

Supplementary Materials

Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer

Masahiro Uehara^{1,#}, Takahiro Domoto^{1,#}, Satoshi Takenaka^{1,2,3}, Osamu Takeuchi⁴, Takeo Shimasaki^{1,5}, Tomoharu Miyashita^{1,2,3}, Toshinari Minamoto¹

¹Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan.
²Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan.
³Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan.
⁴Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan.
⁵Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan.
[#]Authors contributed equally.

Correspondence to: Dr. Toshinari Minamoto, Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan. E-mail: minamoto@staff.kanazawa-u.ac.jp

Categories	Responsible	Mechanisms for resistance to gemcitabine	Ref.
	factors		
Cellular	hENT↓	Restriction of uptake of gemcitabine via reduced	[26-28]
transporters for		expression of hENT1, a nucleoside transporter	
drug uptake and		functioning of intracellular uptake of	
efflux		gemcitabine.	
	MRP5 ↑	Enhancement in efflux of gemcitabine by MRP5,	[28,29]
		a member of ABC transporter family responsible	
		for extracellular transport of gemcitabine*	
Drug	dCK↓	Inactivation of dCK, a rate-limiting kinase for	[30,31]
metabolism		metabolic activation of dFdC/gemcitabine	
	HuR↓	Downregulation of dCK via reduced expression	[32]
		of HuR, an RNA-binding protein that post-	
		transcriptionally stabilizes dCK mRNA	
	RRM1 ↑	Increased expression and activity of RRM1 (a	[33-35]
		rate-limiting enzyme for DNA synthesis) that is	
		inhibited by dFdCDP, an intermediate metabolite	
		of dFdC/gemcitabine	
Anti-apoptotic	PI3K/Akt ↑	PI3K/Akt-mediated pathway protects PDAC cells	[36]
pathways		from apoptosis induced by gemcitabine	
	BNIP3↓	Downregulation of BNIP3, a member of the Bcl-	[37]
		2 family, inactivates the apoptotic mediators,	
		resulting in resistance	
	ILK ↑	Overexpression of ILK decreases caspase 3	[38]
		expression, resulting in gemcitabine resistance	
	MUC4 ↑	Overexpression of MUC4 activates the MUC4-	[39]
		HER2-mediated anti-apoptotic pathway	
	CEACAM6 ↑	CEACAM6 activates Akt/PKB in a c-Src-	[40]
		dependent manner, protecting PDAC cells from	
		cytochrome-c-induced caspase 3 activation	
	p8 ↑	Overexpression of p8, a stress associated and	[41]

Supplementary Table 1. The previously reported representative mechanisms and associated factors for resistance to gemcitabine in pancreatic cancer^[9-11,22-25]

		anti-apoptotic protein, deactivates caspase 3	
Pro-oncogenic	MAPK	ERK and neuropilin-1 (a co-receptor for VEGF)	[36,42-
pathways		confer gemcitabine resistance on PDAC cells via	45]
		induction of MAPK signaling cascade	
		PI3K/Akt-mediated pro-survival pathways	
		protect PDAC cells from apoptosis	
		Src tyrosine kinase is responsible for gemcitabine	
		resistance via activating the Akt-mediated	
		pathway	
	NF-ĸB	NF-κB-mediated pro-survival pathways protect	[45-48]
		PDAC cells from apoptosis	
	Notch	Notch-2 and its ligand, Jagged-1, are responsible	[49,50]
		for EMT phenotype in gemcitabine-resistant	
		PDAC cells. Notch 3 induces gemcitabine	
		resistance via activation of the PI3K/Akt-	
		dependent pathway	
	Hedgehog	Hedgehog signaling causes fibrosis and decreases	[51]
		tumor vascular density, reducing the delivery of	
		gemcitabine	
EMT	ZEB1, slug	ZEB1 and slug, the repressors of E-cadherin,	[52]
		induce gemcitabine resistance	
	Twist	The level of twist was increased in nuclear	[53]
		fraction of gemcitabine-resistant PDAC cells	
TME		TME components consisting of mesenchymal	Reviewed
		(e.g., PSCs, CAFs), inflammatory and immune	in ^[54-62]
		cells embedded in desmoplastic fibrous stroma	[63]
		orchestrate the physically and biologically	
		obstinate barrier against the chemotherapeutics	
		including gemcitabine and the	
		immunotherapeutic regimens	
		Gemcitabine resistance is induced by intratumor	
		Gammaproteobacteria, a class of microbiome,	
		dependent on bacterial CDD _L expression, and	

abrogated by cotreatment with the antibiotic ciprofloxacin

*A controversial result was previously reported in human embryonic kidney (HEK)293 cells {Adema AD, Floor K, Smid K, Honeywell RJ, Scheffer GL, Jansen G, Peters GJ. Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the nucleoside analogs cytarabine and troxacitabine, but not gemcitabine. Springerplus 2014;3:732. [PMID:25674464 DOI:10.1186/2193-1801-3-732]}; ↓: decreased expression or activity; ↑: increased expression or activity. ABC: ATP binding cassette; ATP: adenosine triphosphate; Bcl2: B-cell/CLL lymphoma 2; BNIP3: Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3; CAF(s): cancer-associated fibroblast(s); CDD: cytidine deaminase; CDDL: a long isoform of bacterial CDD; CEACAM6: carcinoembryonic antigen cell adhesion molecule 6; CLL: chronic lymphocytic leukemia; dCK: deoxycytidine kinase; dFdC: 2',2'-difluoro-2'deoxycytidine; dFdCDP: dFdC diphosphate; ECM: extracellular matrix; EMT: epithelialmesenchymal transition; ERK: extracellular signal-regulated kinase; hENT: human equilibrative nucleoside transporter; HER2: human epidermal growth factor receptor 2; HuR: Hu antigen R; ILK: integrin-linked kinase; MAPK: mitogen-activated protein kinase; MRP5: multidrug resistant protein 5; NF-κB: nuclear factor-κB; PI3K: phosphatidylinositide 3-kinase; PSC(s): pancreatic stellate cell(s); RRM1: ribonucleotide reductase subunit M1; TME: tumor microenvironment; VEGF: vascular endothelial growth factor; ZEB1: zinc-finger-enhancer binding protein 1.