Supplementary Material

Physics infused machine learning force fields for 2D materials monolayers

Yang Yang, Bo Xu, Hongxiang Zong*

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

***Correspondence to:** Prof. Hongxiang Zong, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an 710049, Shaanxi, China. E-mail: <u>zonghust@xjtu.edu.cn</u>

Supplementary Table 1. Comparison the fitting quality by using different adjustable parameters

		original	0.1η	10 <i>η</i>	0.1 <i>k</i>	10:q
GeSe	RMSE (eV/atom)	1.530	5.533	2.171	1.633	2.143
	MAE (eV/atom)	1.060	3.674	1.488	1.150	1.434
	R ²	0.998	0.975	0.996	0.998	0.996
PbTe	RMSE (eV/atom)	0.920	8.337	1.353	0.920	1.426
	MAE (eV/atom)	0.640	5.526	0.977	0.628	0.976
	R ²	0.999	0.923	0.998	0.999	0.998
<i>h</i> BN	RMSE (eV/atom)	0.840	1.004	0.773	0.625	0.660
	MAE (eV/atom)	0.400	0.546	0.405	0.313	0.329
	R ²	0.9999	0.9997	0.9998	0.9999	0.9999

Formation energy		DFT	ML	Relative
For mation energy				error
	$E_{ m V}^{ m Ge}$	5.874	4.674	20.4%
	$E_{ m V}^{ m Se}$	5.879	4.912	16.4%
Vacanav	$E_{ m V}^{ m Pb}$	5.564	4.231	23.9%
vacancy	$E_{\rm V}^{\rm Te}$	4.864	5.280	8.5%
	$E_{ m V}^{ m B}$	16.564	15.552	6.1%
	E_{V}^{N}	16.020	21.211	32.4%
	E_{GeSe}^1	1.476	1.138	22.9%
	E_{GeSe}^2	2.522	2.486	1.4%
Anti-sites	$E^1_{\rm PbTe}$	2.112	3.358	59.0%
	$E_{\rm PbTe}^2$	2.567	2.504	2.4%
	$E_{h{ m BN}}$	7.585	9.360	23.4%
Domain boundary	GaSa	0 701	0.603	23 7%
(eV/nm)	Gese	0.791	0.005	23.770
Phase boundary	PhTe	1 167	1 1 2 4	74.8%
(eV/nm)	1010	т.†07	1.127	/ 7.0 / 0
Grain boundary	<i>b</i> BN	5 067	6 740	12 9%
(eV/nm)		5.707	0.740	12.7/0

Supplementary Table 2. Formation energy of point defects in monolayer GeSe, PbTe and *h*BN

Supplementary Figure 1. Typical atomic configurations of monolayer PbTe during a stress induced phase transformation at 50 K. (A)-(C) Ferroic phase grows up by the movement of the phase boundary during a typical stress drop from $\varepsilon = 7.0\%$ to $\varepsilon = 7.2\%$; (D)-(F) Ferroic phase shrinks by the movement of the phase boundary during a typical stress increment from $\varepsilon = 7.3\%$ to $\varepsilon = 7.5\%$.