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Supplementary Figure 1. (A and B) SEM images of CoFe PBA-CF.

Supplementary Figure 2. XRD pattern of the CoFe PBA/CF and CoFe PBA-CF.



Supplementary Figure 3. (A and B) SEM images of CoFe PBA-CF after

reconstruction in KOH solution.

Supplementary Figure 4. FTIR patterns of the CoFe PBA/CF sample before and after

reconstruction in KOH solution.



Supplementary Figure 5. XPS spectrum of CoFe PBA (A) before and (B) after

reconstruction in KOH solution.

Supplementary Figure 6. EDS pattern of CoFe PBA/CF sample (A) before and (B)

after reconstruction in KOH solution.



Supplementary Figure 7. Photographic image of H-type electrolytic cell for

electrochemical HMFOR.

Supplementary Figure 8. (A) Polarization curves, and (B) a comparison of HMF

conversion, FDCA yield, and FE between CoFe PBA/CF, hydrothermal CF, and CF.



Supplementary Figure 9. Polarization curves of (A) CoFe PBA/CF and (B) CoFe

PBA-CF with different HMF concentrations.

Supplementary Figure 10. CV curves of (A) CoFe PBA/CF and (B) CoFe PBA-CF at

different scan rates from 10 mV/s to 50 mV/s, (C) the capacitive currents as a function

of the scan rate (1.05 V vs. RHE).



Supplementary Figure 11. (A) I-t curves and FDCA yield of CoFe PBA/CF at 1.45 V

with the intermittent addition of 50 mM HMF; (B) HMF conversion, FDCA selectivity,

and FE of CoFe PBA-CF at firstly 5 cycles.

Supplementary Figure 12. (A) HPLC chromatograms and corresponding standard

curves for (B) FDCA, (C) HMFCA, (D) FFCA and (E) HMF. (F) Concentration

changes of the reactant and products during HMFOR at 1.45 V.



Supplementary Figure 13. (A) Top views of initial (0 ps) and final (5 ps) structure

during AIMD simulation of CoOOH/Cu(111) under 298 K; (B) The total energy by

performing the AIMD simulation in 5000 steps (the steps size was set to 1 fs).

Supplementary Figure 14. The adsorption energies of HMF for different Co sites on

CoOOH/Cu(111) surface.



Supplementary Figure 15. The adsorption energies of surface species on (A) CoOOH

and (B) CoOOH/Cu(111) surfaces.

Supplementary Figure 16. (A-D) Photographic images of the continuous oxidation of

high-concentration HMF to FDCA via the CFER.



Supplementary Figure 17. A photographic image of the product solution during 60

hours of continuous electrolysis in the CFER.

Supplementary Figure 18. (A-F) SEM images of CoFe PBA/CF after HMFOR cycles.



Supplementary Figure 19. (A and B) SEM images of CoFe PBA-CF after HMFOR.

Supplementary Table 1. ICP results of CoFe PBA/CF sample before and after

electric-driven reconstruction

Co (ppm) Fe (ppm) Ni:Fe ratio

Before reconstruction 18.53 18.27 1.01

After reconstruction 18.11 7.42 2.44



Supplementary Table 2. Comparisons of the catalytic performance of different

catalysts

Electrocatalyst

Potential (V)

@ j

(mA·cm-2)

Potential

applied

(V)

CHMF

(mM)

FDCA

yield

(%)

Faradaic

efficiency

(%)

Ref.

CoFe PBA/CF
1.239 @ 10

1.335 @ 50
1.45 50 98.4 98

This

work

Ni3N@C 1.35 @ 10 1.45 10 98 99 [1]

CuCo2O4 1.39 @ 10 1.45 10 93.7 94 [2]

Ir-Co3O4 1.38 @ 10 1.42 10 98 98 [3]

NiCoFe-LDH/CFP 1.518 @ 10 1.54 10 84.9 90 [4]

(FeCrCoNiCu)3O4 1.52 @ 10 1.5 10 98 98 [5]

Vo-Co3O4 1.35 @ 10 1.47 10 91.9 88.1 [6]

CF-Cu(OH)2 1.45 @ 10 1.6 10 98.7 100 [7]

Ni0.5Co2.5O4 1.53 @ 10 1.5 10 92.42 90.35 [8]

CuO-PdO 1.32 @ 10 1.35 10 96.2 93.7 [9]

Ni(OH)2-NiOOH/NiFeP 1.35 @ 10 1.435 10 99 94 [10]

InOOH-Ov 1.34 @ 10 1.48 10 91.6 90.7 [11]

Ce–CoP 1.30 @ 10 1.44 10 98 96.4 [12]

S,N-MOFs@Ni(OH)2-NSs/NF 1.32 @10 1.4 10 100 100 [13]

NiCu NTs 1.35@ 20 1.424 20 99 96.4 [14]

VN/NiF 1.36@ 10 1.38 10 96 84 [15]

WO3/Ni 1.40@ 5 1.44 5 88.3 88 [16]

CoOOH 1.40@10 1.56 5 35.1 35.1 [17]

CoOOH 1.335@20 1.423 10 100 100 [18]
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