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Section S1: Characterization and electrochemical measurements

S1.1- Structural and morphological characterizations:

The crystallinity of our catalyst is confirmed by an X-ray Diffractometer (Rigaku ultima-
I\VVD/Max2500). The optical was studied using FTIR (Bruker Alpha I1). Structure and surface
morphology were determined by field emission-scanning electron microscopy with energy
dispersive spectroscopy (FEI Nova Nano SEM 450). The microstructural investigations are
examined through HRTEM (FEI, Titan G2 ChemiSTEM Cs Probe), and XPS analysis is used to
examine the chemical states of elements in the catalyst (ULVAC-PHI Quantera SXM).

S1.2- Electrochemical measurements:

The electrodes were fabricated with well-polished SS substrates (1 cm x5 cm pieces) they were
ultrasonically processed 3 times in ethanol and DI water for further use as a substrate to deposit
an electrocatalyst. The mixture of 80% active material, 15 % acetylene black, and 15 %
polyvinylidene fluoride (PVDF) binder dissolved in N-methyl-2—pyrrolidone NMP solvent
coated on SS substrates. OER performance was electrocatalytically analyzed on an Origalys
electrochemical workstation utilizing a standard three-electrode electrochemical cell
arrangement. An SS substrate coated with an electrocatalyst was used as a working electrode and
a counter electrode platinum metal wire was incorporated, for the reference electrode the
mercury/mercury oxide (Hg/HgO) filled with 1 M KOH was used. At room temperature, 1 M
KOH electrolyte (pH=14) was employed to evaluate OER and supercapacitor performance. The
LSV curves at 1 mV s scan rate were recorded in the potential window from 1 V to 1.675 V vs.
RHE to calculate the overpotentials at the current density of 10 mA cm2. The electrochemical
active surface area (ECSA) was measured by recording CV curves at different scan rates in the
potential window of 0.92 to 1.22 vs. RHE. At 10 mV AC amplitude, the electrochemical
impedance spectroscopy (EIS) was recorded within the frequency range of 1 MHz to 10 mHz. To
investigate catalyst durability, a 12-hour chronoamperometry (CA) research at overpotential was
performed on the best-performing material electrode. The electrochemical characteristics of the

electrodes were investigated using Cyclic Voltammetry (CV), Galvanostatic Charge Discharge
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(GCD), and Impedance Spectroscopy (EIS). The three-electrode system was used, where BVC

and BV were working electrodes, Platinum wire was used as a counter electrode, and Hg/HgO
was used as a reference electrode. The CV measurements at the scan rates from 100 to 10 mV s
in the potential window of 0 to -1.0 V vs. Hg/HgO were measured in 1 M KOH as an electrolyte.

S1.3- Fabrication of symmetric supercapacitor devices:

BVC-coated SS films were used as the cathode (Positive) and anode (Negative) electrodes for
the fabrication of symmetric supercapacitor devices. For the aqueous symmetric supercapacitor
device, 1 M KOH solution was used as an electrolyte. Moreover, the symmetric solid-state
supercapacitor device was fabricated using a 5>6 cm? area of positive and negative electrodes
with PVVA-KOH gel electrolyte. For the fabrication of a solid-state device, both electrodes were
soaked with PVA-KOH electrolyte stacked on each other into the sandwich-like setup and

pressed under 0.5-ton hydraulic pressure.

S1.4- Preparation of PVA—KOH gel electrolyte:

The process is as follows 3 gm of poly-vinyl alcohol (PVA) was dissolved in 30 mL of DDW by
heating at 80T for 2 hr. using continuous stirring mode. After the addition of PVA, freshly
prepared 1 M KOH (10 ml) was added slowly to the solution and stirred at room temperature to
form a transparent and viscous solution. To fabricate an all-solid-state symmetric supercapacitor,
the prepared PVA-KOH gel was used as an electrolyte.

Section S2: Figures and tables
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Figure S1. Williamson-Hall plots of (a) BV and (b) BVC samples.
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Figure S2. XPS survey spectrum of BV and BVC samples.
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Figure S3. (a) Comparative CV curves of SS electrode, BV, and BVC at 10 mV S scan rate.
(b) Comparative CV curves of BVC electrode with variation in active material, activated carbon,
and PVDF at 100 mV St scan rate.
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Figure S4. Photographs of steps involved in the fabrication of an aqueous device.
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Figure S5. Ragone plot of SE and SP of the ASc and SSc device with current state of art.



Table S1: XRD parameters of the samples

Energy Materials

) ] Dislocation  Average Required
Crystallite Micro ] ) o
Sampl o ) density Crystallite Strain (¢)  crystallite size
Angle (Grain) size strain o ) i
e FWHM _ (pp) (Grain) size using W-H using
(20) using Scherrer gx )
Name ) dx10°3 using Scherrer plot W-H plot
equation (nm) 1073 )
(nm-?) equation (nm) (nm)
18.80
BV (110) 0.54012 14.908 14.235 4.499 17.11 0.0000410  16.197
18.83
BvC 0.59697 13.489 15.708 5.495 19.00 0.0036 42.662
(110)
Table S2: EIS fitted Values of the prepared samples
) Rw CPE
Materials Rt () Rs (€2)
BVC 0.07 0.018 0.367 0.101
BV 0.095 0.003 0.302 0.083
EIS fitted values of the BVC after stability
After Stability BVC 2.43 0.85 0.456 0.012




Energy Materials

Table S3: Performance comparison of BiVO4 based supercapacitor

] Specific -
_ Synthesis ] Capacitive Electroly
Electrode material capacitance( ) Ref.
method retention te
F/g)
BivVOs@C
_ _ 921.1 Flg@4 94.6% @5000 4 M
Flexible stainless ~ SILAR [l
mA cm? cycles KOH
steel mesh
BiVO:s@ _ 70% @10,000 3 M
. Sonochemical 214 F/g [2]
Ni foam Cycles KOH
BiVO4@ 1203F/g @ 75%@2000 2M
Hydrothermal [3]
GCE 2Alg cycles KOH
Olive- BiVO4 977F/lg @ 0.5 86%@2000 1M
_ Solvothermal [4]
Ni foam Alg cycles NaOH
BiVOs @ 102%@3500
SILAR 707@3 mV/s 1MKCl B
SS substrate cycles
BiVOs @ 494.1@5 M
sol-gel - [61
SS substrate mV/s Na2S04
BiVO4/PANI 701F/g @ 1 95.4% @5000 1M
_ _ Hydrothermal 71
nickel foil Alg cycles KOH
BiVO4NPs-180€ 1451F/g @1 97.4% @5000 2 M
_ Hydrothermal (6]
Ni-foam Alg cycles KOH
BiVO:@ 259.34@ 0.5
_ Hydrothermal - - A1
Ni foam mA/g
BiVVO4 nanocoral 788 Flg@ 3 75%@1500 6 M
_ Hydrothermal [10]
Ni foam Alg cycles KOH
BiVO:@ 139 F/g@10 2M
_ sol-gel - [11]
Ni foam mV/s KOH
BiVO4/rGO 400 F/g@5 98%@1000 1M
Hydrothermal [12]
mV/s cycles Na2SO4
BiVO4 nanorods 1166F/g@ 1 80%@500
_ Hydrothermal KOH [13]
Ni foam Alg cycles




Energy Materials

GR/BiVO4 479F/g @ 5 91%@2500 2M
_ Hydrothermal [14]
Ni foam Alg cycles NaOH
BiVO4/RGO 343F/g @ 1 87%@2000 2M
Hydrothermal [15]
GCE Alg cycles KOH
MoS,/BiVO4 610 F/g@ 1 80% @200 2M
_ Hydrothermal [16]
graphite plate Alg cycles NaOH
SWCNT/BiVO. 88% @200 2M
Solvothermal ~ 395@2.5 A/g [17]
cycles NaOH
) 88%@4000
Ag:BiVO, Hydrothermal ~ 170@5 mV/s 6M KOH [8l
cycles
rGO/BiVO4 6M
Hydrothermal — 196@5 mV/s - [29]
carbon cloth KOH
BiVOs@C _ 483F/g @ 1 94% @2000 1M This
Solid state
SS substrate mA/g cycles KOH work
Table S4: MSE values of different models
Sr.No. Parameter MSE
1. Current density (OER stability) 0.0008
2. Capacitive retention of BVC 0.0222
3. Coulombic efficiency of BVC 0.0038
4. Capacitive retention of BV 0.0036
5. Coulombic efficiency of BV 0.0046
6. Capacitive retention of solid-state device 0.0010
7. Capacitive retention of agueous device 0.0013
Table S5: Rs and Rct Values of the prepared devices
ASc device SSc device
Element - — — —
Before Stability After Stability Before Stability After Stability
Rs (€2) 0.39 0.41 0.11 0.13
Ret (€2) 92 276
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Rw 0.0078 0.09 0.03 0.18
CPE 0.0034 0.00473 0.006 0.000381

Section S3: Formulas for calculations
S3.1- Formulas for XRD calculations:
Crystallite size, (D):

The crystallite size (nm) is calculated using the following Scherrer equation,?

kXA
p*cosl

Where, k is the Scherrer constant, A is the X-ray Wavelength, g is FWHM in radians, 4 is the

(S1)

Bragg’s angle.

Dislocation density (pp), and Micro strain (g):
The Micro strain (¢) and Dislocation density (pp) were calculated using the following equations
S1and S2,12%

— ﬁy 3
&7 Lanfrad0)] x10 (S2)
I
Pr=7 x10° (S3)

Strain (€), and Required crystallite size (D):
The quantities of Strain (g) and Required crystallite size (D) were also calculated from a linear

least square fitting, namely Williamson—Hall plot analysis,?*?%
Pcosf= % =4esint (S4)

From the slope and y-intercept of a plot of 4sind versus fcos6), one may determine the strain and

crystallite size.

S3.2- Formulas for OER calculations:
RHE conversion (ErHE)
Voltages were converted from Hg/HgO to a reversible hydrogen electrode (RHE) by using the
following equation
Erre = Big/hgo +0-059% pH + Egy (S5)
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Where, Erne is voltage in terms of RHE and Enxgmgo is potential in terms of the Hg/HgO

electrode, pH is the pH of the electrolyte solution.

Over Potential

N0 = Egyp —1.23V (S6)
Where o is the overpotential measured at 10 mA cm current density, the value 1.23 V
represents the theoretical minimum voltage required to split water, this is known as a

thermodynamic potential for water splitting

Tafel slope
The Tafel plots were calculated by the equation

n=a+b xlogljl (S7)
where a, b, and j are the intercept, slope, and current density respectively.

Electrochemical double-layer capacitance (Cqi)
The double-layer charging currents (ic) can be plotted against the scan rate to determine the Cai,

using following
I, =vCy (S8)

Where the scan rate is denoted by v, it outputs a line that is straight and has a slope of Ca.

Electrochemical active surface area (ECSA)
The ECSA was then calculated from the corresponding Ca values. The material with a higher

ECSA value displays a superior electrocatalytic activity.

ECSA = C% (S9)

Where, Cs is general specific capacity with a value of 0.04 mF cm of the alkaline 1.0 M KOH
electrolyte solution.

Roughness factor (RF)
The electrocatalytic interface texture of electrodes, i.e. roughness factor, is calculated by the

following formula.
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RF - ECS?/Abeometric (510)

Where, Aceometric iS the electrode's geometric area in contact with the electrolyte, 1 cm? in the

present study.

S3.3- Formulas for Supercapacitor calculations:
Charge contribution:
Capacitive and diffusion-controlled processes contribute to the total charge storage of
the electrode, and according to Power’s law, CV current is dependent on scan rate and can be
expressed as follows,
i=av? (S11)
log(i)=log(a)+blog(v) (S12)
Where, i and v correspond to the current (A) and scan rate (V st), respectively, while a and b are
the arbitrary constant.
The peak current density (Qt) contributions from the surface pseudocapacitive process (Qs -
Isurface) and the battery-like bulk process (Qq - Ibuik) by the following modified powers law.
0=0,+0, (S13)
Where Q is the total stored charge, the Qs is denoted for the charge stored at the material's
surface, and Qq is for the redox reactions.
The Qsand Qq values are calculated by the total voltammetric charge Q: (Charge stores C g?)
versus the reciprocal square root of the sweep rate plot.
0,= 0 +kv'? (S14)

Where Kk is a constant and Qs can be evaluated from the plot intercept.

Specific capacitance and specific capacity:

The specific capacitance and specific capacity are related to the supercapacitor performance. The
quantity of electrical charge that a supercapacitor can hold per unit of mass is measured by its
specific capacitance and capacity. Based on GCD characteristic curves, specific capacity of three

electrodes and the specific capacitance of devices were measured using the following equations:

IxAt

m

(Three electrodes) SCsp = (S15)
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SCsp XAV

(Three electrodes) Csp(mAh g-1) = 7

(S16)

IxAt
AVxm

(Two electrodes) SCs =4 (S17)

Here, SCsp represents the specific capacity (C g™) of the prepared material, | represent the
discharge current density (mA cm), At is the discharge time (s), 4V is the potential window (V),

and m represents the mass of active material (gm cm).

Specific energy (SE), and Specific power (SP):

The performance of a supercapacitor for different applications is determined by its specific
energy (S.E.) (Wh kg™) and specific power (S.P.) (W kg™), which are significant parameters.
The quantity of energy a supercapacitor can store per unit volume or mass is referred to as its
specific energy, and the specific power indicates how fast energy is released. The specific energy
and power of fabricated hybrid asymmetric supercapacitor devices are calculated from the GCD
characteristic curves using the following equations respectively

X X 2
SE=" 00 (S18)
§5.p.=230% (S19)

At

Where, the S.E. is specific energy, S.P. is specific power, SCs represents specific capacitance, V
represents the applied voltage of the fabricated device, and 4z indicates discharge time.
Capacitive retention, and Coulombic efficiency:

Capacitive retention refers to the capability of a supercapacitor device to maintain its storage
capacity over many charging-discharging cycles. It measures the longstanding stability and
reliability of the supercapacitor's performance. The coulombic efficiency (n) refers to the ratio of

charging to discharging time, at equal charge and discharge current densities.

Final capacitance value

Capacitive retention (%) =

Initial capacitance value x100% (820)

Coulombic efficiency (n %) :iﬂ x100% (S21)
C

Where, ¢, is the discharging time and ¢, is charging time.

Section S4: Videos of OER and Supercapacitor
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Video S1. The Oxygen gas evolution during the measurements of the OER study.
Video S2. The charging and discharging of the ASc device by rotating the fan.
Video S3. The charging and discharging of the SSc device by rotating the fan.
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