
Peters et al. J Cancer Metastasis Treat 2021;7:32
DOI: 10.20517/2394-4722.2021.67

Journal of Cancer 
Metastasis and Treatment

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.jcmtjournal.com

Open AccessReview

Clinical implications of the molecular 
characterization of intraductal papillary mucinous 
neoplasms of the pancreas
Nicholas V. Peters, John W. Kunstman

Department of Surgery, Yale University School of Medicine, New Haven 06510, CT, USA.

Correspondence to: Prof. John W Kunstman, Department of Surgery, Division of Surgical Oncology, Yale University School of 
Medicine, 310 Cedar Street, FMB 130, New Haven 06510, CT, USA. E-mail: John.Kunstman@yale.edu

How to cite this article: Peters NV, Kunstman JW. Clinical implications of the molecular characterization of intraductal papillary 
mucinous neoplasms of the pancreas. J Cancer Metastasis Treat 2021;7:32. https://dx.doi.org/10.20517/2394-4722.2021.67

Received: 17 Mar 2021  First Decision: 21 Apr 2020  Revised: 5 May 2020  Accepted: 12 May 2021  Published: 11 Jun 2021

Academic Editor: Lucio Miele  Copy Editor: Yue-Yue Zhang  Production Editor: Yue-Yue Zhang

Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a pre-malignant, mucin-producing epithelial lesion arising from 
pancreatic ducts. Observational reports define IPMN behavior as ranging from indolent, asymptomatic lesions to 
dysplasia that sometimes degenerate into pancreatic adenocarcinoma. The goal of IPMN management is risk-
reducing surgery for high-risk cysts and observation of the remainder. Discriminating high- from low-risk IPMN 
disease still relies on imaging and clinical cyst characteristics. Here, we review the accepted classification of IPMN 
including the most common histological subtypes, their clinical features, and currently-accepted high-risk 
phenotypes. We then deeply examine the known molecular landscape of IPMN, which has largely been derived 
from post-resection analysis. This includes those gene variants unique to IPMN, chiefly GNAS and RNF43, but also 
examines the overlap between IPMN and conventional pancreatic adenocarcinoma. Utilizing molecular markers in 
the clinical setting relies on endoscopically-obtained cyst fluid and presumes that it accurately represents the 
molecular characteristics of the cystic epithelium. We synthesize existing data on mutational analysis from IPMN 
cyst fluid and consider the benefits and proper role of current commercially-available cyst fluid molecular analysis 
kits. We conclude that carefully interpreted molecular analysis of resected IPMN tissue reveals insights into its 
biology and natural history while cyst fluid analysis offers prognostication and data to guide treatment decisions. 
However, knowledge gaps remain, especially in characterizing IPMN molecular heterogeneity, time to progression, 
and correlating cyst fluid genotype data with surveillance strategies. As such, substantial additional research is 
required before the promise of true molecular guidance of IPMN management can be realized.
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INTRODUCTION
Intraductal papillary mucinous neoplasm (IPMN) is defined as a grossly visible, mucin-producing epithelial 
neoplasm arising from pancreatic ducts[1,2]. Although long recognized as a pathologic entity under various 
terms such as mucinous duct ectasia, mucin hypersecreting tumor, or intraductal papillary mucinous 
tumors, IPMN was first codified as a unique entity by the World Health Organization in 1996[3]. Following 
adoption of this standard definition, knowledge of IPMN including its characteristics and natural history 
has greatly expanded. Initial efforts focused on describing the histopathologic features of IPMN and the 
prevalence of associated invasive pancreatic adenocarcinoma. Determining the proper timing for 
surveillance of IPMNs and surgical intervention remain ongoing challenges. Recently, improving tools for 
genomic analysis has allowed a much deeper understanding of the underlying biology of these pre-
malignant lesions. However, the molecular origin of IPMN and its implication for IPMN behavior remain 
poorly understood.

Postmortem analysis demonstrates that cystic masses in the pancreas are exceedingly common and strongly 
correlate with age[4]. Due to the increased use, availability, and quality of cross-sectional diagnostic imaging, 
more pancreatic cystic lesions are being diagnosed in patients with unclear clinical relevance[5-7]. In patients 
without a history of pancreatitis, IPMN is by far the most common incidentally-diagnosed cystic lesion of 
the pancreas. IPMN is, by definition, a premalignant lesion, in which pancreatic adenocarcinoma can arise 
within these cysts. However, the majority of IPMNs do not progress to invasive disease or even high-grade 
dysplasia; thus, there are no screening recommendations for detection of IPMN in standard risk 
individuals[8,9]. As most IPMNs are incidentally discovered, the vast majority are asymptomatic at the time 
of diagnosis. In such patients, recommendations are individualized and can involve several modalities, 
including imaging, endoscopy, and rarely, immediate surgery. Molecular analysis of IPMN can occur 
following surgical resection or via endoscopic sampling. Surgical sampling is advantageous as cyst tissue is 
readily available and can be directly examined; however, this requires resection. In the non-operative 
setting, endoscopic ultrasound (EUS) can be used to locate the pancreatic lesion and fine needle aspiration 
(FNA) can obtain cyst endothelial tissue in select cases. However, EUS-guided aspiration is most commonly 
used to obtain cyst fluid. Biochemical analysis of aspirated pancreatic cyst fluid has long been utilized to 
discriminate mucinous vs. serous lesions[10] but modern tools have allowed molecular assays as well. While 
cyst fluid of many IPMNs is aspirated, as discussed below, the resulting personalized molecular data 
infrequently alter treatment plans in the current era. This is in part because of an incomplete understanding 
of IPMN biology and malignant potential[5,11,12], as well as limited molecular analysis tools and their 
associated costs. The role of molecular analysis in IPMN management is an area of ongoing investigation 
and continues to rapidly evolve. This manuscript will review the progress in defining IPMN as a clinical 
entity, the current molecular understanding of the disease, and available means to assess these findings and 
their clinical utility in patients with IPMN.

OVERVIEW OF IPMN MANAGEMENT
Current guidelines for management are based on three decades of accrued data on the correlation of clinical 
and radiographic features with IPMN natural history. The goal of IPMN management is to prevent 
progression to overt pancreatic adenocarcinoma while avoiding unnecessary surgery or overly burdensome 
surveillance. Recent technological advances allowing rapid genetic characterization of cyst fluid have been 
utilized for research purposes and are beginning to be used in the clinical setting as well. Commercial assays 
for cyst fluid genetic analysis are now in widespread use[13-17] although evidence supporting routine 
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employment is lacking. Despite these advances, management principles remain focused on cross-sectional 
imaging and endoscopic cyst characteristics. While many groups have offered guidelines, the most widely 
accepted international consensus recommendations can be summarized [Figure 1][18-20]. In addition, areas 
where input from molecular analysis may be particularly useful have been indicated.

These strategies have greatly clarified and improved the management of IPMN, but some patients still 
develop late-stage pancreatic adenocarcinoma despite careful surveillance. Moreover, 60%-80% of patients 
submitted for resection lack high-grade dysplasia or early invasive disease[21], implying surgery may not have 
been necessary at that time. Finally, most IPMNs seem to convey a field effect on the pancreas with 
multifocal disease and recurrence being the norm. Thus, even patients undergoing successful surgery still 
require ongoing observation. These features greatly complicate IPMN treatment and surveillance. It is 
hoped that better molecular understanding of IPMN will clarify these questions and guide improved 
management strategies in the future. This work reviews the molecular characterization of IPMN, mutational 
information from cyst fluid and resection specimen analysis, and the clinical implications of IPMN in the 
context of histologic subtype. Furthermore, it discusses commercially available genetic analysis kits and 
their utility and niche in clinical decision-making.

CONVENTIONAL CLASSIFICATION OF IPMN
Several classification schemes have been used to describe IPMN: anatomic examination, histology, spectrum 
of dysplasia and others. Together these classification systems are used in clinical guidelines and are 
commonly reported in the IPMN literature but can be incongruent. As a result, correlating these 
classifications with natural history, prognosis, and malignant potential of IPMN is challenging and 
inconsistent[15,22-24]. Molecular designations are increasingly being recognized but are yet to be 
comprehensively integrated into classifying IPMN. Importantly, recent studies have consistently found 
IPMN to be a heterogeneous lesion, with multiple geographically and genetically distinct regions residing 
within a single cyst or group of cysts. It seems likely that this contributes to the inconsistencies earlier 
studies observed between IPMN classification and behavior[25,26].

Anatomic classification - main duct, branch duct, or mixed
Macroscopic examination is the basis for classifying IPMN as a main duct (MD), branch duct (BD), or 
mixed lesion[5]. This has been consistently recognized as an important clinical factor from the earliest 
guidelines[27] to the present day[19,20]. In resected IPMN specimens, early studies reported a higher risk of 
malignancy among main duct lesions (31%-70%) as opposed to branch-duct lesions (3%-25%)[5,11,12,28]. Risks 
in mixed IPMN are generally considered analogous to main duct IPMN[29,30]. Sub-group analysis of BD-
IPMN has greatly informed current management strategies[31-33] with significantly increased rates of invasive 
adenocarcinoma found in BD-IPMNs with (1) cyst size greater than 3 cm; (2) presence of a mural nodule; 
and (3) associated dilation of the main pancreatic duct (i.e., mixed IPMN)[31].

As noted above, resection is advocated for MD-IPMN in acceptable surgical candidates[18,19,34], which 
sometimes entails total pancreatectomy. Management of BD-IPMN remains more nuanced. The previously 
described “high risk stigmata” and “worrisome features” based on imaging and endoscopic findings drive 
decision-making in these patients[20]. The Pancreatic Surgery Consortium clarified the relative risks of these 
possible IPMN features in 2018, with the presence of jaundice most predictive of high-risk (i.e., high-grade 
dysplasia or invasive) lesions (57/58), while cyst size > 3.0 cm, mural nodule, pain symptoms, and weight 
loss were also associated with high-risk lesions to a lesser degree[35]. Another study reported the presence of 
a radiographic mural nodule was the most predictive feature of invasive disease[36].
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Figure 1. Summary of clinical management of pancreatic cysts. Adapted from Tanaka et al.[20] Pancreatology 2017. Current clinical 
management guidelines for pancreatic cystic lesions summarized in a flow chart. Red arrows denote specific areas in the flow chart 
where novel molecular data may be able to assist in clinical decision making.

Histology and dysplasia distinction
Histological analysis of resected IPMN has defined four primary distinct subtypes: gastric, intestinal, 
pancreatobiliary, and oncocytic[37-42]. The appearance of the epithelial cyst lining on microscopy and 
differential mucin protein expression profiles form the basis of histologic subtype differentiation[22,37,43] 
[Table 1]. Although conventional pathology reporting often conveys a ubiquitous histologic subtype to a 
particular IPMN, multiregional examination has revealed that multiple histologic subtypes can exist within 
a single lesion[25,38]. As described below, this can have molecular implications as well. Additionally, some 
have suggested the oncocytic subtype is a distinct entity from conventional IPMN[44,45].

A substantial number of studies have attempted to risk-stratify IPMN lesions by their histological 
subtype[46-51]. A systematic review by Koh et al.[52] reviewed 14 studies with 1617 unique patients with IPMN 
that consisted of 900 IPMNs with noninvasive features and 717 with invasive disease. They found that 
pancreatobiliary subtype IPMN has the highest likelihood of (1) an invasive component (67.9%); (2) 
presence of a mural nodule (56.6%); and (3) tumor recurrence (46.3%). Conversely, gastric-subtype IPMN 
had the lowest likelihood of an invasive component (10.2%) or tumor recurrence (9.4%).

The most important driver of patient survivorship with regards to IPMN is the degree of dysplasia[53]. 
Conventionally, IPMN is understood as a premalignant lesion that progresses from low-grade to high-grade 
dysplasia to invasive pancreatic carcinoma[25,54]. Historically, dysplasia was classified as low-, moderate-, or 
high-grade. However, international consensus has now simplified this to low- or high-grade dysplasia 
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Table 1. Immunohistochemical staining profiles of IPMN subtypes

IPMN subtype (+) Staining (-) Staining Ref.

Gastric MUC5AC 
MUC6 
PDX1

MUC1 
MUC2

[37,43,46,134,144]

Intestinal MUC2 
MUC5AC 
CDX2 
PDX1

MUC1 [22,37,42,43,46,134,144]

Pancreatobiliary MUC1 
MUC5A/C 
MUC6

MUC2 
CDX2

[22,37,42,43,46,134]

The staining patterns of IPMN stubtypes are shown here. The classically defined oncocytic IPMN is excluded from this table because of its rarity 
and recent sequencing and outcome data suggests that it may be distinct from IPMN. IPMN: Intraductal papillary mucinous neoplasm.

only[55,56], with most lesions previously characterized as moderate relegated to the low-grade dysplasia group. 
Those patients with invasive IPMN experience a pronounced decrement in overall survival[53]. While the 
overall 5-year survival of resected IPMN-associated adenocarcinoma (42%) is superior to that of pancreatic 
adenocarcinoma not associated with IPMN (19%)[57], this is misleading as survival is closely correlated with 
the invasive histologic subtype seen arising from the parent IPMN. The vast majority are of two subtypes: 
tubular or colloid carcinoma. A third variant, anaplastic carcinoma is rarely observed. The 5-year survival of 
IPMN-derived colloid carcinoma is markedly improved compared to tubular carcinoma, 57%-83% vs. 24%-
37%, respectively[5,57]. The survival for patients with IPMN-derived tubular adenocarcinoma parallels those 
with conventional pancreatic adenocarcinoma not associated with IPMN[58]. Tubular carcinoma is 
associated with the pancreatobiliary and gastric IPMN subtypes, whereas colloid carcinoma is associated 
with the intestinal subtype[50,59]. The pancreatobiliary subtype has the highest incidence of harboring an 
invasive component and is strongly associated with the more aggressive tubular carcinoma. To investigate 
these differences in biological behavior several studies have investigated the mutational landscape of 
IPMN[24,60-63].

MOLECULAR CLASSIFICATION OF INTRADUCTAL PAPILLARY MUCINOUS NEOPLASMS
Molecular analysis is a broad term for evaluating human tissues via analysis of DNA or RNA transcripts, or 
indirect analysis of their downstream products including proteins and other effector molecules. With 
regards to IPMN, there is general agreement that molecular analysis potentially holds key insights into the 
natural course of IPMN including defining disparate subtype behavior and crucial factors leading to 
malignant degeneration. Conventional pathologic analysis as described above has been critically important 
in defining IPMN and generating the current clinical guidelines for management and there is substantial 
enthusiasm that molecular techniques will serve to further these efforts.

There are two major categories of genetic material for molecular analysis: pancreatic cyst fluid and direct 
tissue analysis. Cyst fluid, which can be obtained via endoscopic modalities, is unique as it can risk-stratify 
lesions thereby informing surveillance strategies and aiding selection of patients for surgical resection. 
Direct tissue analysis is more robust, but is often limited to those patients who have undergone surgery. 
This can inform future risk and clinical decision-making; however, the greatest value of this analysis is 
better elucidation of the underlying biology of IPMN. Much of our current understanding of IPMN 
molecular biology comes from direct analysis of resected IPMN.

The landscape of somatic mutations in pancreatic ductal adenocarcinoma (PDAC) has been carefully 
defined by numerous investigators over the past three decades. It is therefore unsurprising that the typical 
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variants present in conventional PDAC are regularly observed at varying frequencies in IPMN, given its 
status as a precursor to PDAC [Table 2]. The hallmark genes most commonly mutated in PDAC, Kirsten rat 
sarcoma virus (KRAS), tumor protein 53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and 
deleted in pancreatic cancer-4 (DPC4, more commonly SMAD-4), can be all observed in IPMN as well. 
Initial investigations into the mutational landscape of IPMN sought to characterize these mutations and 
assess for the presence of recurrent variants private to IPMN to define the substantial differences in 
behavior between IPMN, IPMN-associated PDAC, and conventional PDAC (not associated with IPMN).

Somatic variants unique to intraductal papillary mucinous neoplasms
The current molecular understanding of IPMN as a unique genetic entity emerged in 2011 with two seminal 
manuscripts that performed whole exome analysis of multiple cystic lesions of the pancreas, including 
IPMN[64] and targeted analysis of IPMN cyst fluid[61]. These complementary studies identified the PDAC-
related mutations noted above, but also defined variants unique to IPMN. Specifically, frequent recurrent 
mutations were found in GNAS complex locus (GNAS) and ring finger protein 43 (RNF43) in IPMN with 
other unique IPMN-specific variants occurring with much less consistency. Subsequent studies have 
confirmed that mutations in GNAS are the second-most common variant in IPMN after KRAS, being 
observed in 41%-75% of all IPMN[61,65,66]. This is histology-specific, with > 90%-100% of intestinal-subtype 
IPMN but only 40%-70% of other histologic subtypes demonstrating mutations in GNAS[61,65]. GNAS 
mutations are uncommonly reported in conventional PDAC[67] but are present in 33% of resected PDAC 
cases associated with IPMN[68]. GNAS encodes a subunit of guanine nucleotide-binding protein that, when 
activated, leads to cell growth and proliferation[69-71]. The dominant recurring mutation found in IPMN is at 
R201 with R201C/H accounting for most reported variants. Additional R201 or Q227 variants have been 
reported, but common to all these variants is constitutive activation of GNAS by reducing the rate of GTP 
hydrolysis[24,67]. While these mutations have been observed in various neoplastic lesions ranging from 
osseous fibrous dysplasia to growth hormone-secreting adenomas of the pituitary, within the digestive tract 
they cluster in mucinous and pre-malignant neoplasms, such as pyloric gland adenoma, appendiceal 
mucinous neoplasms, and IPMN of the pancreas and biliary tree[72]. As such, it appears that GNAS is an 
early mutation in IPMN tumorigenesis and may synergize with other molecular changes to promote 
transformation but is unlikely to lead to invasive PDAC in isolation[72]. No GNAS-directed therapies are 
currently clinically relevant with regards to IPMN or PDAC.

The second-most commonly mutated gene specific to non-invasive IPMN is RNF43, with studies of 
resected IPMN reporting 14%-75% carrying an RNF43 variant[24,26,61,64,66,73]. RNF43 is a ubiquitin E3 ligase that 
targets cytosolic frizzled receptors (FZD) for ubiquitination and degradation. FZD is the upstream regulator 
of both canonical and non-canonical Wnt pathways[74]. Similar to colon cancer, RNF43 inactivating 
mutations and subsequent loss of heterozygosity reduces FZD ubiquitination and upregulates Wnt signaling 
thereby promoting tumorigenesis[74]. Unlike GNAS, hotspot mutations are not observed in RNF43 and 
inactivation can occur via a combination of frameshift indels, missense, and nonsense mutations[66,73]. 
Moreover, intronic, epigenetic, and post-translational changes also play a role in reducing the RNF43 
regulation of the Wnt pathway. This finding was highlighted in one study of 57 resected IPMN lesions 
where a somatic RNF43 mutation was found in only 14% of cases but decreased RNF43 protein expression 
was observed in 29.5%[73]. Antibodies for FZD receptors are currently under investigational development 
and could be potential therapeutic targets in cancers with RNF43 mutations[75].

Numerous additional somatic mutations at a lower frequency have been reported in sequencing studies of 
resected IPMN tissue. While their prevalence is too low to be regarded as critical for generic IPMN 
development, these infrequent mutations may hold insight into sub-populations of IPMN that could 
become clinically relevant and thus warrant reporting and further investigation. Mutations in ATM and 
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Table 2. Comparison of common somatic mutations in IPMN and conventional PDAC

Gene IPMN, no/low-grade dysplasia IPMN, high-grade dysplasia IPMN-associated PDAC Conventional PDAC

KRAS 43%-89%[13,66] 32%-71%[13,66] 61%[13,66,76] 92%-100%[67,145,146]

GNAS 40%-90%[13,61,65,66] 42%-72%[13,61,65,66] 33%-61%[13,61,65,66,76] < 5%[67]

RNF43 10%-11%[66] 25%-75%[66] 18%[66,76] < 5%[67]

CDKN2A/p16 < 5%[13,66] 0%-16%[13,66] 5%[13,66,76] 82%-98%[147,148]

TP53 < 5%[13,66] 18%-21%[13,66] 21%[13,66,76] 50%-75%[149]

SMAD-4/DPC-4 < 5%[13,66] < 5%[13,66] 15%[13,66,76] 90%[150,151]

The frequencies of somatic mutations in IPMN with progressive levels of dsyplasia, compared with conventional PDAC. IPMN: Intraductal 
papillary mucinous neoplasm; PDAC: pancreatic ductal adenocarcinoma.

SF3B1 have been reported in 5%-17% in resected IPMN[66,76]. ATM is a cell cycle regulator through 
modulation of DNA damage repair pathways, while SF3B1 is involved in RNA splicing. RNA splicing has 
recently been implicated in a crucial mechanism of progression certain cases of PDAC[77] and presents an 
interesting target for investigation in IPMN. Additional rare mutations occurring in < 4% of IPMN include 
variants in known oncogenic genes such as CTNNB1, STK11, and CDH1. Interestingly, CTNNB1 mutation 
is also highly prevalent in another cystic pancreatic lesion, solid-pseudopapillary neoplasm[64], but this entity 
is distinct from IPMN. As the unifying molecular mechanisms of IPMN progression are elucidated, further 
investigation into these rarer aberrations will be critical in incrementally improving clinical management by 
detecting new therapeutic targets.

Somatic variants common to intraductal papillary mucinous neoplasms and invasive pancreatic 
cancer
Most commonly observed mutations in IPMN mirror those seen in conventional PDAC. The frequency of 
these variants in IPMN appears to correlate with their prevalence in PDAC and the degree of dysplasia 
within an IPMN lesion [Table 2][24]. As such, KRAS variants are the most common somatic mutations found 
in IPMN, occurring in 50%-80% of lesions[61-63,78]. This correlates to the near-ubiquitous presence of mutated 
KRAS in invasive PDAC[67,79,80]. Overall, landscape studies of all PDAC cases demonstrate that GNAS is 
mutated or overexpressed in 6%-11%; presumably, this represents a substantial portion of those cases of 
PDAC derived from IPMN[67,81,82].

RAS is a monomeric, G-family proto-oncogene involved in regulation of cell proliferation, differentiation, 
and survival. Of its three isoforms, KRAS is the most frequently mutated gene in human cancer[83,84]. In 
IPMN, KRAS is also commonly mutated with reports varying from 40%-89%[13,66,76]. Early literature 
suggested a positive correlation between the frequency of KRAS mutation and grade of dysplasia[63,80]. 
However, larger and more recent sequencing studies examining IPMN heterogeneity demonstrate the rate 
of KRAS mutation may not correlate closely with grade of dysplasia. Intracystic heterogeneity has been a 
long-recognized but understudied phenomenon in IPMN in that a particular cyst may have multiple 
regions with varying degrees of dysplasia or histology. This heterogeneity extends to the genetic level and 
the prevalence of KRAS mutations in IPMN makes it the ideal marker to study this phenomenon. Recently, 
in situ hybridization has been utilized to demonstrate disparate KRAS variants from spatially distinct areas 
within a single IPMN lesion[25,60,85]. The most common loci for KRAS mutations in IPMN are in exon 1 
(G12x, G13x, Q61x)[86] and are identical to those reported in conventional PDAC and many other cancers. 
All of these are activating mutations with Q61x mutations conveying a favorable prognosis[67]. Circulating 
tumor DNA with KRASG12D mutation is associated with early distant metastasis and poor outcomes in 
resected PDAC[87]. Despite considerable research, no approved KRAS-targeting therapies exist[88,89] although 
novel approaches have been recently reported. This includes exosomes impregnated with KRAS targeting 
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siRNA[90], small molecules specifically targeting KRASG12C mutations[91], and KRASG12D knockouts using the 
CRISPR/Cas-9 system, but none of these have progressed beyond the investigational stage[92].

The tumor suppressor TP53 has also be implicated as a driver mutation in PDAC[67,76,93,94]. TP53 is an 
essential regulator involved in cell growth, protection against mutation accumulation, and suppression of 
oncogene activation[95]. Sequencing of resected IPMN reveals that TP53 mutations are more common in 
high grade dysplasia and invasive IPMN (15%-20%) as compared with low grade IPMN (0%-5%)[13,66]. An 
immunohistochemistry (IHC) study of 206 resected pancreas lesions including precursor lesions (IPMN 
and PanIN), corroborates this finding by reporting abnormal TP53 staining in 0% low grade dysplastic 
lesions, 42% high grade dysplastic lesions, and 68% invasive ductal carcinomas[37]. It has recently been shown 
that TP53 function can be moderated via alternate mechanisms such aberrations in transcript splicing[96]. 
Whether this occurs in IPMN and IPMN-associated PDAC has not yet been investigated. Like KRAS, no 
TP53-directed therapies are currently in clinical use.

CDKN2A (also known as p16) is a tumor suppressor gene that is recurrently mutated in PDAC[67,94,97] and 
has also been reported in IPMN[13,66]. CDKN2A is a cell cycle regulator involved in the transition from G1 to 
S phase[98]. Sequencing data from resected IPMN specimens reveal CDKN2A mutation rate of 0%-18%, with 
an increasing frequency in lesions with high grade dysplasia, mirroring TP53 and KRAS variants[13,66]. 
Interestingly, IHC studies have reported a much more frequent loss of CDKN2A expression: 50%-100% of 
high-grade dysplasia and invasive IPMN, and 10%-51% in low-grade dysplasia IPMN[24,99-101]. The 
mechanism of this expression loss is by epigenetic silencing through hypermethylation of CDKN2A 
promoters in 80% of IPMN lesions, again with an increasing prevalence with higher grades of 
dysplasia[102,103]. Multiple pharmaceutical agents targeting methylation are in clinical use, but thus far have 
been largely limited to hematologic malignancies. Some clinical trials with epigenetic drugs as potentiators 
of cytotoxic chemotherapy have been performed in PDAC, but the results have been modest.

SMAD-4 is a highly conserved signal transduction protein in the transforming growth factor Beta (TGF-β) 
pathway where it functions as a tumor suppressor by inhibiting epithelial cell growth[104]. Homozygous 
deletions have been reported in 30% of PDAC[105], while only 3% of IPMNs were reported to have mutations 
in SMAD-4[13]. Notably, SMAD-4 loss in PDAC is associated with a poor prognosis[106]. IHC of resected 
IPMN tissue revealed conserved expression in non-neoplastic and low-grade dysplastic tissue with loss of 
expression in high-grade dysplasia and IPMN-associated invasive PDAC[37,100]. Although one study reported 
SMAD-4 loss of heterozygosity of 80%-90% of PDAC and 22% in IPMN, IHC may again be more 
informative as only ~50% of PDAC and very few IPMNs actually demonstrate loss of SMAD-4 
expression[107]. In total, it appears that SMAD-4 inactivation is rare in IPMN but more common in invasive 
disease and usually occurs via deletion, rather than a silencing mutation or other mechanisms.

IMPLICATIONS OF THE SOMATIC MUTATIONAL LANDSCAPE OF IPMN
As in other cancers, the accumulation of driver mutations is implicated in the development of IPMN-
associated invasive PDAC. However, the reality is much more complex than the archetypal progression 
from normal epithelium to adenoma and carcinoma as classically described in colorectal cancers[108,109]. 
Sequencing analysis of spatially distinct regions within resected IPMN specimens has identified 
considerable heterogeneity at the molecular level. Tan et al.[66] demonstrated that KRAS-wild type high-
grade dysplasia can exist in an IPMN with KRAS-mutant low-grade dysplasia. Despite this, KRAS mutations 
often appear to be one of the earliest IPMN driver mutations during progression to invasive PDAC, as 
phylogenetic and whole-exome sequencing data do not reveal any shared mutations in surrounding tissue 
that precedes KRAS[25,76]. In addition, using an in-situ hybridization approach, heterogeneity in individual 
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KRAS clones can be demonstrated in a single patient[25,76]. In metastatic untreated PDAC, the metastatic 
lesions contained identical driver mutations as compared with the primary lesion with heterogeneity in 
subsequent passenger variants[110]. Synthesizing these data is challenging but some conclusions can be 
derived. The diverse mutational landscape present in non-dysplastic or low-grade IPMN with increasing 
uniformity in advanced PDAC suggests clonal selection is a hallmark of IPMN malignant transformation 
[Figure 2]. The recognition of TP53 and SMAD-4 as late-occurring mutations often associated with high-
grade or invasive disease, has broadened our understanding of worrisome features. Using resected tissue 
specimens to characterize molecular differences of low-grade vs. high-grade and invasive IPMN informs the 
interpretation of cyst fluid analysis and cyst wall biopsy. Appreciation of IPMN as a heterogeneous lesion 
through multi-focal analysis offers context in interpreting earlier single biopsy studies and has important 
implications for the natural history of low-grade IPMN. It also implies that variants of KRAS or GNAS 
alone are likely not sufficient to drive the development of invasive disease in IPMN. Interestingly, 
polyclonality observed in precancerous lesions of other organ systems has been attributed to environmental 
carcinogen exposure[111-113] resulting in a field defect to the affected tissue. This has not been demonstrated 
experimentally in the pancreas but may be an area for future inquiry. Lastly, the oncocytic histology subtype 
has recently been scrutinized based on recent molecular data. Sequencing studies of oncocytic IPMN reveal 
that KRAS and GNAS mutations are not present and RNF43 mutations are rare, suggesting that the 
mutational landscape and biological behavior of these lesions is dissimilar to other IPMN sub-types[44,45]. It is 
possible that oncocytic-subtype IPMN may be reclassified in the future as a distinct pathologic entity 
separate from IPMN.

HERITABLE CAUSES OF PANCREATIC CANCER & IPMN
While accounting for 2%-10% of pancreatic cancer[114-117], three heritable pathways for developing pancreatic 
cancer have been discussed: (1) Hereditary tumor predisposition syndromes; (2) tumor syndromes 
stemming from chronic inflammation; and (3) familial pancreatic cancer (FPC). FPC is defined as at least 
two first-degree relatives with PDAC, which are not at increased risk from other syndromes[117]. There is a 
body of literature establishing a link between numerous specific germline mutations and pancreatic cancer: 
ATM, BRCA1/2, CDKN2A, MLH1, MSH2, PALB2, PMS2, PRSS1, and STK11[118-125].

The literature base regarding heritable IPMN is more limited; however, in a 2019 study of resected IPMN 
tissue Skaro et al.[125] found that 7.3% of patients carried germline mutations in one of the 94 genes captured 
in the TruSight Cancer probe, and 2.9% of patients carried a germline mutation specifically associated with 
pancreatic cancer. They also found that patients with IPMN and a concurrent invasive cancer were more 
likely to have pancreatic-specific germline mutations, than patients with IPMN alone[125]. This study suggests 
that there may be a link between FPC and IPMN development; however, currently there is a paucity of data 
on the topic.

CLINICAL IMPLICATIONS OF IPMN MOLECULAR ANALYSIS
Despite years of study, the management of IPMN remains a major challenge for clinicians. As the vast 
majority IPMNs fall into a low or intermediate risk category, determining optimal need and timing for 
surgical intervention is difficult. Once reaching intermediate risk, usually due to questionable worrisome 
features or increased size on imaging, the next evaluation typically includes endoscopy with ultrasound and 
fine needle biopsy. Thoughtful interpretation of pancreatic cyst fluid analysis, in the context of the genetic 
and pathologic studies discussed above, offers a relevant diagnostic tool with the potential for personalized 
risk-stratification and informing clinical decisions.
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Figure 2. Schematic of clonal expansion of IPMN to invasive PDAC. Adapted from Fischer et al.[25] Intraductal Papillary Mucinous 
Neoplasms Arise from Multiple Independent Clones, Each with Distinct Mutations, Gastroenterology 2019. This schematic illustrates 
multiple precancerous cells undergoing clonal expansion with in an IPMN. Clones with distinct mutations in known driver genes (KRAS & 
GNAS), may acquire further mutations and vie for dominance while displaying increasing levels of dysplasia. Eventually enough key 
mutations accumulate, and a single clonal becomes dominate and displays invasive behavior.

Cyst fluid molecular analysis
Clinical cytology studies from EUS-FNA samples of IPMN lesions have historically been heavily factored 
into clinical decision-making when available. However, low cellularity, low interobserver reliability, and 
indeterminate results often obscure the clinical picture[126,127]. For instance, when cytology reveals high-grade 
dysplasia, it is strongly supportive of proceeding with resection. However, such clarity is rare. The more 
typical result is a paucicellular specimen or visualization of “atypical” cells, which should not be interpreted 
as dysplastic. Aspiration via fiberoptic endoscopic instruments invariably results in atypical cellular 
morphology and these findings more often complicate rather than simplify management. Instead, studies 
have looked to other markers to assist in risk-stratifying pancreatic cystic lesions. A number of studies have 
proven that molecular analysis of IPMN cyst fluid is technically feasible, allowing for genetic and epigenetic 
analysis[128-133]. These have investigated cytopathology, proteomics with particular focus on mucin 
expression[134], biochemical analysis including levels of CEA[10,135] and Das-1[136], telomere status[137,138], 
miRNA[130,132], and mutations in GNAS, KRAS, RNF43, SMAD4, and TP53[139,140].

In a study investigating EUS fine needle aspiration of pancreatic cyst fluid, KRAS/GNAS mutations were 
detected via genetic analysis of cell-free DNA (cfDNA) in 56/56 IPMN. Consistent with sequencing data 
discussed above, this study found that the combination of KRAS/GNAS mutation and an alteration in 
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TP53/PIK3CA/PTEN had an 89% sensitivity and 100% specificity for high risk IPMN[140]. A major criticism 
regarding genetic analysis of cyst fluid aspiration involves the volume of cyst fluid required to obtain 
enough DNA for sequencing, sometimes 1 mL or more[126,128]. A novel “through the needle biopsy” 
technique was developed to capture cyst wall and allow for a richer histological evaluation and provide 
more material for genetic analysis[141].

To date miR-216, Das-1, and combination panel of tumor suppressor and proto-oncogenes mutations have 
shown promise in differentiating benign tumors from IPMN with high-grade dysplasia or invasive 
components[130,136,138,140]. However, the majority of these studies are retrospective, limiting their applicability 
in the prospective setting. At present, no clinical trials have been opened utilizing molecular markers in 
comparing cyst management strategies [a current ongoing multi-institutional trial does compare high- vs. 
low-intensity surveillance regimens, but this utilizes clinical features only (ECOG-ACRIN EA2185)]. Also, 
and perhaps more importantly, none of these studies have final tissue pathology from surgical resection to 
correlate with the cyst fluid marker. Thus, it is impossible to truly ascribe a high- or low-risk designation to 
a particular marker. The first publication from the prospective ZYSTEUS trial[85] sought to overcome that 
concern and reported that the 12 patients who underwent fine needle aspiration of their IPMN all yielded 
either KRAS or GNAS mutations. The aspirate was fractionated into a cellular component and a liquid 
component, but the liquid component did not yield cfDNA of sufficient quality for analysis in 25% of 
patients, often due to viscosity. As this prospective trial continues to mature and accrue more patients it 
may offer important insights into the utility and practicality of using genetic analysis of cyst fluid for risk 
stratification and clinical decision making in the management of patients with IPMN.

To unify existing molecular knowledge and assist practicing clinicians in risk management of cystic 
pancreatic lesions, commercial molecular diagnostic kits have recently become widely available. These kits 
generally require aspirated cyst fluid (~600 µL) which, in combination with clinical factors, is subjected to a 
targeted molecular analysis. A panel of oncogenes and tumor suppressor gene variants associated with high-
risk lesions is assessed as well as DNA quantity/quality. These kits signify the first attempt at personalized 
management of cystic lesions of the pancreas. This approach has revolutionized other tumor types, with 
OncotypeDx in breast cancer staging and treatment being the archetypal example[142,143]. Clearly, much work 
remains, but several clinical scenarios regarding IPMN management could benefit from molecular analysis. 
For example, asymptomatic patients with low-risk imaging but a concerning mutation profile may benefit 
from more aggressive intervention. However, a frail patient with a clinically-concerning IPMN but found to 
have a reassuring molecular profile may be best served by close surveillance.

Two commercially-available kits are in widespread use in the United States: PancraGEN[16] (Interpace 
Diagnostics) and PancreaSeq[17] (University of Pittsburgh Medical Center). Both tests screen for > 20 
mutations associated with pancreatic cystic lesions. PancreaSeq utilizes next generation sequencing, while 
PancraGEN uses Sanger sequencing. The mutations captured by both kits also include variants common to 
non-mucinous lesions, such as VHL variants in serous cystadenoma. Reports provide the relevant genomic 
analysis and, in combination with clinical risk factors, stratify lesions as low-, moderate-, or high-risk. As 
always, patient factors such as candidacy for surgery or willingness to undergo surveillance remain critical 
components to the shared decision-making process.

In practice, data are sparse but seem to support selective employment of these assays. In general, patients 
with conflicting clinical, personal, or imaging risk profiles benefit the most from the currently available 
molecular assays. Patients with worrisome imaging features but cyst fluid analysis questioning the diagnosis 
of IPMN (i.e., low CEA) are ideal candidates for molecular profiling. In such patients, the presence or 
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absence of a GNAS or KRAS variant can serve to conclusively direct management. Routine employment of 
molecular techniques to patients with small, reassuring IPMNs or those with clear high-risk stigmata (such 
as jaundice) is not supported by evidence at this time. For example, in a patient with IPMN-associated 
jaundice, a reassuring molecular profile would not alter recommendations for intervention. Judicious use of 
these tests is also indicated as they are costly and sometimes result in a substantial out-of-pocket expense to 
the patient in the United States. Guidelines for appropriate usage of molecular testing will be reliant on the 
accrual of prospective data in the future.

CONCLUSION
IPMN is the most common cystic pre-malignant pancreatic lesion. However, the natural history and 
molecular underpinnings of its malignant transformation have not been fully characterized and it therefore 
remains a challenging entity to manage. Decades of observational studies have laid the groundwork for its 
histopathologic classification and the current consensus towards management based on clinical and imaging 
risk factors. With the application of modern molecular investigative techniques to both resected surgical 
specimens and endoscopically-obtained cyst fluid aspirates, it is hoped that a deeper molecular 
understanding of IPMN can allow informed design of improved care strategies. At present, our growing 
knowledge of IPMN biology has begun to create new opportunities for personalized management but has 
also uncovered previously-unappreciated molecular complexity.

Mutations private to IPMN, defined by examination of resected IPMN tissue, hold potential in defining 
novel therapeutic targets to reverse, halt, or slow the process of malignant progression. These studies can 
also inform the post-resection risk of recurrence or synchronous pathology, and therefore help improve 
surveillance paradigms. In addition, cyst fluid analysis holds tremendous clinical potential to risk-stratify 
lesions prior to resection. Ultimately, this could assist in determining optimal treatment or surveillance 
regimens. First-generation commercially available genetic analysis kits are already in practice, and their 
optimal role in routine practice is being explored. A prospective study aimed to specifically investigate the 
clinical utility of molecular analysis tools in guiding clinical decision making is the next logical step. While 
individualized patient-specific management remains paramount, even with cyst fluid genetic analysis, the 
rapidly evolving field of IPMN molecular analysis promises continued future improvement and 
augmentation of IPMN management strategies.
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