Supplementary Materials

2

Boxue Wang^{1a}, Xinru Zhao^{1a}, Huachuan Sun^{a*}, Mengling Zhang^a, Mingpeng Chen^a, 3 Guoyang Qiu^a, Tong Zhou^a, Dequan Li^a, Yuewen Wu^a, Chen Liu^a, Hang Yang^a, Qinjie 4 Lu^a, Jianhong Zhao^a, Yumin Zhang^a, Jin Zhang^a, Hao Cui^b, Feng Liu^b, Qingju Liu^a* 5 6 ^aNational Center for International Research on Photoelectric and Energy Materials, 7 Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of 8 Materials and Energy, Yunnan University, Kunming 650091, China. 9 10 ^bYunnan Precious Metals Laboratory Co., Ltd., Kunming, 650106, P. R. China. ¹These authors contributed equally to this work. 11 12 13 *Correspondence to: 14 Dr. Huachuan Sun, National Center for International Research on Photoelectric and 15 Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China. 16 E-mail: huachuansun@ynu.edu.cn. 17 Prof. Qingju Liu, National Center for International Research on Photoelectric and 18 19 Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, 20 School of Materials and Energy, Yunnan University, Kunming 650091, China. 21 E-mail: qjliu@ynu.edu.cn.

22

24 MATERIALS AND METHODS

25 Reagents

26	The iron (III) nitrate nonahydrate (Fe(NO ₃) ₃ ·9H ₂ O), chloroplatinic acid
27	hexahydrate (H2PtCl6·6H2O), commercial RuO2, hydrochloric acid (HCl), and
28	potassium hydroxide (KOH) were purchased from Aladdin (Shanghai, China). The
29	commercial Pt/C (20 wt%) and absolute ethanol were purchased from Suzhou Sinero
30	Technology Co., Ltd and Chengdu Kelong Chemical Co. Ltd. Nafion solution (5 wt%)
31	was obtained from Sigma-Aldrich, respectively. All the chemicals were used directly.
32	Deionized (DI) water with a resistivity of 18.2 M Ω cm ⁻¹ was used during the
33	experiments.
34	Pretreatment of NF
35	To obtain clean nickel foam (NF), several pieces of NF ($2 \times 3 \text{ cm}^2$) were
36	sequentially sonicated in 3 M HCl, ethanol, and DI water for 11, 6, and 5 min,
37	respectively, and then air-dried at room temperature.
38	Characterizations
39	The crystal structures of Pt _{QDs} @NiFe LDH and NiFe LDH were determined by
40	X-ray diffraction (XRD). The morphologies of Pt _{QDs} @NiFe LDH and NiFe LDH
41	were characterized by scanning electron microscopy (SEM), transmission electron
42	microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM).
43	The surface electronic structures and chemical compositions of Pt_{QDs} NiFe LDH and
44	NiFe LDH were characterized by X-ray photoelectron spectroscopy (XPS). The
45	content of Ni, Fe, and Pt elements in Pt _{QDs} @NiFe LDH was measured by inductively
46	coupled plasma optical emission spectrometry (ICP-OES). Oxygen vacancies (O_v) of
47	Pt _{QDs} @NiFe LDH and NiFe LDH were determined by electron paramagnetic
48	resonance (EPR).
49	Electrochemical testing
50	The electrochemical performance of the prepared samples was measured in a

51 typical three-electrode system using CHI 1140C and CHI 760E electrochemical

52	workstations. Specifically, the reference electrode, counter electrode, and working
53	electrode were Hg/HgO, carbon rod, and the synthesized samples ($1 \times 1 \text{ cm}^2$),
54	respectively. All electrochemical tests were conducted in a 1 M KOH solution at a
55	sweep rate of 5 mV s ⁻¹ . All potentials were normalized to the reversible hydrogen
56	electrode (RHE), and all overpotentials were 95% iR-corrected. The double-layer
57	capacitance (C_{dl}) was calculated by measuring cyclic voltammetry (CV) at different
58	sweep rates (20, 40, 60, 80, 100, and 120 mV s ⁻¹) in the non-Faradaic region. The
59	charge transfer resistance (Rct) was obtained by measuring electrochemical
60	impedance spectroscopy (EIS) in the frequency range from 10000 to 0.01 Hz.
61	Theoretical calculations
62	Vienna Ab initio Simulation Package (VASP) ^[1] was employed to perform all of
63	the Density functional theory (DFT) calculations based on the generalized gradient
64	approximation (GGA) ^[2] and Perdew-Burke-Ernzerhof (PBE) functions ^[3] . The
65	projector augmented wave (PAW) model was utilized to describe the ionic cores ^[4] .
66	Taking the valence electrons into account, a plane-wave cutoff was set to be 450 eV.
67	Additionally, the convergence energy threshold for the self-consistent calculations
(0	
08	was set to be 10-5 eV, and the geometry optimization was carried out as the total
68 69	was set to be 10-5 eV, and the geometry optimization was carried out as the total energy convergent was less than 0.02 eV/Å.

- **Supplementary Figure 1.** (A, B) SEM images of NiFe LDH precursor at different
- 73 magnifications.

- 76 Supplementary Figure 2. (A, B) SEM images of Pt_{QDs}@NiFe LDH-1 at different
- 77 magnifications. (C, D) of Pt_{QDs}@NiFe LDH-5 at different magnifications.

- **Supplementary Figure 3.** HRTEM image of NiFe LDH.

- 85 HRTEM images of Pt_{QDs}@NiFe LDH and corresponding size distribution of Pt_{QDs}.

94 Supplementary Figure 6. Surface valence band photoemission spectra of NiFe LDH

95 and Pt_{QDs}@NiFe LDH.

96

Supplementary Figure 7. The contact angles of (A) bare NF, (B) NiFe LDH and (C)

- 99 Pt_{QDs}@NiFe LDH at different times.

107 Supplementary Figure 9. (A) LSV curves of Pt_{QDs}@NiFe LDH-1, Pt_{QDs}@NiFe LDH

and Pt_{QDs}@NiFe LDH-5. (B) The overpotentials at 500, 1000 and 1500 mA cm⁻².

109

110

111 Supplementary Figure 10. Tafel slopes of Pt_{QDs}@NiFe LDH and other control

112 samples.

- 116 which contains the solution and electrode resistance (R_s) , charge transfer resistance
- 117 (R_{ct}), and the double-layer capacitance (C_d).

120 Supplementary Figure 12. CV curves of (A) Pt_{QDs}@NiFe LDH, (B) NiFe LDH, (C)

121 Pt/C and (D) NF.

122

Elements	Content (wt%)
Ni	19.28
Fe	35.24
Pt	7.08

132 Supplementary Table 1. ICP result of Pt_{QDs}@NiFe LDH.

Materials	Log j, mA cm ⁻²	exchange current density (j ₀ , mA cm ⁻²)
Pt _{QDs} @NLDH	0.636	4.325
NiFe LDH	-0.127	0.746
Pt/C	0.634	4.305
NF	-0.064	0.863

Supplementary Table 2. The exchange current densities are derived by Tafel plots.

- **Supplementary Table 3.** Performance comparison of Pt_{QDs}@NiFe LDH with other
- 138 electrocatalysts in 1 M KOH solution.

Catalysts	η ₅₀₀ (mV)	η1000 (mV)	Tafel slope (mV dec ⁻¹)	References
Pt _{QDs} @NiFe LDH	92	140	35	This work
Fe-Ni ₃ S ₂ /PNF-5	-	<mark>150</mark>	<mark>58.6</mark>	[5]
Ni ₃ N@2M-MoS ₂	<mark>152</mark>	<mark>155</mark>	<mark>38.9</mark>	<mark>[6]</mark>
Ni9.5Co0.5-S-FeOx	<mark>129</mark>	<mark>175</mark>	<mark>71.4</mark>	[7]
NiFe-P@NC	<mark>163</mark>	217	<mark>58</mark>	[8]
MoS ₂ /Mo ₂ C	-	220	<mark>43</mark>	<mark>[9]</mark>
Ce _{0.2} -CoP/Ni ₃ P@NF	<mark>195</mark>	<mark>225</mark>	<mark>55</mark>	<mark>[10]</mark>
Co _x P _v @NC	<mark>206</mark>	232	<mark>81.9</mark>	[11]
Ni _{0.96} Co _{0.04} P	-	<mark>249.7</mark>	<mark>49.6</mark>	[12]
MnO-CoP/NF	<mark>186</mark>	<mark>259.5</mark>	<mark>55.3</mark>	[13]
NiCo@C-NiCoMoO/NF	-	<mark>266</mark>	<mark>63.5</mark>	<mark>[14]</mark>
Ru _{SAs} /Ni(OH)2@FeOOH	<mark>209</mark>	<mark>267</mark>	<mark>72</mark>	<mark>[15]</mark>
MnCo/NiSe	216	<mark>270</mark>	<mark>45.05</mark>	<mark>[16]</mark>
Ni _{2(1-x)} Mo _{2x} P	<mark>240</mark>	<mark>294</mark>	<mark>46.4</mark>	<mark>[17]</mark>
S-NiBDC	-	<mark>310</mark>	<mark>75</mark>	<mark>[18]</mark>
C0 _{0.59} Ni _{0.41} (OH)2@PANI/ NF	-	<mark>310</mark>	<mark>36.41</mark>	<mark>[19]</mark>
Fe-Ni ₂ P@C/NF	<mark>294</mark>	<mark>313</mark>	<mark>45</mark>	<mark>[20]</mark>
Co ₆ Ni ₄ P/NF	-	<mark>336</mark>	<mark>61.24</mark>	[21]

Catalysts	Cell Voltage (V) @ 100 mA cm ⁻²	References
Pt _{QDs} @NiFe LDH (-) NiFe LDH (+)	1.54	This work
Pt/Mo-NiO _x /NMF (-) NiFe-LDH/NF (+)	1.55	[22]
NiFeV@FeO _x /IF (-) \parallel NiFeV@FeO _x /IF (+)	1.57	[23]
CoNiPeV/CFP (-) CoNiPeV/CFP (+)	1.61	[24]
RuFe-SG-1 (-) NiFe-LDH (+)	1.61	[25]
Pt@S–NiFe LDHs (-) Pt@S–NiFe LDHs (+)	1.62	[26]
2% Ru-NCO (-) 2% Ru-NCO (+)	1.65	[27]
NiPS/NF (-) NiPS/NF (+)	1.66	[28]
Mn-NiCoP (-) Mn- NiCoP (+)	1.69	[29]
CoNiFe-PS (-) CoNiFe-PS (+)	1.69	[30]
NiCe _{0.05} /Fe@NM (-) NiCe _{0.05} /Fe@NM (+)	1.70	[31]
NF10 (-) NF10 (+)	1.73	[32]
RuNi-Fe ₂ O ₃ /IF (-) RuNi-Fe ₂ O ₃ /IF (+)	1.73	[33]
$0.4-Co_2P/Ni_xP_y@NF(-) \parallel 0.4-Co_2P/Ni_xP_y@NF(+)$	1.74	[34]
$Ru_{SA}\text{-}NiS_{2}\text{-}FeS_{2}(\text{-}) \parallel Ru_{SA}\text{-}NiS_{2}\text{-}FeS_{2}(\text{+})$	1.74	[35]
$Ni_{3}S_{2}$ -FeS/NF-2 (-) $Ni_{3}S_{2}$ -FeS/NF-2 (+)	1.75	[36]

Supplementary Table 4. Performance comparison of Pt_{QDs}@NiFe LDH (-) || NiFe

141 LDH (+) with other electrocatalysts in 1 M KOH solution.

143 **REFERENCES**

- 144 1. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals
- and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996; 6: 15-50.
- 146 https://doi.org/https://doi.org/10.1016/0927-0256(96)00008-0.
- 147 2. Liu Q-L, Zhao Z-Y. DFT study on microstructures and electronic structures of Pt
- 148 mono-/bi-doped anatase TiO_2 (101) surface. RSC Adv. 2015; 5: 17984-17992.
- 149 https://doi.org/10.1039/C4RA12671H.
- 150 3. Parkinson GS, Novotny Z, Argentero G, Schmid M, Pavelec J, et al. Carbon
- 151 monoxide-induced adatom sintering in a Pd-Fe₃O₄ model catalyst. Nat. Mater. 2013;
- 152 12: 724-728. https://doi.org/10.1038/nmat3667.
- 153 4. Torres E, Kaloni TP. Projector augmented-wave pseudopotentials for uranium-
- 154 based compounds. Comput. Mater. Sci. 2020; 171: 109237.
- 155 https://doi.org/https://doi.org/10.1016/j.commatsci.2019.109237.
- 156 5. Zhong B, Cheng B, Zhu Y, Ding R, Kuang P, et al. Hierarchically porous nickel
- 157 foam supported Fe-Ni₃S₂ electrode for high-current–density alkaline water splitting. J.
- 158 Colloid Interface Sci. 2023; 629: 846-853. https://doi.org/10.1016/j.jcis.2022.09.007.
- 159 6. Wu T, Song E, Zhang S, Luo M, Zhao C, et al. Engineering Metallic
- 160 Heterostructure Based on Ni₃N and 2M-MoS₂ for Alkaline Water Electrolysis with
- 161 Industry-Compatible Current Density and Stability. Adv. Mater. 2022; 34.
- 162 https://doi.org/10.1002/adma.202108505.
- 163 7. Li S, Liu Y, Feng K, Li C, Xu J, et al. High Valence State Sites as Favorable
- 164 Reductive Centers for High-Current-Density Water Splitting. Angew. Chem. Int. Ed.
- 165 2023; 62. https://doi.org/10.1002/anie.202308670.
- 166 8. Chen Z, Li Q, Xiang H, Wang Y, Yang P, et al. Hierarchical porous NiFe-P@NC as
- 167 an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis
- 168 at high current density. Inorg. Chem. Front. 2023; 10: 1493-1500.
- 169 https://doi.org/10.1039/d2qi02703h.

- 170 9. Luo Y, Tang L, Khan U, Yu Q, Cheng H-M, et al. Morphology and surface
- 171 chemistry engineering toward pH-universal catalysts for hydrogen evolution at high
- 172 current density. Nat. Commun. 2019; 10. https://doi.org/10.1038/s41467-018-07792-9.
- 173 10. Zhang F, Wang X, Han W, Qian Y, Qiu L, et al. The Synergistic Activation of
- 174 Ce-Doping and CoP/Ni3P Hybrid Interaction for Efficient Water Splitting at
- 175 Large-Current-Density. Adv. Funct. Mater. 2022; 33.
- 176 https://doi.org/10.1002/adfm.202212381.
- 177 11. Wang X, Liu X, Wu S, Liu K, Meng X, et al. Phosphorus vacancies enriched
- 178 cobalt phosphide embedded in nitrogen doped carbon matrix enabling seawater
- splitting at ampere-level current density. Nano Energy 2023; 109.
- 180 https://doi.org/10.1016/j.nanoen.2023.108292.
- 181 12. Lv X, Wan S, Mou T, Han X, Zhang Y, et al. Atomic-Level Surface Engineering of
- 182 Nickel Phosphide Nanoarrays for Efficient Electrocatalytic Water Splitting at Large
- 183 Current Density. Adv. Funct. Mater. 2022; 33.
- 184 https://doi.org/10.1002/adfm.202205161.
- 185 13. Dong Y, Deng Z, Zhang H, Liu G, Wang X. A Highly Active and Durable
- 186 Hierarchical Electrocatalyst for Large-Current-Density Water Splitting. Nano Letters
- 187 2023; 23: 9087-9095. https://doi.org/10.1021/acs.nanolett.3c02940.
- 188 14. Qian G, Chen J, Yu T, Luo L, Yin S. N-Doped Graphene-Decorated NiCo Alloy
- 189 Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water
- 190 Electrolysis Activity at High Current Density. Nano-Micro Lett. 2021; 13.
- 191 https://doi.org/10.1007/s40820-021-00607-5.
- 192 15. Wang B, Sun H, Chen M, Zhou T, Zheng H, et al. Ru single-atom regulated
- 193 Ni(OH)₂ nanowires coupled with FeOOH to achieve highly efficient overall water
- 194 splitting at industrial current density. Chem. Eng. J. 2024; 479.
- 195 https://doi.org/10.1016/j.cej.2023.147500.
- 196 16. Andaveh R, Sabour Rouhaghdam A, Ai J, Maleki M, Wang K, et al. Boosting the
- 197 electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured

- 198 electrocatalyst for large-current-density alkaline seawater splitting. Appl. Catal. B
- 199 Environ. 2023; 325. https://doi.org/10.1016/j.apcatb.2022.122355.
- 200 17. Yu L, Mishra IK, Xie Y, Zhou H, Sun J, et al. Ternary Ni_{2(1-x)}Mo_{2x}P nanowire
- 201 arrays toward efficient and stable hydrogen evolution electrocatalysis under large-
- 202 current-density. Nano Energy 2018; 53: 492-500.
- 203 https://doi.org/10.1016/j.nanoen.2018.08.025.
- 204 18. Cheng F, Peng X, Hu L, Yang B, Li Z, et al. Accelerated water activation and
- stabilized metal-organic framework via constructing triangular active-regions for
- ampere-level current density hydrogen production. Nat. Commun. 2022; 13.
- 207 https://doi.org/10.1038/s41467-022-34278-6.
- 208 19. Zhao S, Yin L, Deng L, Song J, Chang YM, et al. Inheritable Organic-Inorganic
- 209 Hybrid Interfaces with π -d Electron Coupling for Robust Electrocatalytic Hydrogen
- 210 Evolution at High-Current-Densities. Adv. Funct. Mater. 2022; 33.
- 211 https://doi.org/10.1002/adfm.202211576.
- 212 20. Li D, Li Z, Zou R, Shi G, Huang Y, et al. Coupling overall water splitting and
- 213 biomass oxidation via Fe-doped Ni₂P@C nanosheets at large current density. Appl.
- 214 Catal. B Environ. 2022; 307. https://doi.org/10.1016/j.apcatb.2022.121170.
- 215 21. Wang K, Zhao R, Wang Z, Zhang X, Ouyang A, et al. Controlled tuning the
- 216 morphology of CoNiP catalysts with ultra-high activity for water splitting at large
- 217 current densities in alkaline medium. Appl. Surf. Sci. 2023; 626.
- 218 https://doi.org/10.1016/j.apsusc.2023.157218.
- 219 22. Liu W, Li Y, Dou Y, Xu N, Wang J, et al. Light-driven assembly of Pt clusters on
- 220 Mo-NiO_x nanosheets to achieve Pt/Mo-NiO_x hybrid with dense heterointerfaces and
- 221 optimized charge redistribution for alkaline hydrogen evolution. J. Colloid Interface
- 222 Sci. 2024; 655: 800-808. https://doi.org/10.1016/j.jcis.2023.11.065.
- 223 23. Yao H, Le F, Jia W, Cao Y, Sheng R, et al. Dual Electronic Modulations on NiFeV
- Hydroxide@FeOx Boost Electrochemical Overall Water Splitting. Small 2023; 19.
- 225 https://doi.org/10.1002/smll.202301294.

- 226 24. Sun S, Wang T, Qian K, Zhang H, Ji K, et al. Tailoring cation vacancies in Co, Ni
- 227 phosphides for efficient overall water splitting. Int. J. Hydrogen Energy 2022; 47:

228 39731-39742. https://doi.org/10.1016/j.ijhydene.2022.09.156.

- 229 25. Liu X, Wang R, Chen Y, Zhang C, Li X, et al. Inhibitor-regulated corrosion
- 230 strategy towards synthesizing cauliflower-like amorphous RuFe-hydroxides as
- advanced hydrogen evolution reaction catalysts. Int. J. Hydrogen Energy 2023; 48:
- 232 9333-9343. https://doi.org/10.1016/j.ijhydene.2022.12.040.
- 233 26. Lei H, Wan Q, Tan S, Wang Z, Mai W. Pt-Quantum-Dot-Modified Sulfur-Doped
- 234 NiFe Layered Double Hydroxide for High-Current-Density Alkaline Water Splitting
- at Industrial Temperature. Adv. Mater. 2023. https://doi.org/10.1002/adma.202208209.
- 236 27. Zhang J, Lian J, Jiang Q, Wang G. Boosting the OER/ORR/HER activity of Ru-
- doped Ni/Co oxides heterostructure. Chem. Eng. J. 2022; 439.
- 238 https://doi.org/10.1016/j.cej.2022.135634.
- 239 28. Wang H-Y, Ren J-T, Wang L, Sun M-L, Yang H-M, et al. Synergistically enhanced
- 240 activity and stability of bifunctional nickel phosphide/sulfide heterointerface
- electrodes for direct alkaline seawater electrolysis. J. Energy Chem. 2022; 75: 66-73.
- 242 https://doi.org/10.1016/j.jechem.2022.08.019.
- 243 29. Ma G, Ye J, Qin M, Sun T, Tan W, et al. Mn-doped NiCoP nanopin arrays as high-
- 244 performance bifunctional electrocatalysts for sustainable hydrogen production via
- overall water splitting. Nano Energy 2023; 115.
- 246 https://doi.org/10.1016/j.nanoen.2023.108679.
- 247 30. Yang N, Yang W, Yang X, Xiao X, Zhang L, et al. 2D/3D hierarchical and multi-
- 248 heterostructured Co/Ni/Fe phosphosulfide as a highly efficient bifunctional
- electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2024; 56: 396-405.
- 250 https://doi.org/10.1016/j.ijhydene.2023.12.221.
- 251 31. Yaseen W, Xie M, Yusuf BA, Meng S, Khan I, et al. Anchoring Ni(OH)₂-CeO_x
- 252 Heterostructure on FeOOH-Modified Nickel-Mesh for Efficient Alkaline

- 253 Water-Splitting Performance with Improved Stability under Quasi-Industrial
- 254 Conditions. Small 2024. https://doi.org/10.1002/smll.202403971.
- 255 32. Chen Y-F, Li J-H, Liu T-T, You S-H, Liu P, et al. Constructing robust NiFe LDHs-
- 256 NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: one-step
- electrodeposition and surface reconstruction. Rare Met. 2023; 42: 2272-2283.
- 258 https://doi.org/10.1007/s12598-022-02249-x.
- 259 33. Cui T, Zhai X, Guo L, Chi J-Q, Zhang Y, et al. Controllable synthesis of a self-
- assembled ultralow Ru, Ni-doped Fe₂O₃ lily as a bifunctional electrocatalyst for large-
- current-density alkaline seawater electrolysis. Chin. J. Catal. 2022; 43: 2202-2211.
- 262 https://doi.org/10.1016/s1872-2067(22)64093-2.
- 263 34. Liu H, Zhang Y, Ge R, Cairney JM, Zheng R, et al. Tailoring the electronic
- structure of Ni₅P₄/Ni₂P catalyst by Co₂P for efficient overall water electrolysis. Appl.
- 265 Energy 2023; 349. https://doi.org/10.1016/j.apenergy.2023.121582.
- 266 35. Ghising RB, Pan UN, Kandel MR, Dhakal PP, Sidra S, et al. Ruthenium single
- atoms implanted on NiS₂-FeS₂ nanosheet heterostructures for efficacious water
- 268 electrolysis. J. Mater. Chem. A 2024; 12: 3489-3500.
- 269 https://doi.org/10.1039/d3ta05630a.
- 270 36. Pan Z, Yaseen M, Kang Shen P, Zhan Y. Designing highly efficient 3D porous Ni-
- 271 Fe sulfide nanosheets based catalyst for the overall water splitting through component
- regulation. J. Colloid Interface Sci. 2022; 616: 422-432.
- 273 https://doi.org/10.1016/j.jcis.2022.02.085.