Energy Materials

Supplementary Material

High-performance novel anode-supported microtubular protonic ceramic fuel cells via highly efficient and simplified extrusion technology

Zichen Zhuang¹, Zuzhi Huang², Xiaoyu Zhang¹, Kui Liu¹, Guozhu Zheng¹, Ting Chen^{1,*}, Ruili Sun¹, Lang Xu¹, Shaorong Wang^{1,*}

¹School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.

²Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi, China.

Correspondence to: Dr. Ting Chen, School of Chemical Engineering & Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, Jiangsu, China. E-mail: <u>chenting@cumt.edu.cn</u>; Prof. Shaorong Wang, School of Chemical Engineering & Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, Jiangsu, China. E-mail: <u>srwang@cumt.edu.cn</u>

Supplementary Figure 1. XRD pattern of the BZCYG4411 powder synthesized by

the type 2 method.

Supplementary Figure 2. EDX-mapping images of BZCYG4411 powder (type 1).

Supplementary Figure 3. XRD patterns of BZCYG4411 pellets after exposure to

10% H₂O-90% N₂ and 3% CO₂ - 97% N₂ at 650 °C for 50 h, respectively.

Supplementary Figure 4. (A) The electrical conductivity of BZCYG4411 measured at 500-700 °C in dry N₂; (B) The transference number of ionic and electron of BZCYG4411.

Supplementary Figure 5. Comparison of (A) I-V-P and (B) EIS curves of the cell

using BSNCF cathode before and after long-term test.

Supplementary Figure 6. The electrochemical performance of the microtubular PCFC with PBSCF cathode. (A) I-V-P curves; (B) EIS curves; (C) Stability test at 650 °C.

Supplementary Table 1. Refined lattice parameters of BZCYG4411 using one-step

SSR.

Sample	Space group	R _p (%)	R _{wp} (%)	a (Å)	b (Å)	c (Å)	α	β	γ
BZCYG4411	Imma	7.92	10.57	6.08	8.61	6.11	90°	90°	90°

Fabrication technique	Electrolyte	Cathode	Temperature (°C)	PPDs (mW cm ⁻²)	Ref	
Extrusion	BZCYYb	BSNCF	600	449.94	This work	
Extrusion	BZCYYb	PBSCF	600	546.61	This work	
3D Printing	BCZY27	BCFZY	600	281	[1]	
Phase	BZCYYb	LSCF-	600	530	[2]	
inversion		BZCYYb				
Phase	BZCYYb	SSC-	600	150	[3]	
inversion		BZCYYb				

Supplementary Table 2. PPDs of tubular PCFCs in previous literature.

BCZY27: BaCe_{0.2}Zr_{0.7}Y_{0.1}O_{3- δ}; BCFZY: BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3- δ}; LSCF: La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ}; SSC: Sm_{0.5}Sr_{0.5}CoO_{3- δ}.

Supplementary References

[1] Zou M, Conrad J, Sheridan B, et al. 3D Printing Enabled Highly Scalable Tubular Protonic Ceramic Fuel Cells. *Acs Energy Lett* 2023;8:3545-51. [DOI: 10.1021/acsenergylett.3c01345].

[2] Chen C, Liu M, Bai Y, Yang L, Xie E, Liu M. Anode-supported tubular SOFCs based on BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-δ} electrolyte fabricated by dip coating. *Electrochem. Commun.* 2011;13:615-618. [DOI: 10.1016/j.elecom.2011.03.025].

[3] Zhao L, Zhang X, He B, Liu B, Xia C. Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method. *J. Power Sources* 2011;196:962-967. [DOI: 10.1016/j.jpowsour.2010.08.074].