1	Supplementary Materials
2 3	Nanodiamond derived N-doped sp ³ @sp ² hybrid carbocatalysts for the aerobic oxidative
4	synthesis of 2-substituted benzoxazoles
5 6	Qingqing Gu ¹ , Rui Huang ² , Chi Xu ¹ , Shiyan Li ^{1,3} , Siglinda Perathoner ⁴ , Gabriele Centi ⁴ ,
7	Yuefeng Liu ¹ ,*
8	
9	¹ Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics,
10	Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
11	² Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning,
12	China.
13	³ University of Chinese Academy of Sciences, Beijing 100049, China.
14	⁴ Dept.s ChiBioFarAm and MIFT, University of Messina, V. le F. Stagno D'Alcontres 31,
15	Messina 98166, Italy.
16	
17	*Correspondence to: Dr. Yuefeng Liu, Dalian National Laboratory for Clean Energy (DNL),
18	Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road,
19	Dalian 116023, Liaoning, China. E-mail: <u>yuefeng.liu@dicp.ac.cn</u>
20	
21	
22	

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or

format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Supplementary Figure 1. HR-TEM images of pristine NDs (A) and NND900 (B).

3 R_f 0.68 (30:1 hexane: ethylacetate). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28-8.26 (m, 2H), 7.80-4 7.77 (m, 1H), 7.60-7.58 (m, 1H), 7.54-7.52 (m, 3H), 7.37-7.34 (m, 2H); ¹³C NMR (101 MHz,

5 Chloroform-*d*) δ 163.06 (C-2), δ 150.79 (C-8), δ 142.14 (C-9), δ131.53 (C-10), δ 128.93 (C-12,C6 14), δ 127.65 (C-11,C-15), δ 127.20 (C-13), δ 125.12 (C-5), δ 124.59 (C-6), δ 120.05 (C-4), δ

- 7 110.61 (C-7).
- 8

2 **Supplementary Figure 3.** Catalytic performance of NDs under different annealing temperatures.

3 Reaction Conditions: 2 mmol aminophenol, 2.2 mmol benzaldehyde, 10 mL xylene, 120 mg

4 catalyst, 140 °C, t = 2 h, 1 atm O_2 . Quantitative analysis was determined by GC-FID using

- 5 nitrobenzene as an internal standard.
- 6
- 7
- 8

Wavenumber (cm⁻¹)
Supplementary Figure 4. ATR-IR spectra of (a) reference samples including I (2-(benzylidene amino)phenol), model catalyst (1,10-phenanthroline), product (2-phenyl benzoxazole) and solvent (toluene); (b) catalytic systems with the mixture of I (as reactant), model catalyst and toluene under 140 °C in oxygen for 1, 2, 3, 4 and 5 h, respectively.

9 Supplementary Figure 5. GC-MS analysis of products (P1-P23) in substrate scope and
 10 experiments.

Sample	C (at%)	N (at%)	O (at%)	sp ² /sp ³	sp ² carbon fraction (%)
 ND	87.6	1.8	10.5	0.2	16.7
NND900	92.3	3.7	4.0	0.5	33.3
ND900	95.4	1.6	3.0	0.3	23.1

1 **Supplementary Table 1.** Summary of XPS C1s data of various samples

5

6 Supplementary Table 2. Summary of Raman peaks assignments

Position	Assignment
1324 cm^{-1}	Diamond peak
1400 cm^{-1}	Disorder-induced D band
1590 cm ⁻¹	G band
1640 cm^{-1}	O-H bending vibrations

Entry	Samples	Surface area (m ² g ⁻¹)*
1	NDs	312
2	oND900	360
3	NoND900	360
4	NND900	366

Supplementary Table 3. The specific surface area of different NDs-based samples

* Determined by N2 adsorption-desorption experiment

3

2

4

Supplementary Table 4. Optimization of the reaction temperature and time 5

Entry	Catalyst	Temp. (°C)	Time (h)	Con. A* (%)	Sel. P* (%)	Sel. I* (%)	Yield P* (%)	Normalized r _P (mmol h ⁻¹ g ⁻¹)*
1	/	140	2	96.1	0	99.8	0	/
2	NND900	140	2	100	27.7	70.9	27.7	2.3
3	NND900	120	2	100	8.8	90.1	8.8	0.7
4	NND9000	100	2	100	3.5	95.6	3.5	0.3
5	NND9000	140	12	100	79.0	20.2	79.0	1.1
6	NND9000	140	28	100	97.4	0	97.4	0.6
7	NND900	120	12	100	35.6	63.0	35.6	0.5
8	NND900	100	12	100	16.9	82.3	16.9	0.2

6 Reaction Conditions: 2 mmol 2-aminophenol (A); 2.2 mmol benzaldehyde (B); 10 mL xylene; 120 mg catalyst;

T= 140 °C; *GC analysis, nitrobenzene was used as internal standard; Catalyst mass normalized formation rate of product **P**: $r_P = \frac{n_P}{m_{Cat.}*t} (mmol \cdot h^{-1} \cdot g^{-1}).$ 7

8

			NH ₂ + RC	но ——— 🗍	XH	-R ——	→ [X N	
Entry	X	Catalysts	Oxidants	Additives	Temp (°C)	Time (h)	Yield (%)	Normalized r _P (mmol h ⁻¹ g ⁻¹)*	Ref
1 ^a	0	NND900	O ₂	/	140	28	97.4	0.6	this work
2 ^a	S	NND900	O ₂	/	140	100	74.8	0.1	this work
3 ª	NH	NND900	O ₂	/	140	100	79.2	0.1	this work
4	0	/	2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone	/	45	12	93	/	[1]
5	0	2,6-di- <i>tert</i> -buty 1-4-methylpyridine	thianthrene cation radical perchlorate	/	RT		97	/	[2]
6	NH	/	oxone	/	RT		90	/	[3]
7	NH	Ru(PPh ₃) ₃ (CO)H ₂ / Xantphos	/	p- TsOH/piperidinium acetate	111	8	98	2.5 h ⁻¹	[4]
8	О	$[Cp*IrI_2]_2$	/	crotononitrile	111	24	100	4.2 h ⁻¹	[4]
9	S	$[Cp*IrI_2]_2$	/	crotononitrile	111	24	68	2.8 h ⁻¹	[4]
10	NH	CuCl/Bpy	air	TEMPO	r.t.	12	95	1.6 h ⁻¹	[5]
11	Ο	CuCl/Bpy	air	TEMPO	r.t.	12	89	1.5 h ⁻¹	[5]
12	S	CuCl/Bpy	air	TEMPO	r.t.	13	93	1.4 h ⁻¹	[5]
13	0	Au/TiO ₂	/	/	111	24	90	1.9 h ⁻¹	[6]

Supplementary Table 5. Comparison between the catalytic activity of N-doped sp³@sp² hybrids and other reported catalysts in the synthesis of benzoxazoles, benzothiazoles, and benzimidazoles

Gu et al. Chem Synth 2023 Volume:Number | http://dx.doi.org/10.20517/cs.2023.xx

14	0	Polymer-Incarcerated Pt nanoclusters	O_2	K ₂ CO ₃	30	20	72	0.9	[7]
15	S	Polymer-Incarcerated Pt nanoclusters	O ₂	K ₂ CO ₃	30	20	83	1.0	[7]
16	0	AgPd NPs/WO _{2.72}	HCOOH	/	80	8	99	4.1 h ⁻¹	[8]
17	0	N-hydroxyphthalimide	O_2	/	120	15	71	0.5 h ⁻¹	[9]
18	0	4-methoxy-TEMPO	O_2	/	120	15	96	0.6 h ⁻¹	[9]
19 ^b	0	Darco KB	O_2	/	120	4	78	1.6	[10]
20	Ο	MIL-101(Cr)	O_2	/	120	9	87	9.7	[11]
21	NH	MIL-101(Cr)	O_2	/	55	2	94	47.0	[11]
22	S	MIL-101(Cr)	O_2	/	60	2.5	87	34.8	[11]
23	NH	SiO ₂ -OSO ₃ H	air	/	80	0.5	92	12.3	[12]
24	NH	Pt/TiO ₂	/	/	165	24	94	3.9 h ⁻¹	[13]
25	S	Pt/Al ₂ O ₃	/	/	165	24	89	3.7 h ⁻¹	[13]
26	0	molecular sieve	O_2	/	180	48	86	0.005	[14]
27	0	Ru ₂ Cl ₄ (CO) ₆ /PFMN	/	DABCO	120	24	78	0.7	[15]
28	0	Fe ₃ O ₄ @SiO ₂ @PPh ₂	/	DABCO	110	12	10	0.2	[15]
29	NH	$CoSO_4 \cdot 7 H_2O$	air	CF ₃ COOH	r.t./20 mA	2.5	93	18.6 h ⁻¹	[16]
30	S	$CoSO_4 \cdot 7 H_2O$	air	CF ₃ COOH	r.t./20 mA	2.5	86	17.2 h ⁻¹	[16]
31	0	$CoSO_4 \cdot 7 H_2O$	air	CF ₃ COOH	r.t./10 mA	6	40	3.3 h ⁻¹	[16]
32	0	copper ferrite NPs	/	/	130	16	92	0.6 h ⁻¹	[17]
33	0	CuFe ₂ O ₄	O_2	/	110		92	/	[18]
34	S	CuFe ₂ O ₄	O_2	/	110		93	/	[18]
35	NH	CuFe ₂ O ₄	O_2	/	110		89	/	[18]

^a 60 mg catalyst per 1 mmol aminophenol (**A**); ^b 125 mg catalyst per 8 mmol aminophenol (**A**); Catalyst mass normalized formation rate of product **P**: $r_P = \frac{n_P}{m_{Cat.}*t} (mmol \cdot h^{-1} \cdot g^{-1})$; Catalyst (in some cases, metal) moles normalized formation rate of product **P**: $r_P = \frac{n_P}{n_{Cat.}*t} (h^{-1})$.

- 1 Supplementary Table 6. The catalytic performance of NND900, purified and Fe loaded
- 2 NND900.

Entry	Catalyst	Temp.	Time (h)	Con.A*	Sel.P*	Sel.I*	Yie.P*
		(0)	(11)	(,,,)	(,,,)	(,,,)	(,,,)
1	NND900	140	2	100	27.7	70.9	27.7
2	NND900-HC1	140	2	100	26.5	72.3	26.5
3	Fe/NND900	140	2	100	26.1	72.9	26.1

Reaction Conditions: 2 mmol 2-aminophenol; 2.2 mmol benzaldehyde; 10 mL xylene;
 120 mg ostalyst; T= 140 %C

4 120 mg catalyst; T= 140 °C.

5

6

7 Supplementary Table 7. ICP results of various samples

Entry	Sample	Fe (wt.%)	Ca (wt.%)	Ba (wt.%)	Ni (wt.%)
1	NDs	0.37	0.02	0.35	/
2	NDs-purified	0.01	0.13	/	/
3	NND900	0.09	0.02	/	/

8

9

10 Supplementary Table 8. Summary of XPS N1s data of various samples

••	v		•				-		
Sample	Ν	N1/N	N2/N	N3/N	N4/N	N1	N2	N3	N4
	(at%)	(%)	(%)	(%)	(%)	(at%)	(at%)	(at%)	(at%)
NDs	1.8	2.7	33.8	41.9	21.7	0	0.6	0.8	0.4
NND900	3.7	22.5	28.5	35.5	13.4	0.8	1.1	1.3	0.5
ND900	1.6	3.9	29.0	40.9	26.3	0.1	0.5	0.7	0.4

11 N1: pyridinic N; N2: pyrrolic N; N3: graphitic N; N4: N oxide.

13 Supplementary Table 9. Catalytic performance of model catalysts 1,10-phenanthroline

14	and	car	bazol	le.
----	-----	-----	-------	-----

Entry	Catalyst	Temp.	Time	Con.A	Sel.P	Sel.I	Yie.P
		(°C)	(h)	(%)	(%)	(%)	(%)
1	1,10-phenanthroline	140	12	100	13.7	84.9	13.7
2	carbazole	140	12	100	7.0	92.0	7.0

15 Reaction Conditions: 2 mmol 2-aminophenol; 2.2 mmol benzaldehyde; 10 mL xylene;

16 120 mg catalyst; T = 140 °C.

17

18

19 **REFERENCES**

- [1] J. Chang, K. Zhao, S. Pan. Synthesis of 2-arylbenzoxazoles via DDQ promoted
 oxidative cyclization of phenolic Schiff bases-a solution-phase strategy for library
 synthesis. *Tetrahedron letters* 2002, 43 (6), 951-954. DOI: 10.1016/S0040 4039(01)02302-4.
- [2] K.H. Park, K. Jun, S.R. Shin, S.W. Oh. 2-Arylbenzoxazoles from phenolic schiff's bases by thianthrene cation radical. *Tetrahedron Letters* 1996, *37* (49), 8869-8870.
 DOI: 10.1016/S0040-4039(96)02070-9.
- [3] P.L. Beaulieu, B. Haché, E. von Moos. A practical Oxone®-mediated, highthroughput, solution-phase synthesis of benzimidazoles from 1, 2phenylenediamines and aldehydes and its application to preparative scale synthesis. *Synthesis* 2003, 2003 (11), 1683-1692. DOI: 10.1055/s-2003-40888.
- [4] A.J. Blacker, M.M. Farah, M.I. Hall, S.P. Marsden, O. Saidi, J.M. Williams.
 Synthesis of benzazoles by hydrogen-transfer catalysis. *Organic letters* 2009, *11*(9), 2039-2042. DOI: 10.1021/ol900557u.
- [5] J. Yu, J. Xu, M. Lu. Copper-catalyzed highly efficient aerobic oxidative synthesis of
 benzimidazoles, benzoxazoles and benzothiazoles from aromatic alcohols under
 solvent-free conditions in open air at room temperature. *Applied Organometallic Chemistry* 2013, 27 (10), 606-610. DOI: 10.1002/aoc.3039.
- [6] L. Tang, X. Guo, Y. Yang, Z. Zha, Z. Wang. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. *Chemical Communications* 2014, *50* (46), 6145-6148. DOI: 10.1039/c4cc01822b.
- [7] W.J. Yoo, H. Yuan, H. Miyamura, S. Kobayashi. Facile Preparation of 2-Substituted
 Benzoxazoles and Benzothiazoles via Aerobic Oxidation of Phenolic and
 Thiophenolic Imines Catalyzed by Polymer-Incarcerated Platinum Nanoclusters. *Advanced Synthesis & Catalysis* 2011, 353 (17), 3085-3089. DOI:
 10.1002/adsc.201100430.

47	[9] C. V., V. Cue, Z. V. M. Murrie, Z. Vin, D. Chen, I. L. C.T. Cete, C. Cun, Appl.
47	[8] C. Yu, X. Guo, Z. Al, M. Muzzio, Z. Yin, B. Shen, J. Li, C.I. Selo, S. Sun. Aged
48	nanoparticles deposited on $WO_{2.72}$ handroods as an efficient catalyst for one-pot
49 50	Lournal of the American Chemical Society 2017 130 (16) 5712 5715 DOI:
50	10 1021/jacs 7b01082
51	[9] V X Chen I E Oian W Zhang B Han Efficient Aerobic Oxidative Synthesis of
52	2-Substituted Benzovazoles, Benzothiazoles, and Benzimidazoles Catalyzed by 4-
54	Methoxy-TEMPO Angewandte Chemie International Edition 2008 47 (48) 9330-
55	9333 DOI: 10 1002/anie 200803381
56	[10] Y. Kawashita N. Nakamichi H. Kawabata M. Hayashi Direct and practical
57	synthesis of 2-arylbenzoxazoles promoted by activated carbon. Organic Letters
58	2003 . <i>5</i> (20), 3713-3715. DOI: 10.1021/ol035393w.
59	[11] E. Niknam, F. Panahi, F. Daneshgar, F. Bahrami, A. Khalafi-Nezhad, Metal-Organic
60	Framework MIL-101 (Cr) as an Efficient Heterogeneous Catalyst for Clean
61	Synthesis of Benzoazoles. ACS Omega 2018, 3 (12), 17135-17144. DOI:
62	10.1021/acsomega.8b02309.
63	[12] B. Sadeghi, M. Ghasemi Nejad. Silica sulfuric acid: an eco-friendly and reusable
64	catalyst for synthesis of benzimidazole derivatives. Journal of Chemistry 2012,
65	2013, 1-5. DOI: 10.1155/2013/581465.
66	[13] C. Chaudhari, S.H. Siddiki, K. Shimizu. Acceptorless dehydrogenative synthesis of
67	benzothiazoles and benzimidazoles from alcohols or aldehydes by heterogeneous
68	Pt catalysts under neutral conditions. Tetrahedron Letters 2015, 56 (34), 4885-
69	4888. DOI: 10.1016/j.tetlet.2015.06.073.
70	[14] W. Chang, Y. Sun, Y. Huang. One-pot green synthesis of benzoxazole derivatives
71	through molecular sieve-catalyzed oxidative cyclization reaction. Heteroatom
72	Chemistry 2017, 28 (2), 21360. DOI: 10.1002/hc.21360.
73	[15] A. Khalafi-Nezhad, F. Panahi. Ruthenium-catalyzed synthesis of benzoxazoles
74	using acceptorless dehydrogenative coupling reaction of primary alcohols with 2-
75	aminophenol under heterogeneous conditions. ACS Catalysis 2014, 4 (6), 1686-
76	1692. DOI: 10.1021/cs5000872.
77	[16] Y.L. Lai, J.S. Ye, J.M. Huang. Electrochemical Synthesis of Benzazoles from
78	Alcohols and o-Substituted Anilines with a Catalytic Amount of Coll Salt.
79	<i>Chemistry-A European Journal</i> 2016 , 22 (15), 5425-5429. DOI:
80	10.1002/chem.2015050/4.
81	[1/] S.A. Sarode, J.M. Bhojane, J.M. Nagarkar. An efficient magnetic copper ferrite
82	nanoparticle: for one pot synthesis of 2-substituted benzoxazole via redox reactions. T_{1} = L_{1} = L_{2} = 2015 = 56 (1) 206 210 DOL 10 1016/(4-4) + 2014 11 065
83	<i>Tetranearon Letters</i> 2015 , <i>50</i> (1), <i>206-210</i> . DOI: 10.1016/J.tettet.2014.11.065.
84 95	[16] D. Talig, A. Zhu, W. Wei, N. Suli, L. Tuali, M. Jialig, J. Tou, H. Walig. Magnetically recoverable and reveable CyEe, O. penepertical established synthesis
00 86	of benzovazoles, benzothiazoles and benzimidazoles using diovugan as ovident
00 87	RSC A dyances 2014 A (34) 17832 17830 DOI: 10.1030/c/ro00550g
88 88	$\mathbf{AUVUUUUU}_{\mathbf{UU}} \mathbf{UU}_{\mathbf{U}} \mathbf{U}_{\mathbf{U}}, \mathbf{\tau}_{(\mathbf{U}^{+})}, 1_{(\mathbf{U}^{-})}^{-1}_{(\mathbf{U}^{-})}, \mathbf{DOI}, 10, $
00	