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S1. Application of our method in simulated dataset for Al-Cu alloys

The multiphase field model is a powerful tool for simulating dendritic growth

during solidification[1,2]. The reason we used this model to simulate the

microstructures of binary Al-Cu alloys is to simplify the calculation because only

autocorrelations of each microstructure should be considered. For instance, if the

ternary eutectic microstructures of a Al-Cu-Ag alloy are generated, at least

autocorrelations and cross-correlations of two thermodynamic phases should be

calculated to ensure the integrity of statistical information[3–6]. Further research will

be conducted on this case. In the multiphase field model, the phase state �1 =− 1 is

chosen to represent the liquid phase, whereas �� (� ≠ 1) denotes the solid phase with

various crystalline orientations. The sum constraint �=1…� ��� = 1 is maintained

throughout. The governing equation of the phase field is expressed as follows:
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The parameters  and w with subscript SL or SS are determined from the

interface energy  and interface width 2 of the solid–liquid interface or

solid–solid interface:
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By adjusting the ratio between SL and SS , the wetting property of grain boundary

(GB) can be adjusted. The formation of GB is not considered here, and we set

2.5SS SL  and SL SS  .

In the case of a fourfold anisotropic solid–liquid interfacial energy, the term SL

should be extended to the following:
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where 4 is the anisotropy coefficient of interface energy, which represents the

magnitude of the anisotropy.

The diffusion equation with an anti-trapping current is expressed as[2,7]
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where DL is the liquid diffusion coefficient. The diffusion in the solid phase is

neglected here. c=1cL+(11)cS is a mixture concentration of solid and liquid.

This multiphase field model was successfully applied to dendritic growth

competition during directional solidification in our previous works[8,9]. Additional

details on the model are presented in [10].



In the present study, the growth of multi-dendrites with various orientations

during isothermal solidification of Al-Cu binary alloy was simulated inside a square

domain of size 1000d� × 1000d�. The degree of nucleation supercooling (∆�), the

number of primary grains (�), and anisotropy coefficient of interface energy

(�4) were chosen as the process parameters that control microstructures. The

parameters used in the simulations are listed in Table S1. Six cases with different

combinations of process parameters were simulated, as shown in Figure S1.



Table S1. Parameters and physical properties[11].

Parameters Variable Value

Melting point of Al ��/� 933.6

Interface energy �/��−2 0.24

Entropy of fusion ∆�/��−3�−1 1.01 × 106

Liquidus slope �/���%−1 −2.6

Partition coefficient � 0.14

Anisotropy strength �4 0.01, 0.04

Initial concentration �0/��% 3.0

Liquid diffusivity ��/�2�−1 3 × 10−9

Undercooling ∆�/� 4, 8, 12

Grid size ��/�� 0.5

The number of primary

grains
�

0.01, 0.04



Figure S1. Microstructures produced by PFM. �, �4, and ∆� represent the number

of primary grains, anisotropy coefficient of interfacial free energy, and degree of

nucleation supercooling, respectively.



Figure S2. The distribution of the averaged RVE and SVEs in the PCA space: (A)

distribution in PC1–PC2 vectors; and (B) distribution in PC1–PC3 vectors.



Figure S3. Distance �
��∗

�� ��� −��∗
�−�� ����� as a function of the number of SVEs by recursively

adding for the six simulated samples shown in Figure S1.



Figure S4. Accuracy of prediction for the first three PCs: (A) PC1; (B) PC2; and (C)

PC3.



S2. Application of our method in the ferritic heat-resistant steels dataset

(supplementary results)

Figure S5. Variation of the first two PC basis and ensemble averaged autocorrelations

with different lengths of � ���.

Combining with Equation (3), one can understand the representative meanings of

the first two PCs from their basis vectors shown in Figure S5. When � ��� ≥ 50

pixels, if PC1 increases, the peak value of the autocorrelations that is strongly

associated with the volume fraction of austenite phase will also increase. In other

words, PC1 represents the volume fraction. As for PC2, it mainly relates to the peak

value and the size of the central area, indicating that PC2 determines the volume

fraction, average size, and distribution of the austenite phase. When � ��� < 50

pixels, PC1 is not only correlated with phase volume fraction but also related to the

average size of the phase, and PC2 does not contain the information about phase

distribution as it does before.



Figure S6. Variation of the distribution of the five experimental alloys in the first

three PCs with different lengths of � ���.



S3. Application of our method in the Ni-Fe-based superalloy dataset

Figure S7. Microstructures extracted from [12].



Figure S8. Variation of the distribution of the eight validated Ni-Fe-based superalloys

in the first three PCs with different lengths of |�|.



Figure S9. Variation of the predicted accuracy (MAE and MARE) of the yield

strength � and the tolerance factor � with different length of � ��� for the eight

validated Ni-Fe-based superalloys: (A) MAE and MARE; and (B) �. MAE, represent

mean absolute error; MARE, mean absolute relative error.



S4. Analysis of the traditional evaluation metric

Figure S10. Ensemble averaged autocorrelations and scalar error �� between the

statistics of sub-domains and the averaged one. (A,C) Digital microstructure

(550×550 pixels) and associated autocorrelations from [13]. (B,D) Sub-domains

randomly extracted from (A) and associated autocorrelations. (E) �� vs |�|. The

autocorrelations are all plotted with the same color scale to highlight the differences

between each other. The embedded subgraphs in (E) visualize the absolute error

between the first member in (D) and the ensemble average; they are plotted with the

same color scale and can be distinguished by different lengths of |�|.



Figure S11. Variation of the pair correlation function � � with different length of

� ��� for the evolving microstructures with four groups of parameters at: (A1–A4)

1×104dt; (B1–B4) 1×105dt; (C1–C4) 5×105dt; and (D1–D4) 2×106dt. The

corresponding microstructures are embedded into each plot. A black arrow indicates

the �� for each microstructure, which is the minimal � ��� when � � value

fluctuates around �0
2 with a negligible level (i.e., gray shadow area representing the

variation of �0
2 ± 0.005). A black dotted horizontal line labels the location of �0

2.

The superscripts � and � in ��
�� represent the specific combination of parameters (��

and ��) and evolving time, respectively.

The evolving microstructures shown in Figure S11 are from Figure 3 in our

previous work[14]. They were simulated by using different initial parameters: particle

number �� and particle density �� in a particle cluster. The specific explanation and

value of each parameter can be found in Section 2.2 and Table 1 in [14]. The original

size of each simulated microstructure was resized to 500×500 pixel. Two-point

statistics method was used to calculate the autocorrelations of the spherical particles



in the microstructures; the pair correlation function (� � ) was then obtained from the

autocorrelations, as shown in Figure S11. For each microstructure, coherence length

�� was equal to the minimal � ��� when � � value fluctuates around �0
2 with a

negligible level (i.e., gray shadow area representing the variation of �0
2 ± 0.005) and

highlighted by the black arrow shown in Figure S11.

Figure S12. Coherence length �� and � � ≥�� − �0
2

max
vs. evolving time for the

microstructures with four groups of parameters: (A) �� vs. time; and (B) � � ≥�� −

�0
2

max vs. time. �� was determined according to the points labeled by black arrows

shown in Figure S11, while � � ≥�� − �0
2

max
is the maximum � � − �0

2 when �

is larger than ��.

Figure S12A shows the variation of �� with the increase of evolving time. For

the first three combinations of �� and ��, we can see that �� increases rapidly

(Stage 1), then changes slightly (Stage 2), and finally reaches the maximum after a

long-time evolution (Stage 3). At Stage 1, the solute diffusion mode changes from

short-range diffusion to long-range diffusion, leading to the characteristic length ��

of the microstructures increasing rapidly. At Stage 2, the velocity of long-range

diffusion is much smaller than that of the remaining short-range diffusion in each

microstructure, thus �� varies slightly. After a long time of evolving, sufficient

long-range diffusion results in obvious coarsening of the particles, thus the large

changes in ��. In terms of the last combination of �� and ��, �� barely changes

during the first two stages because the short-range solute diffusion within each

particle cluster plays a major role in grain growth, which can be demonstrated from

the smaller average particle size and cluster-like particle distribution in the



microstructures compared with that in the microstructures with other three groups of

combinations of �� and ��. After a long time of evolving, coarsening particles

caused by long-range solute diffusion appear and the �� of each microstructure

increases slowly (Stage 3). Interestingly, even if �� changes with different degrees

over time, � � ≥�� − �0
2 is still at a low level (<0.005), indicating � � ≥�� − �0

2 is

independent of evolving time.
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