-section image of a PANi-PVA SC. (D) Cross-sectional SEM image of a PANi SC[219]. (E) Schematic 
illustration of the stable network structure of an integrated all-hydrogel supercapacitor during the stress-strain process (F: force). (B-G) 
Electrochemical stability of an all-hydrogel supercapacitor under variant deformations[222].

compressibility, of the aforementioned assembled all-in-one supercapacitors is still limited because of the 
different mechanical properties of the non-hydrogel electrode and hydrogel electrolytes. Moreover, the 
energy density and power density still need to be further improved.

To overcome the mismatch of the mechanical properties of the different electrodes and electrolytes in all-in-
one supercapacitors, all hydrogel-based all-in-one supercapacitors were recently reported. This 
supercapacitor consisted of hydrogel electrode (polyacrylamide/sodium alginate dual-network hydrogel 
with additional CNT and PEDOT:PSS) and the same hydrogel electrolyte (polyacrylamide/sodium alginate 
dual-network hydrogel with salt/redox couple) [Figure 15E][222]. Because of this specific structure and the 



Page 24 of Jiang et al. Soft Sci 2021;1:5 https://dx.doi.org/10.20517/ss.2021.0734

same hydrogel matrix for both electrode and electrolyte, the as-prepared supercapacitor possesses high 
stretchability and compressibility, strong self-adhesion, and good electrochemical performance (maintain 
areal capacitance of 128 mF cm-2 at 1 mA cm-2, energy density of 3.6 μWh cm-2, and stable energy output). 
This study, combining the traditional sandwich structure of SCs and the newly developed functional 
hydrogel electrodes, inspires a new strategy to develop WSCs, which can inherent the multiple functions of 
hydrogels to match the demands of wearable or implantable bioelectronics.

CHALLENGES AND FUTURE PROSPECTS
In this report, we discuss the up-to-date advancements in soft electrode materials and their synthesis 
approaches for WSCs, focusing on the importance of, as well as challenges involved in, endowing 
supercapacitors with multifunctional properties for wearable electronics. Heretofore, the development of 
soft materials for supercapacitors that can be deformed into arbitrary shapes and adapt to random 
musculoskeletal deformations in the human body is still a considerable challenge. The few operational 
multifunctional SCs that have been reported to date remain largely limited in terms of accommodating 
external wearable electronics. The development of some kinds of functional SCs such as hydrogel- and 
degradable material-based SCs satisfying the requirements for next-generation smart wearable or 
implantable bioelectronics, e.g., tactile sensors, implantable nervous sensors, electrophysiology sensors, and 
feedback stimulators, remains an arduous task, owing to the complicated physiological environment of the 
human body.

The electrochemical performance and advantageous characteristics of WSCs, including their areal, volume, 
and mass capacitance, cycle stability, rate capability, energy density, and power density, are usually 
determined by their behavior under normal, bent, twisted, or compressed shape conditions. The majority of 
WSCs that have been developed to date possess multifunctionality features, albeit sacrificing their 
electrochemical performance to some extent. More importantly, the stable energy output of these devices 
can hardly be guaranteed under dynamic deformation conditions; furthermore, the majority of studies to 
date have tested their electrochemical performance under static conditions. Therefore, ensuring the high 
electrochemical performance of WSCs, especially in terms of energy/power density, while preserving their 
multifunctionality features under physiological conditions, is probably the most significant challenge. 
Moreover, washable, breathable, wear-resistant, and comfortable properties, as well as a robust and 
nontoxic solid-state electrolyte, for WSCs are also needed to be seriously considered to fulfill the demand of 
everyday use. The stable electrochemical performance of WSCs after repeated washing is also the main 
limitation in the commercial devices.

Using existing electrode materials and flexible substrate as a starting point for satisfying their energy 
demand, the development of WSCs exhibits a promising future. Various pathways to design novel materials 
and device structures still need to reach the desired electrochemical performance and functionality of 
WSCs. Herein, we discuss the possible future directions for the development of WSCs for wearable and 
implantable bioelectronics.

Hydrogel electrodes combining conductive fillers
Embedding conductive fillers which perform EDLC or pseudocapacitance behavior in an existing non-
conductive hydrogel matrix is also an effective strategy for fabricating conductive soft hydrogels, which 
could also be potential soft electrodes for WSCs. Han et al.[223] prepared a dual-network structure 
multifunctional polyvinyl alcohol (PVA)/CNT-cellulose composite hydrogel electrode for WSCs. The as-
prepared solid-state supercapacitor obtains 117.1 F g-1 and capacitance retention of 96.4% after 1000 cycles. 
PVA has excellent hydrophilicity, solubility, biocompatibility, and non-toxicity properties[224]. Therefore, 
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PVA-based conductive hybrid hydrogels could inherit the mechanical properties of the PVA matrix and 
present special features, such as compressivity, toughness, and thermal stability, which are also desired for 
further intelligent WSCs[225,226]. To date, except PVA-based hydrogel electrodes for SCs, few works focus on 
the other polymer-based hydrogel electrodes for WSCs; thus, our group designed a series of self-adhesive, 
tough, and conductive polyacrylamide hydrogels[227-231] which could be further applied as soft electrodes for 
WSCs. In these previous studies, polydopamine (PDA) was combined with the hydrogels, which endowed 
the hydrogels with good self-adhesiveness inspired by the mussel[232]. Self-adhesiveness makes hydrogels 
guarantee comfortable wear experience, reliable and comfortable contact with tissue, and reduced interface 
resistance for the stable signal detection when applied in bioelectronics[233,234]. Furthermore, PDA, as a 
quinone-rich polymer, has already been applied in energy storage materials due to the redox behavior of 
quinone[235-237]. rGO has also been extensively applied as electrodes for SCs[238,239]. Based on the designed 
component of PDA and rGO, these conductive and self-adhesive hydrogels could also be potential 
candidates for functional WSCs. Other materials with pseudocapacitance behavior such as conductive 
polymers (PEDOT, PANi, and PPy), MOFs, and metal compounds have also been applied, which not only 
improve their electrochemical performance but also endow the electrodes with repeatable, long-term 
mussel-inspired self-adhesiveness[231]. These results also inspired our following study on multifunctional 
hydrogel electrodes for future intelligent multifunctional SCs in wearable and implantable bioelectronics.

Multifunctional soft electrodes for supercapacitors
One of the primary aspects of modern supercapacitor development is to accommodate the power needs of 
the soft bioelectronic devices used to monitor human health conditions. To successfully adapt to this unique 
physiological environment, soft electrodes with the ability to be stretched, compressed, bent, twisted, and 
deformed into arbitrary shapes must be further studied and developed.

Self-adhesion reduces the interfacial resistance between the electrode and the electrolyte, while further 
guaranteeing the stable, accurate, and simultaneous sensing of multiple stimuli by allowing the direct and 
robust adhesion of WSCs to human skin or other tissues under tensile, compressive, or twisting stress 
conditions[240-242]. In a dynamic/random motion environment, flexible, stretchable, tough, and self-adhesive 
bioelectronics are highly desired to ensure the conformal contact between the device and the biological 
tissue, a factor which critically affects their performance. Hence, soft materials such as hydrogel-based 
electrodes with self-adhesive properties are highly desirable for matching these advanced bioelectronics.

Implantable or biodegradable in vivo WSCs
Implantable or biodegradable WSCs are completely or partially embedded into the human or animal body 
and remain inside to match or power other bioelectronics and complete special tasks. The development of 
implantable SCs is an arduous task that must address multiple issues, such as the aspects of biocompatibility 
and biostability. For the long-term implantation of SCs, power output stability is another important factor 
that needs to be considered. At the same time, several important material properties, such as mechanical 
strength and conductivity, are significantly compromised by the swelling of materials under the water-rich 
human physiological solutions. Thus, materials with superior biocompatibility and long-term biostability 
must be designed to obtain functional electrode materials. To achieve power output stability, certain 
techniques that rely on harvesting energy from movement, chemical reactions, and ion-related changes in 
the human body also provide inspiration for the design of sophisticated implantable SCs[68,243,244]. 
Furthermore, some types of SCs consisting of environmentally and biologically degradable byproducts can 
completely dissolve in vivo after performing their special functions[46]. Therefore, biodegradable hydrogels 
need to be designed for functional biodegradable SCs.



Page 26 of Jiang et al. Soft Sci 2021;1:5 https://dx.doi.org/10.20517/ss.2021.0734

Environmentally tolerant WSCs
Environmental tolerance is of great significance for WSCs, especially for applications in harsh 
environments. Conventional supercapacitors can operate in the temperature range from -40 to 200 °C[245,246]. 
The temperature tolerance of the devices is mainly dependent on the temperature tolerance of the electrode 
materials and hydrogel electrolytes. Thus, improving the temperature tolerance and stability of electrodes 
without compromising their other functionalities also constitutes a considerable challenge in designing 
WSCs with excellent durability and adaptability to harsh and complex environments.
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