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Abstract
The unmanned aerial vehicle (UAV) has been applied in unmanned air combat because of its flexibility and practicality.
The short-range air combat situation is rapidly changing, and the UAV has to make the autonomous maneuver deci-
sion as quickly as possible. In this paper, a type of short-range air combat maneuver decision method based on deep
reinforcement learning is proposed. Firstly, the combat environment, including UAV motion model and the position
and velocity relationships, is described. On this basic, the combat process is established. Secondly, some improved
points based on proximal policy optimization (PPO) are proposed to enhance the maneuver decision-making ability.
The gate recurrent unit (GRU) can help PPO make decisions with continuous timestep data. The actor network’s in-
put is the observation of UAV, however, the input of the critic network, named state, includes the blood values which
cannot be observed directly. In addition, the action space with 15 basic actions and well-designed reward function are
proposed to combine the air combat environment and PPO. In particular, the reward function is divided into dense
reward, event reward and end-game reward to ensure the training feasibility. The training process is composed of
three phases to shorten the training time. Finally, the designed maneuver decision method is verified through the
ablation study and confrontment tests. The results show that the UAVwith the proposedmaneuver decision method
can obtain an effective action policy to make a more flexible decision in air combat.

Keywords: Short-range air combat, unmanned aerial vehicle, deep reinforcement learning, maneuver decision, prox-
imal policy optimization, flight simulation
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1. INTRODUCTION
The unmanned aerial vehicle (UAV) has been applied in many fields for its low cost and high efficiency, in-
cluding the military domain [1,2]. As sensors, artificial intelligence (AI) and other related technologies are de-
veloped and applied to UAV, the serviceable range of UAV in the military has been significantly expanded [3].
Air combat is one of the fields where the UAV is utilized.

The air combat is incredibly complex due to the difficulty of predicting the various scenarios that may arise
unpredictably. During the combat, especially in short-range air combat, the UAV performs violent maneu-
vers which make the combat scenarios change instantly. There are roughly three categories of methods, op-
timization methods, game theory methods and AI methods, to solve the short-range air combat maneuver
decision-making problem [3,4]. For the optimization methods, the maneuver decision problem is turned into
an optimization problem, and solved by the optimization theories, like optimization algorithms [4,5]. However,
the optimization problem for air combat is a high-dimensional and large-scale problem that is usually so diffi-
cult and complex that most optimization-based decision-making algorithms cannot be executed in real-time
and adapt to practical constraints. Game theory methods, especially differential games [6,7], are another pop-
ular method to solve air combat maneuver decision problems. Whereas, the mathematical models of game
theory methods are difficult to establish and their solutions are always hard to prove the adequacy and neces-
sity [4]. For the complex air combat problem, AI methods catch the scholars for their flexibility and operability.
The expert system method [8] is one of the AI methods, which tries to map the human knowledge and experi-
ence into the flight rule library to complete the maneuver decision. However, the mapping process is complex
because human knowledge and experience are always hard to generalize into rules and describe mathemati-
cally. On the other hand, once the rule library has been built, the maneuver policy is fixed and inflexible [3].
The methods based on reinforcement learning (RL) are popular for air combat problems recently.

RL is a type of machine learning method that improves its action policy with respect to the reward obtained
by repeated trial and error in an interactive environment [9]. In recent years, the neural network has been
combined with RL, which is called deep reinforcement learning (DRL). Many types of DRL algorithms have
been proposed, like deep Q network (DQN), deep deterministic policy gradient (DDPG), proximal policy op-
timization (PPO), etc. DRL has been applied in UAV path control [10], quadrupedal locomotion control [11],
autonomous platoon control [12], etc. At the same time, DRL has been used to improve the operational effi-
ciency of air combat [9,13,14]. In ref. [3], the DQN is used to solve one-to-one short-range air combat with an
evaluation model and maneuver decision model, and basic-confrontation training is presented because of the
huge computation load. The PPO is used to learn the continuous 3-DoF short-range air combat strategy in
ref. [15], and it can adapt to the combat environment to beat the enemy who uses the minmax strategy. With
the DRL method, the UAV can adapt to the changing combat situation and make a reasonable maneuver de-
cision. However, the huge computation load and slow training speed are still the main issues that needs to be
addressed when combining DRL with air combat problems.

In this paper, the problem of one-to-one UAV short-range air combat maneuver decision-making is studied.
The main contributions are summarized as follows.

(1)The air combat environment with the attacking and advantage areas is designed to describe the relationship
between the UAVs. And to increase the confrontment difficulty, the attacking conditions, blood values and
the enemy action policy consisting of prediction and decision are introduced.

(2)TheGRU layer is applied to design the neural networkswhich are used as the PPO’s actor and critic networks.
On the other hand, the observation of the UAV for actor network and combat state information for critic
network are designed to separate their roles.
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Figure 1. The UAV’s motion model in the ground coordinate system. UAV: unmanned aerial vehicle

(3) To improve flexibility and intelligence during the confrontment, the reward function is divided into three
parts: dense reward, event reward and end-game reward. Then, the phased training process is designed from
easy to difficult to ensure the feasibility of training.

The remainder of this paper is organized as follows. In section II, the UAVmotion model, air combat environ-
ment and its process are introduced. Then the method designed is explained in section III, which includes the
PPO algorithm, some improved points and the design for state, action and reward function to combine the
PPO algorithm with the air combat problem. The action policy for the enemy and training process is also in-
troduced. Next, the training results and simulation analysis are presented in section IV. Finally, the conclusion
is presented in section V.

2. PROBLEM FORMULATION
2.1. UAV motion model
The three-degree-of-freedom UAV model is considered because the main consideration in short-range air
combat problem is the position and velocity relationship between the two sides [3]. The motion model is es-
tablished in the ground coordinate system as East-North-Up (ENU) coordinate system, which is shown in
Figure 1.

To simplify the problem, assume that the velocity direction is fixedwith the -axis of the body coordinate system,
and the UAV’s motion model is shown as [14,16]



¤𝑥 = 𝑣 cos 𝜃 cos𝜓
¤𝑦 = 𝑣 cos 𝜃 sin𝜓
¤𝑧 = 𝑣 sin 𝜃
¤𝑣 = 𝑔 (𝑛𝑥 − sin 𝜃)
¤𝜃 = 𝑔

𝑣
(𝑛𝑧 cos 𝛾 − cos 𝜃)

¤𝜓 =
𝑔𝑛𝑧 sin 𝛾
𝑣 cos 𝜃

, (1)

where 𝑥, 𝑦 and 𝑧 are the UAV’s position coordinate values and p = [𝑥, 𝑦, 𝑧]𝑇 , 𝑣 = ‖v‖ is the velocity, ¤𝑥, ¤𝑦 and ¤𝑧
are the values of v on the ground coordinate axes, 𝛾, 𝜃 and 𝜓 represent the flight-path bank angle, flight-path
angle and heading angle respectively, 𝑔 is the acceleration of gravity, 𝑛𝑥 is the overload in velocity direction,
and 𝑛𝑧 is the normal overload. Noting that the heading angle 𝜓 is the angle between v’, the projection of v on
the 𝑥𝑜𝑦 plane, and 𝑜𝑥 axis. The basic control parameters 𝑛𝑥 , 𝑛𝑧 and 𝛾 in the motion model can be expressed as
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Figure 2. The relationship between the red and blue sides during the battle.

a control input vector u = [𝑛𝑥 , 𝑛𝑧, 𝛾]𝑇 ∈ R3, which can be used to control the UAV’s position and velocity in
the air combat maneuver decisionmaking [16]. At the same time, the UAV’s motionmust satisfy the constraints
which are expressed as [3]



𝑣min ⩽ 𝑣 ⩽ 𝑣max

𝜃min ⩽ 𝜃 ⩽ 𝜃max

−𝜋 < 𝛾 ⩽ 𝜋
0 ⩽ 𝜓 < 2𝜋
𝑛𝑥min ⩽ 𝑛𝑥 ⩽ 𝑛𝑥max

𝑛𝑧min ⩽ 𝑛𝑧 ⩽ 𝑛𝑧max

, (2)

where subscript 𝑚𝑖𝑛 and 𝑚𝑎𝑥 mean the minimum and maximum values, and the parameters are set as 𝑣min =
30𝑚/𝑠, 𝑣max = 150𝑚/𝑠, 𝜃min = −𝜋/4, 𝜃max = 𝜋/4, 𝑛𝑥min = −1, 𝑛𝑥max = 2.5, 𝑛𝑧min = −4 and 𝑛𝑧max = 4. These
constraints are judged and processed when the control input vector u is input to the UAV motion model and
the UAV state, including 𝑣, 𝜃 and 𝜓, is updated.

By giving the control parameters’ values and UAV’s state at the time step 𝑡, the UAV’s state at the time step 𝑡 + 1
can be easily obtained by the Runge-Kutta method [14].

2.2. Air combat environment
In the one-to-one short-range air combat environment, there are two UAVs, divided into red and blue. The
red aims to gain the advantage situation over the blue until the blue side is destroyed by its weapon, and the
blue aims to do the opposite [4]. In this paper, the red UAV is controlled by the proposed decision method
based on DRL algorithm. The relationship between the red and blue sides during the battle, which is shown
in Figure 2, is mainly described by both sides’ velocity vectors, the red’s velocity v𝑟 and the blue’s velocity v𝑏 ,
and the relative position vector D, which can be expressed as

D = p𝑏 − p𝑟 , (3)

where p𝑟 and p𝑏 are the red and blue’s position vectors respectively.
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The angle 𝜑𝑟 , named the attacking angle, is between v𝑟 and D, and the formula can be expressed as [16]

𝜑𝑟 = arccos
v𝑟 · D

‖v𝑟 ‖ · ‖D‖ . (4)

During the confrontation, the red has a chance to attack and deal damage to the blue only if the blue is in its
attacking area. 𝜑𝑟 can be used to describe whether the blue in the red’s attacking area and the conditions can
be described as

{
𝐷𝑎𝑡𝑡,min ⩽ ‖D‖ ⩽ 𝐷𝑎𝑡𝑡,max
𝜑𝑟 ⩽ 𝜑𝑎𝑡𝑡,max

, (5)

where 𝐷𝑎𝑡𝑡,min and 𝐷𝑎𝑡𝑡,max are the minimum and maximum attacking distances, and 𝜑𝑎𝑡𝑡,max is the maximum
attacking angle that has a chance to deal damage.

The angle 𝜑𝑏 , named escaping angle, is between v𝑏 and D, and the formula is expressed as [16]

𝜑𝑏 = arccos
v𝑏 · D

‖v𝑏 ‖ · ‖D‖ . (6)

During the confrontation, the red not only needs to keep the blue in its attacking area but also tries to avoid
being attacked by the blue. Thus, the advantage area for the red is defined behind the blue and can be described
as

{
𝐷𝑎𝑑𝑣,min ⩽ ‖D‖ ⩽ 𝐷𝑎𝑑𝑣,max
𝜑𝑏 ⩽ 𝜑𝑒𝑠𝑝,max

, (7)

where 𝐷𝑎𝑑𝑣,min and 𝐷𝑎𝑑𝑣,max are the minimum and maximum advantage distances, and 𝜑𝑒𝑠𝑝,max is the maxi-
mum escaping angle that the red is in its advantage area.

During air combat, theUAVhas limited attacking resource and needs attack only under certain conditions. The
enemy should be both within the red’s attacking area and hard to escape. These conditions can be described
as [15]


𝐷𝑎𝑡𝑡,min ⩽ ‖D‖ ⩽ 𝐷𝑎𝑡𝑡,max
𝜑𝑟 ⩽ 𝜑𝑎𝑡𝑡,max
𝜑𝑏 ⩽ 𝜑𝑒𝑠𝑝,𝑎𝑡𝑡

, (8)

where 𝜑𝑒𝑠𝑝,𝑎𝑡𝑡 is the maximum escape angle for the enemy if the red wants to make a successful attack. On
the other hand, not every attack could cause damage to the other side, and it will probably take more than an
attack to destroy the other side. Thus, it is assumed that the UAVs have blood value 𝐵0 when initialized, and
every attack has the probability 𝑝𝑎𝑡𝑡 to cause some damage Δ𝐵, which is shown as
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Figure 3. Short-range air combat framework.

Δ𝐵 =


−𝐵1 0 ≤ 𝑝 < 𝑝𝑎𝑡𝑡1
−𝐵2 𝑝𝑎𝑡𝑡1 ≤ 𝑝 < 𝑝𝑎𝑡𝑡2
−𝐵3 𝑝𝑎𝑡𝑡2 ≤ 𝑝 < 𝑝𝑎𝑡𝑡
0 𝑝 ≥ 𝑝𝑎𝑡𝑡

, (9)

where 𝑝 ∈ [0, 1] is a random number, 𝐵1, 𝐵2, 𝐵3 are the reduced blood values after an attack, and 𝑝𝑎𝑡𝑡1 and
𝑝𝑎𝑡𝑡2 are the threshold of probability.

Note that Figure 1 is shown from the red perspective, and the relative relationship between the two sides can
also be defined from the blue perspective in the same way. In the view of the blue, distance vectorD′, attacking
angle 𝜑′𝑏 , and escaping angle 𝜑

′
𝑟 are defined like Equations (4-8), and the attacking conditions are defined as


𝐷𝑎𝑡𝑡,min ⩽ ‖D′‖ ⩽ 𝐷𝑎𝑡𝑡,max
𝜑′𝑏 ⩽ 𝜑𝑎𝑡𝑡,max
𝜑′𝑟 ⩽ 𝜑𝑒𝑠𝑝,max

. (10)

2.3. Air combat process
For an episode of one-to-one short-range air combat, the red and the blue are initiated, then confront in the
combat environment until the conditions for the end of the episode are satisfied [17]. An episode ends when the
red or the blue is damaged or themaximumdecision step 𝑡max is reached. If theUAV is out of the range of height
or its blood value 𝐵 is reduced to zero, this UAV will be judged as damaged. There are three types of results for
the red, win, loss and draw, at the end of an episode. The red wins over the blue only when the blue is damaged
before reaching the 𝑡max. Similarly, the red is lost when it is damaged before the blue within 𝑡max time steps.
The draw result means that both sides are still undamaged when the maximum decision step 𝑡max is reached.
The duration for each step is 𝑡𝑠𝑡𝑒𝑝 . At every step in an episode, the red and the blue will make a maneuver
decision by its action policy respectively to get the u𝑟 and u𝑏 . During a step, the UAVs will continually execute
u𝑟 and u𝑏 until another maneuver decision-making starts. The flag 𝑑𝑜𝑛𝑒 shows when the episode ends. In
this paper, the action policy of the red is actor network which is updated by the PPO algorithm, and the blue’s
action policy is described in section 3.6. The air combat framework is shown in Figure 3 and the process in an
episode is shown in Algorithm 1.

3. AIR COMBAT DECISION METHOD DESIGN
3.1. PPO algorithm and improvement
The PPO algorithm is a type of DRL algorithm that has been used in many types of problems. In this part, the
basic PPO algorithm and its usage in short-range air combat are introduced.
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Algorithm 1 Air combat process in an episode

Input: position: p𝑟 , p𝑏 ; velocity: v𝑟 , v𝑏 ; blood: 𝐵𝑟 = 𝐵𝑏 = 𝐵0; number of steps: 𝑡max; step: 𝑡 = 1; damage:
𝑑𝑎𝑚𝑟 = 𝑑𝑎𝑚𝑏 = 𝐹𝑎𝑙𝑠𝑒; height range: [0, 𝑧max]

Output: confrontation result in the view of the red
1: for all 𝑡 ⩽ 𝑡max do
2: set 𝑑𝑜𝑛𝑒 = 𝐹𝑎𝑙𝑠𝑒
3: use the red’s action policy to get u𝑟
4: use the blue’s action policy to get u𝑏
5: update the red’s and the blue’s positions and velocities by Equation (1)
6: if 𝑧𝑟 ∉ [0, 𝑧max] or 𝐵𝑟 ⩽ 0 then
7: set 𝐵𝑟 = 0 and 𝑑𝑎𝑚𝑟 = 𝑇𝑟𝑢𝑒
8: end if
9: if 𝑧𝑏 ∉ [0, 𝑧max] or 𝐵𝑏 ⩽ 0 then
10: set 𝐵𝑏 = 0 and 𝑑𝑎𝑚𝑏 = 𝑇𝑟𝑢𝑒
11: end if
12: if 𝑑𝑎𝑚𝑟 is 𝐹𝑎𝑙𝑠𝑒 then
13: calculate 𝜑𝑟 and 𝜑𝑏 in the view of the red by Equations (4) and (6)
14: if satisfy Equation (8) then
15: get a random number 𝑝 ∈ [0, 1]
16: calculate Δ𝐵 by Equation (9)
17: set 𝐵𝑏 = 𝐵𝑏 + Δ𝐵
18: end if
19: end if
20: if 𝑑𝑎𝑚𝑏 is 𝐹𝑎𝑙𝑠𝑒 then
21: calculate 𝜑′𝑟 and 𝜑′𝑏 in the view of the blue
22: if satisfy Equation (10) then
23: get a random number 𝑝 ∈ [0, 1]
24: calculate Δ𝐵 by Equation (9)
25: set 𝐵𝑟 = 𝐵𝑟 + Δ𝐵
26: end if
27: end if
28: if 𝑑𝑎𝑚𝑟 is 𝐹𝑎𝑙𝑠𝑒 and 𝑑𝑎𝑚𝑏 is 𝑇𝑟𝑢𝑒 then
29: set 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒
30: return red win
31: else if 𝑑𝑎𝑚𝑟 is 𝑇𝑟𝑢𝑒 and 𝑑𝑎𝑚𝑏 is 𝐹𝑎𝑙𝑠𝑒 then
32: set 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒
33: return red loss
34: else if 𝑑𝑎𝑚𝑟 is 𝑇𝑟𝑢𝑒 and 𝑑𝑎𝑚𝑏 is 𝑇𝑟𝑢𝑒 then
35: set 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒
36: return tie
37: else if 𝑡 = 𝑡max then
38: set 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒
39: return tie
40: else
41: set 𝑡 = 𝑡 + 1
42: end if
43: end for
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3.1.1. The PPO algorithm
The PPO algorithm is based on the actor-critic framework and the policy gradient method (PG), which can
be applied to continuous or discrete motion space problems. [18] PG-based algorithms maximize the action
policy’s expected return by updating the action policy directl [19]. The PPO algorithm’s main objective is [18]

𝐿 (𝜃) = E [𝐿𝑎𝑐𝑡𝑜𝑟 (𝜃) − 𝑐1𝐿𝑐𝑟𝑖𝑡𝑖𝑐 (𝜃) + 𝑐2𝑆𝜃 (𝑜𝑡)] , (11)

where 𝐿𝑎𝑐𝑡𝑜𝑟 and 𝐿𝑐𝑟𝑖𝑡𝑖𝑐 are the loss function for actor network and critic network, 𝜃 is the parameters of
networks, 𝑐1 and 𝑐2 are coefficients, 𝑆𝜃 is the entropy bonus which is used to ensure sufficient exploration, and
𝑜𝑡 is the observation of the actor network [18]. By considering these terms, the loss calculated by Equation (11)
is related to the parameters of actor and critic networks. 𝐿𝑎𝑐𝑡𝑜𝑟 is defined as

𝐿𝑎𝑐𝑡𝑜𝑟 (𝜃) = E
[
min

(
𝑟 (𝜃) 𝐴̂, clip (𝑟 (𝜃) , 1 − 𝜀, 1 + 𝜀) 𝐴̂

)]
, (12)

where 𝑟 (𝜃) = 𝜋𝜃 (𝑎𝑡 |𝑜𝑡)/𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑜𝑡) is the probability ratio. It is the probability of 𝑎𝑡 with 𝑜𝑡 under latest
action policy 𝜋𝜃 and action policy before update 𝜋𝜃𝑜𝑙𝑑 , is the clipping function which is to ensure the policy
from 𝜋𝜃𝑜𝑙𝑑 to 𝜋𝜃 doesn’t change too much. 𝐴̂ is the estimator of the advantage function, and the generalized
advantage estimation (GAE) is used to calculate it [20]. The 𝐿𝑐𝑟𝑖𝑡𝑖𝑐 is defined as [18]

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 (𝜃) =
1
2
(𝑉𝜃 (𝑠) − 𝑅 (𝑠))2, (13)

where𝑉𝜃 is the state-value function, which means the critic network in the PPO algorithm, and 𝑅 is the return.

In this paper, the red’s action policy is based on the PPO algorithm. Thus, u𝑟 is generated based on the actor
network. The output of actor network is a probability distribution 𝑑𝑖𝑠𝑡, which is the selection probability of
each action for the red under the observation. Then, the action 𝑎 is sampled from the 𝑑𝑖𝑠𝑡, which means
the index of selected action in the action space [21]. Finally, u𝑟 can be generated by the designed action space.
Noting that the log _𝑝𝑟𝑜𝑏 is the logarithm of 𝑑𝑖𝑠𝑡. The usage of the PPO algorithm in short-range air combat
is shown as Algorithm 2 [21].

3.1.2. Improved points
To improve the training effect, some improvement points are adopted in this paper, and the framework of PPO
algorithm for short-range air combat is shown in Figure 4.

The first improvement point is considering the historical combat data when making decision. During the
confrontation, the red must gradually accumulate the situational advantages over the blue and finally beat it.
Therefore, decision on current action should take into account the previous air combat situations. The link
between the action decision and historical air combat experience is established by adding the gate recurrent
unit (GRU) [22] to the neural network. The GRU is a type of recurrent neural network (RNN), which can
adaptively capture the time’s dependencies in different scales [22], similar to long short-term memory (LSTM).
However, the GRU is easier to train and more efficient than LSTM. The GRU layer, the hidden layer using
GRU, is used in both actor network and critic network. The networks’ inputs, observation and state, are firstly
processed by the fully connected network to extract the inputs’ features. Then the features are fused with
historical features by the GRU layer to obtain the integrated features considering the historical situational
features. The specific process is shown in Figure 4.
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Algorithm 2The usage of the PPO algorithm in short-range air combat

1: initialize the PPO’s hyperparameters, including epoch 𝐾 , the number of the minimum experience for
training 𝑁 , etc.

2: initialize the air combat environment including the UAVs’ positions, velocities, blood values, etc.
3: initialize the number of experiences in experience buffer 𝑖 = 0
4: for all 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
5: execute the process shown in Algorithm 1, including updating the UAVs’ positions, velocities, blood

values and damage flags. For each time step, 𝑜, state and reward are generated, and the experiences
are generated, then set 𝑖 = 𝑖 + 1

6: if 𝑖 ≥ 𝑁 then
7: calculate the return for every step and normalize the advantage
8: set 𝑘 = 1
9: for all 𝑘 ≤ 𝐾 do
10: sample from the experience buffer based on the batch size
11: calculate the loss of each batch by Equation (11)
12: update the networks’ parameters by Adam optimizer
13: set 𝑘 = 𝑘 + 1
14: end for
15: set 𝑖 = 0 and clear the experience buffer
16: end if
17: end for
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Figure 4. The PPO algorithm framework for short-range air combat.

The second improvement point is to differentiate the neural network inputs. For the basic PPO algorithm, the
critic network uses the same input as the actor network, which is named state space [20]. However, the actor
and critic networks play different roles in the algorithm. The actor network’s state space is in the view of the red
because the actor network’s input is the red’s observation of the air combat environment. On the other hand,
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the critic network is used to evaluate the output of the actor network by its output, the critic value, based on
the current air combat situation [23]. Thus, the input of critic network can be more objective and include some
information that cannot be observed by the red. In this vein, the observation 𝑜 from the observation generator
and the state 𝑠 from the state generator are designed for actor network and critic network respectively, as shown
in Figure 4.

The third improvement point is a variable-sized experience buffer. For each time step, the experiences are
stored in the experience buffer in order. During the training, it is divided into thousands of episodes, and
each episode is over if it satisfies the ending condition. Thus, the length of each episode may be different.
To make the training more general, the network parameters are updated until enough experiences are stored.
However, the return calculation should be calculated on the basis of the complete experiences. Therefore, when
the networks are updated, the numbers of experiences, which are larger than the number of the minimum
experience for training 𝑁 , are different to make sure that the same episode’s experiences are stored in the
buffer.

The fourth improvement point is the phased training process, which is discussed in section 3.6.

3.2. State space design
The state space of air combat should contain the information of the red and the blue UAVs, and a suitable
designed state space can speed up the convergence of training. In this part, two state spaces designed for actor
network and critic network are introduced.

3.2.1. The actor network’s state space
The designed state space consists of two parts, position information 𝑠𝑝𝑜𝑠 and velocity information 𝑠𝑣𝑒𝑙 which
is expressed as

𝑠𝑎𝑐𝑡𝑜𝑟 =
[
𝑠𝑇𝑝𝑜𝑠, 𝑠

𝑇
𝑣𝑒𝑙

]𝑇
. (14)

The 𝑠𝑝𝑜𝑠 is the position relationship between the UAVs, which is defined as [24]

𝑠𝑝𝑜𝑠 = [𝑥𝑟 − 𝑥𝑏 , 𝑦𝑟 − 𝑦𝑏 , 𝑧𝑟 , 𝐷, 𝜃𝐷 , 𝜓𝐷]𝑇 , (15)

where the subscript 𝑟 and 𝑏 represent the information for the red and blue, 𝐷 = ‖D‖, and 𝜃𝐷 and 𝜓𝐷 are the
flight-path angle and heading angle for D respectively, which are similar to the 𝜃 and 𝜓 for v in Figure 2. The
𝜃𝐷 and 𝜓𝐷 are described as [14]

𝜃𝐷 = arcsin
𝑧𝑏 − 𝑧𝑟
𝐷

,

𝜓𝐷 =

{
atan 2 (𝑦𝑏 − 𝑦𝑟 , 𝑥𝑏 − 𝑥𝑟 ) atan 2 (𝑦𝑏 − 𝑦𝑟 , 𝑥𝑏 − 𝑥𝑟 ) > 0
2𝜋 + atan 2 (𝑦𝑏 − 𝑦𝑟 , 𝑥𝑏 − 𝑥𝑟 ) atan 2 (𝑦𝑏 − 𝑦𝑟 , 𝑥𝑏 − 𝑥𝑟 ) < 0

,
(16)

where atan 2 (𝑦, 𝑥) ∈ [−𝜋, 𝜋] returns the angle between [𝑥, 𝑦]𝑇 and 𝑥 axis. The 𝑠𝑣𝑒𝑙 is the velocity relationship
between the UAVs, which is defined as [14]

𝑠𝑣𝑒𝑙 = [ ¤𝑥𝑟 − ¤𝑥𝑏 , ¤𝑦𝑟 − ¤𝑦𝑏 , ¤𝑧𝑟 − ¤𝑧𝑏 , 𝜑𝑏 , 𝜑𝑟 ]𝑇 . (17)
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At the same time, to avoid the difference between the values of each state variable from being too large to affect
the learning efficiency of the network, the normalization for every state variable is adopted. The threshold
vector 𝛿𝑎𝑐𝑡𝑜𝑟 for state variables is selected as

𝑚𝑎𝑡ℎ𝑏 𝑓 𝛿𝑎𝑐𝑡𝑜𝑟 = [𝐷𝑡ℎ, 𝐷𝑡ℎ, 𝐻𝑡ℎ, 𝐷𝑡ℎ, 𝜋, 2𝜋, 𝑣max − 𝑣min, 𝑣max − 𝑣min, 𝑣max − 𝑣min, 𝜋, 𝜋]𝑇 , (18)

where 𝐷𝑡ℎ and 𝐻𝑡ℎ are the threshold values for distance and height. Noting that the elements of 𝛿𝑎𝑐𝑡𝑜𝑟 and
𝑠𝑎𝑐𝑡𝑜𝑟 correspond one to one. Then, the normalization is executed by [3]

𝑜𝑖 =
𝑠𝑎𝑐𝑡𝑜𝑟,𝑖
𝛿𝑎𝑐𝑡𝑜𝑟,𝑖

· 𝑎 − 𝑏 𝑖 = 1, 2, · · · , 11, (19)

where 𝑜 is the normalized state vector, which is usually called the observation of the actor network. 𝑎 and 𝑏
are constants and satisfy 𝑎 = 2𝑏.

3.2.2. The critic network’s state space
The actor network gets action according to the relationship in the view of the red, but the critic network gets
the evaluation value based on the state of the air combat environment, which can include the information that
cannot be observed. Thus, the input for the critic network 𝑠𝑐𝑟𝑖𝑡𝑖𝑐 is defined as [17]

𝑠𝑐𝑟𝑖𝑡𝑖𝑐 = [𝐷, 𝜑𝑟 , 𝜑𝑏 , 𝑧𝑏 − 𝑧𝑟 , 𝜓𝐷 , 𝜓𝑏𝑟 , 𝜃𝑏𝑟 , 𝑣𝑟 − 𝑣𝑏 , 𝐵𝑟 , 𝐵𝑟𝑏]𝑇 , (20)

where subscript 𝑟𝑏 means the red’s value minus the blue’s and 𝑏𝑟 is on the contrary, and 𝐵𝑟 is the red’s residual
blood. The critic network’s state variables are also normalized and the threshold vector 𝛿𝑐𝑟𝑖𝑡𝑖𝑐 is selected as

𝛿𝑐𝑟𝑖𝑡𝑖𝑐 = [𝐷𝑡ℎ, 𝜋, 𝜋, 𝐻𝑡ℎ, 2𝜋, 𝜋, 𝜋, 𝑣max − 𝑣min, 𝐵0, 𝐵0/2]𝑇 . (21)

Then, the 𝑠𝑐𝑟𝑖𝑡𝑖𝑐 is normalized like Equation (19), and the normalized result is 𝑠.

3.3. Action space design
In the air combat problem, the UAV’s actions are always summed up as a maneuver library, which consists of
a series of tactical actions, such as high yo-yo, cobra maneuvering and so on [3]. Pilots can choose from the
library according to the combat situation. However, the establishment of the library is difficult and complex,
and these tactical actions can be disassembled into basic actions. Thus, fifteen basic actions 𝑎1, 𝑎2, · · · , 𝑎15 are
adopted to form the action space 𝐴, which includes five types of directions, forward, upward, downward, left
turn and right turn, and three types of speed control, maintenance, acceleration and deceleration [25]. Every
basic action in the designed library is a set of values of control parameters, [𝑛𝑥 , 𝑛𝑧, 𝛾]𝑇 , for the UAV motion
model. The designed maneuver library is shown in Table 1. Therefore, the action space is discrete and its
dimension is 15.

3.4. Reward function design
The aim of RL is to maximize the cumulative reward obtained from the environment. Therefore, the reward
function is the bridge to communicate the training result requirements to the DRL algorithm and its design
is extremely important [25]. In this paper, the reward function is well-designed and divided into three parts:
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Table 1. The basic action’s values in the designed action space

No. Action Values for [𝑛𝑥 , 𝑛𝑧 , 𝛾 ]𝑇 No. Action Values for [𝑛𝑥 , 𝑛𝑧 , 𝛾 ]𝑇

1 Forward, maintain 0; 1; 0 2 Forward, accelerate 2; 1; 0
3 Forward, decelerate -1; 1; 0 4 Upward, maintain 0; 3.5; 0
5 Upward, accelerate 2; 3.5; 0 6 Upward, decelerate -1; 3.5; 0
7 Downward, maintain 0; -3.5; 0 8 Downward, accelerate 2; -3.5; 0
9 Downward, decelerate -1; -3.5; 0 10 Left turn, maintain 0; 3.5; arccos (2/7)
11 Left turn, accelerate 2; 3.5; arccos (2/7) 12 Left turn, decelerate -1; 3.5; arccos (2/7)
13 Right turn, maintain 0; 3.5; - arccos (2/7) 14 Right turn, accelerate 2; 3.5; - arccos (2/7)
15 Right turn, decelerate -1; 3.5; - arccos (2/7)

dense reward, event reward and end-game reward. Different types of rewards are triggered under different
conditions to transmit different expectations. In this part, the reward function designed for short-range air
combat is introduced.

3.4.1. Dense reward
The red receives a dense reward from the air combat environment after completing the action for every step.
Thus, a properly designed dense reward can improve the red’s exploration efficiency and speed up the training
process. The dense reward is based on the air combat situatio [16] after the execution of the red’s and blue’s
actions and can be considered as the immediate situation value for the maneuvering decision-making. The
dense reward 𝑟𝑑𝑒𝑛𝑠𝑒 is defined as

𝑟𝑑𝑒𝑛𝑠𝑒 = (𝑤𝑎𝑟𝑎 + 𝑤𝑑𝑟𝑑 + 𝑤ℎ𝑟ℎ + 𝑤𝑣𝑟𝑣 − 1) · 𝑤𝑑𝑒𝑛𝑠𝑒, (22)

where 𝑟𝑎 , 𝑟𝑑 , 𝑟ℎ and 𝑟𝑣 are the angle reward, distance reward, height reward and velocity reward respectively,
and 𝑤𝑎 , 𝑤𝑑 , 𝑤ℎ, 𝑤𝑣 and 𝑤𝑑𝑒𝑛𝑠𝑒 are the weights. By giving a negative reward as a penalty term at every step,
the red will try to find ways to reduce the penalty by trying its best to increase 𝑟𝑎 , 𝑟𝑑 , 𝑟ℎ and 𝑟𝑣 as quickly as
possible. Thereby, the red can be trained more efficiently. 𝑟𝑎 represents the evaluation value of the azimuth
relationship between the red and blue, and is defined as

𝑟𝑎 =
𝜋 − 𝜑𝑟
𝜋

· 𝜋 − 𝜑𝑏
𝜋

. (23)

𝑟𝑑 represents how good the distance relationship is, which consists of two parts, 𝑟𝑑1 and 𝑟𝑑2, and satisfies
𝑟𝑑 = 𝑟𝑑1 + 𝑟𝑑2. 𝑟𝑑1 is defined as

𝑟𝑑1 =

{
0.25 Δ𝐷 < 0, 𝐷 > 𝐷𝑚𝑖𝑑

0 𝑜𝑡ℎ𝑒𝑟
, (24)

where Δ𝐷 is the distance difference from the previous time, and 𝐷𝑚𝑖𝑑 =
(
𝐷𝑎𝑡𝑡,min + 𝐷𝑎𝑡𝑡,max

) /
2 is the desired

distance during air combat. This means the red can receive the reward 𝑟𝑑1 only when the distance 𝐷 is larger
than 𝐷𝑚𝑖𝑑 and the red is closer to the blue than the previous time. 𝑟𝑑2 is defined as [16]

𝑟𝑑2 =


0.25 ·

(
𝑎𝐷1

(
𝐷 − 𝐷𝑎𝑑𝑣,max

)2 + 1
)

𝐷𝑎𝑑𝑣,max < 𝐷 ⩽ 𝐷𝑡ℎ

0.25 + 0.25 ·
(
𝑎𝐷2

(
𝐷 − 𝐷𝑎𝑡𝑡,max

)2 + 1
)

𝐷𝑎𝑡𝑡,max < 𝐷 ⩽ 𝐷𝑎𝑑𝑣,max

0.5 + 0.25 · 𝑎𝐷3
(
𝐷 − 𝐷𝑎𝑡𝑡,min

) (
𝐷 − 𝐷𝑎𝑡𝑡,max

)
𝐷𝑎𝑡𝑡,min < 𝐷 ⩽ 𝐷𝑎𝑡𝑡,max

0 𝑜𝑡ℎ𝑒𝑟

, (25)
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where 𝑎𝐷1, 𝑎𝐷2 and 𝑎𝐷3 are the parameters and defined as

𝑎𝐷1 = −1
/ (
𝐷𝑡ℎ − 𝐷𝑎𝑑𝑣,max

)2
𝑎𝐷2 = −1

/ (
𝐷𝑎𝑑𝑣,max − 𝐷𝑎𝑡𝑡,max

)2
𝑎𝐷3 = 1

/ ((
𝐷𝑚𝑖𝑑 − 𝐷𝑎𝑡𝑡,min

) (
𝐷𝑚𝑖𝑑 − 𝐷𝑎𝑡𝑡,max

) ) . (26)

𝑟ℎ represents the height advantage and is defined as

𝑟ℎ =



0.1 𝐻max < 𝑧𝑟 − 𝑧𝑏 < 𝐷𝑎𝑡𝑡,max
ℎ1(𝑧𝑟 − 𝑧𝑏 − 𝐻𝑎𝑑𝑣)2 + 1 𝐻𝑎𝑑𝑣 < 𝑧𝑟 − 𝑧𝑏 ⩽ 𝐻max
1 𝐻𝑎𝑡𝑡 < 𝑧𝑟 − 𝑧𝑏 ⩽ 𝐻𝑎𝑑𝑣
ℎ2(𝑧𝑟 − 𝑧𝑏 − 𝐻𝑎𝑡𝑡)2 + 1 𝐻min < 𝑧𝑟 − 𝑧𝑏 ⩽ 𝐻𝑎𝑡𝑡
0 𝑜𝑡ℎ𝑒𝑟

, (27)

where 𝐻max, 𝐻𝑎𝑑𝑣 , 𝐻𝑎𝑡𝑡 and 𝐻min are maximum desired height, desired advantage height, desired attacking
height and minimum desired height during the combat, and they satisfy 𝐻max > 𝐻𝑎𝑑𝑣 > 𝐻𝑎𝑡𝑡 > 𝐻min. ℎ1 and
ℎ2 are parameters that are defined as

ℎ1 = −0.9
/
(𝐻max − 𝐻𝑎𝑑𝑣)2

ℎ2 = −1
/
(𝐻min − 𝐻𝑎𝑡𝑡)2

. (28)

As for 𝑟𝑣 , it is the evaluation of the velocity for both sides and is defined as

𝑟𝑣 =


0.1 𝑣𝑟/𝑣𝑏 > 1.5
1 1.0 ⩽ 𝑣𝑟/𝑣𝑏 < 1.5
5 · 𝑣𝑟/𝑣𝑏 − 4 0.8 ⩽ 𝑣𝑟/𝑣𝑏 < 1.0
0 𝑜𝑡ℎ𝑒𝑟

. (29)

3.4.2. Event reward
During air combat, there are many types of events [24,26], such as attacking successfully, reaching the advantage
area, making the enemy in the attacking area and so on. By continuously triggering these events, the red will
beat the blue finally. Thus, the event reward is necessary to make the red consciously trigger these events
to maintain the advantage. This paper designs two types of event rewards: advantage area reward 𝑟𝑎𝑑𝑣 and
attacking reward 𝑟𝑎𝑡𝑡 . 𝑟𝑎𝑑𝑣 encourages the red for getting in the advantage area, and is defined as

𝑟𝑎𝑑𝑣 = 𝑤𝑎𝑑𝑣 ·
(
0.6 · 𝐷𝑎𝑑𝑣,max − 𝐷

𝐷𝑎𝑑𝑣,max − 𝐷𝑎𝑑𝑣,min
+ 0.4 · 𝜋 − 𝜑𝑟

𝜋

)
, (30)

where 𝑤𝑎𝑑𝑣 is the weight. By giving a changeable 𝑟𝑎𝑑𝑣 , the red is encouraged to keep in the advantage area and
get closer to the blue. Analogously, the blue can also be in the blue’s advantage area, which is harmful to the
red. In this situation, the penalty 𝑟′𝑎𝑑𝑣 , which satisfies 𝑟′𝑎𝑑𝑣 < 0 and |𝑟′𝑎𝑑𝑣 | > 𝑤𝑎𝑑𝑣 , will be given to the red to
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encourage it to turn over the situation as soon as possible. When the red succeeds to attack the blue, 𝑟𝑎𝑡𝑡 will
reward it. 𝑟𝑎𝑡𝑡 is a positive const number. On the other hand, if the red is attacked by the blue, it will get the
penalty 𝑟′𝑎𝑡𝑡 which satisfies 𝑟′𝑎𝑡𝑡 < 0 and |𝑟′𝑎𝑡𝑡 | > 𝑟𝑎𝑡𝑡 .

3.4.3. End-game reward
During the training, the draw result is regarded as a case in which the red loses and is used to motivate the red
to beat the blue. When the flag 𝑑𝑜𝑛𝑒 = 𝑇𝑟𝑢𝑒, which means an episode is over, the end-game reward will be
generated, and is defined as [25]

𝑟𝑒𝑛𝑑 =


𝑟0 + 𝑟1 ·

𝑡max − 𝑡
𝑡max

+ 𝑟2 ·
𝐵𝑟
𝐵0

win

−𝑟𝑙𝑜𝑠𝑠 loss
. (31)

where 𝑟0, 𝑟1, 𝑟2 and 𝑟𝑙𝑜𝑠𝑠 are positive numbers, and satisfy 𝑟0 + 𝑟1 + 𝑟2 ⩽ 𝑟𝑙𝑜𝑠𝑠.

3.5. Action policy for the Blue
During the training, a policy is adopted as the blue’s action policy, which consists of prediction and decision.
In the prediction step, the blue will predict which action the red will do at the next time step and then estimate
the red’s position and velocity at the next time step based on the predicted action. At the decision step, the blue
will find which action it should take to confront the red. To find which action is better, the thread function
𝑇 is defined [27], which consists of angle thread 𝑇𝜑, velocity thread 𝑇𝑣 , distance thread 𝑇𝑑 and height thread 𝑇ℎ.
Hence, 𝑇 is calculated by

𝑇 = 0.41 · 𝑇𝜑 + 0.26 · 𝑇𝑣 + 0.19 · 𝑇𝑑 + 0.14 · 𝑇ℎ . (32)

Noting that the definitions of 𝑇𝜑, 𝑇𝑣 , 𝑇𝑑 and 𝑇ℎ are the same as in ref. [27]. The blue’s action policy is described
as Algorithm 3.

3.6. Training process
In the confrontation training, the red and the blue confront each other for thousands of episodes in the air
combat environment. Every episode works as Algorithm 1 and for every step the blue makes the maneuver
decision as Algorithm 3. To train the red’s action policy with the DRL algorithm, the experience for every
step is stored. When satisfying the training conditions, the experiences will be used to update the red’s action
policy. To make sure the training is successful and to obtain satisfactory results, the training is divided into
three phases, basic, dominant and balanced [3]. The initial states for these phases are shown in Table 2.

The three phases constitute a progressive relationship, which means the later training is based on the training
results of the former training. The red’s actor network and critic network are loaded with the former trained
networks’ parameters before starting the training.

4. RESULTS
4.1. Parameters setting
The hyperparameters setting for the DRL algorithm is shown in Table 3 [18].

The parameters of the designed air combat environment are set as follows [15]. For the attacking distance, it is set
as𝐷𝑎𝑡𝑡,min = 40𝑚 and𝐷𝑎𝑡𝑡,max = 900𝑚. Themaximumattacking angle 𝜑𝑎𝑡𝑡,max = 𝜋/6 and themaximumescape
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Algorithm 3 Action policy of the blue

Input: position: p𝑟 , p𝑏 ; velocity: v𝑟 , v𝑏 ; action space: 𝐴; prediction time: 𝑡𝑝𝑟𝑒𝑑
Output: the blue’s action u𝑏

1: initialize the thread set Ξ
2: for all action 𝑎 in 𝐴 do
3: calculate the red’s p’𝑟 and v’𝑟 after 𝑡𝑝𝑟𝑒𝑑 with action 𝑎 by Equation (1)
4: calculate thread value by Equation (32) in the view of the red with p’𝑟 , v’𝑟 , p𝑏 and v𝑏
5: append the thread value to Ξ
6: end for
7: set 𝑖𝑛𝑑 equal to the index of the maximum value in Ξ
8: set u’𝑟 equal to 𝑖𝑛𝑑-th element in 𝐴
9: calculate the red’s p’𝑟 and v’𝑟 after 𝑡𝑝𝑟𝑒𝑑 with action u’𝑟 by Equation (1)
10: initialize the thread set Ξ
11: for all action 𝑎 in 𝐴 do
12: calculate the blue’s p’𝑏 and v’𝑏 after 𝑡𝑝𝑟𝑒𝑑 with action 𝑎 by Equation (1)
13: calculate thread value by Equation (32) in the view of the blue with p’𝑟 , v’𝑟 , p’𝑏 and v’𝑏
14: append the thread value to Ξ
15: end for
16: set 𝑖𝑛𝑑 equal to the index of the maximum value in Ξ
17: set u𝑏 equal to 𝑖𝑛𝑑-th element in 𝐴
18: return u𝑏

Table 2. The initial states of the UAVs in three training phases

Phases
Initial states Camp x (m) y (m) z (m) v (m/s) 𝜃 (deg) 𝜓 (deg)

Basic
Red [200, 1800] [1500, 3500] [700, 2500] 60 0 [−0.5𝜋, 0.5𝜋 ]
Blue [1500, 2200] [1500, 3500] [700, 2500] 60 0 [−0.3𝜋, 0.3𝜋 ]

Dominant
Red [200, 1800] [1500, 3500] [700, 2500] 60 0 [−0.5𝜋, 0.5𝜋 ]
Blue [1500, 2200] [1500, 3500] [700, 2500] 60 0 [−0.3𝜋, 0.3𝜋 ]

Balanced
Red [800, 4800] [0, 4500] [800, 3500] 60 0 [0, 2𝜋 ]
Blue [800, 4800] [0, 4500] [800, 3500] 60 0 [0, 2𝜋 ]

Table 3. The hyperparameters setting for the DRL algorithm

Hyperparameter Value Hyperparameter Value

Learning rate 0.00025 GAE paramerter 0.95
Discount 0.99 Minimum buffer size 𝑁 = 8192
Number of batches 4 Epoch 𝐾 = 5
Clip parameter 0.1 Main objective’s coefficients 𝑐1 = 0.5; 𝑐2 = 0.01

angle when attacking 𝜑𝑒𝑠𝑝,𝑎𝑡𝑡 = 𝜋/3. For the advantage area, it is set as 𝐷𝑎𝑑𝑣,min = 40𝑚, 𝐷𝑎𝑑𝑣,max = 1300𝑚
and 𝜑𝑒𝑠𝑝,max = 𝜋/3. For the blood, the probabilities are set as 𝑝𝑎𝑡𝑡1 = 0.1, 𝑝𝑎𝑡𝑡2 = 0.4 and 𝑝𝑎𝑡𝑡 = 0.8, and the
damage values are set as 𝐵0 = 300, 𝐵1 = 51, 𝐵2 = 21 and 𝐵3 = 11. For an episode, the maximum decision
step 𝑡max = 400𝑠 and the time step 𝑡𝑠𝑡𝑒𝑝 = 0.5𝑠. The threshold values are set as 𝐷𝑡ℎ = 𝐻𝑡ℎ = 5000𝑚. For the
reward function, the weights are set as 𝑟𝑎 = 0.15, 𝑟𝑑 = 0.6, 𝑟𝑣 = 0.1, 𝑟ℎ = 0.15, 𝑤𝑑𝑒𝑛𝑠𝑒 = 0.05 and 𝑤𝑎𝑑𝑣 = 0.05,
the parameters about height are set as 𝐻max = 500𝑚, 𝐻𝑎𝑑𝑣 = 300𝑚, 𝐻𝑎𝑡𝑡 = 100𝑚 and 𝐻min = −300𝑚, and the
parameters in end-game reward are set as 𝑟0 = 5, 𝑟1 = 3, 𝑟2 = 6 and 𝑟𝑙𝑜𝑠𝑠 = 15.

4.2. Training results in the phases
The four cases are trained with the hyperparameters in Table 3 and initial states in Table 2. Four cases are
compared in this paper, which are case I PPO, case II PPO with GRU, case III PPO with GRU and state input
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A B C

Figure 5. The episode returns of every episode in the three phases while training. A: the episode returns in the basic phase; B: the episode
returns in the dominant phase; C: the episode returns in the balanced phase.

and case IV PPO with state input. The state input means the inputs of actor and critic networks are different,
and if there is no GRU, the GRU layer in Figure 4 is replaced with linear layer with 128 units and ReLU.

In the basic phase, the UAVs’ states are shown in the first line of Table 2. The blue always performs the forward
and maintain action 𝑎0 and the red is initialized behind the blue. Four cases are trained with 30000 episodes
respectively. In the dominant phase, the UAVs’ states are shown in the second line of Table 2. The blue uses the
policy as Algorithm 2 and red is also initialized behind the blue. Four cases are trained with 40000 episodes
respectively, and every case trains based on their own training result in the basic phase. In the balanced phase,
the UAVs’ states are shown in the third line of Table 2, and the initial states of the red and the blue are the same.
Four cases are trained with 60000 episodes respectively, and every case trains based on their own training result
in the dominant phase. The returns of every episode in the three phases are shown in Figure 5.

It can be seen that the PPO algorithm can go to converge faster when it is combined with GRU. In the basic
phase, a relatively simple scenario, all four cases can easily find a better action policy to enclose the blue and
beat it. And in the more complex scenario, it can find a better policy faster with GRU. But there are also larger
episode reward variations in its infancy. Therefore, the state input is introduced to reduce the episode reward
variations, which will synchronize to slightly reduce the final episode reward.

In addition, to test the final training result for the four cases, the training results in the balanced phase are
reloaded and the initial states of the UAVs are set as

𝑥𝑟 = 1000𝑚, 𝑦𝑟 = 2500𝑚, 𝑧𝑟 = 1200𝑚, 𝑣𝑟 = 90𝑚/𝑠, 𝜃𝑟 = 0, 𝜓𝑟 = 0
𝑥𝑏 = 4200𝑚, 𝑦𝑏 = 2500𝑚, 𝑧𝑏 = 1200𝑚, 𝑣𝑏 = 90𝑚/𝑠, 𝜃𝑏 = 0, 𝜓𝑏 = 0

. (33)

And the maneuvering trajectories are shown in Figure 6. The steps for the four cases are 146, 90, 123 and 193.
For Figure 6B, it is shown that the blue and the red collide. It is obvious that the red can beat the blue in a
smaller space range when trained with PPO with GRU, and by adding state input, the red can be more flexible
to avoid collision. But the cost is the increase in time steps, which explains the decrease of final episode reward.
In case III, the red uses hover and altitude variations to lure the blue closer and gain an advantage situation,
instead of pursuing the blue.

4.3. Confrontation tests
To compare the final training result of four cases, the confrontation tests for the four cases are conducted in
this part when all of the training is finish. To accelerate the confrontation tests, the 𝐵0 is set as 100 during the
test, and the UAVs’ initial states are the same as they are in the balanced phases. The tie air combat result is
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A B

C D

Figure 6. Themaneuvering trajectories in the training test for four cases. A: themaneuvering trajectories for the case I PPO; B: maneuvering
trajectories for case II PPO with GRU; C: maneuvering trajectories for case III PPO with GRU and state input; D: maneuvering trajectories
for case IV PPO with state input.

Table 4. The confrontment test results between four cases

Algorithm case
Results (100 episodes)

Win rate Loss rate
Tie rate

Tie win rate Tie loss rate

PPO with GRU and state input vs. PPO 74% 12% 9% 5%
PPO with GRU and state input vs. PPO with GRU 57% 1% 17% 25%
PPO with GRU and state input vs. PPO with state input 52% 14% 14% 20%

divided into two types, tie win if 𝐵𝑟 > 𝐵𝑏 and tie loss if 𝐵𝑟 ⩽ 𝐵𝑏 . All of the tests are conducted in the air
combat environment for 100 episodes, and the results are shown in Table 4.

It can be seen that by combining PPOwith GRU and state input, the UAV can get amore flexible and intelligent
action policy even though the training process is the same. It is proved that training the action policy by the
PPO with proposed improve points can help the UAV gain an advantage situation more quickly and greater
operational capability in short-range air combat confrontation, and the action policy can be more intelligent
to adapt to the blue’s uncertain policy.
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5. CONCLUSIONS
In this article, a maneuver decision method for UAV air combat is proposed based on the PPO algorithm. To
enhance the PPO’s performance, the GRU layer and different compositions of networks’ inputs are adopted.
At the same time, to accelerate training, some designs are applied. The action space is discretized into 15 basic
actions, and the reward function is well-designed with three parts. Further, the training process is divided
into several progressively more complex phases. To illustrate the advantages of the designed method, ablation
experiments and UAV air combat tests are conducted in this paper. The episode rewards and confrontment
test results show that the designed maneuver decision method can generate a more intelligent action policy
for the UAV to win short-range air combat. By combining the PPO with the improved points, the training
feasibility is improved and convergence is more efficient. The proposed maneuver decision-making method is
always is able to achieve a win rate of more than 50% and a loss rate of less than 15%.

In future, the more complex six-degree-of-freedom UAV motion model and tighter UAV performance con-
straints could be introduced to improve accuracy. On the other hand, the multiple-to-multiple air combat
problem, including multi-UAV coordinated attacking and tactical decisions, is the focus of future research.
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