Energy Materials

Supplementary Material

Scalable solution chemical synthesis and comprehensive analysis of Bi₂Te₃ and Sb₂Te₃

Bejan Hamawandi^{1,2,*}, Parva Parsa¹, Inga Pudza², Kaspars Pudzs², Alexei Kuzmin², Sedat Ballikaya³, Edmund Welter⁴, Rafal Szukiewicz⁵, Maciej Kuchowicz⁵, Muhammet S. Toprak^{1,*}

¹Department of Applied Physics, KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden.
²Institute of Solid State Physics, University of Latvia, Riga LV-1063, Latvia.
³Department of Engineering Science, Istanbul University - Cerrahpasa, Avcılar, Istanbul 34320, Turkey.
⁴Deutsches Elektronen-Synchrotron - A Research Centre of the Helmholtz Association, Hamburg D-22607, Germany.
⁵Institute of Experimental Physics, University of Wroclaw, Wroclaw 50-204, Poland.

Correspondence to: Prof. Muhammet S. Toprak, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden. E-mail: toprak@kth.se; Dr. Bejan Hamawandi, Institute of Solid State Physics, University of Latvia, Riga LV-1063, Latvia. E-mail: bejan.hamawandi@cfi.lu.lv Supplementary Table 1. Literature review on microwave (MW) assisted synthesis of binary phases of Bi_2Te_3 and Sb_2Te_3 ; Details of the synthetic route, solvent, reaction temperature-time; morphology of resultant structures; the quantity typically obtained according to described procedure in the articles, and the reported transport data.

Composition	Synthetic route,	Rxn T	Morphology;	ZT	Ref
	Solvent	and time	Quantity*		
Bi2Te3	MW, polyol (EG); reflux system	T: No data t: 0.5–6 h	Nanorod; 1 mmol; 0.8 g	No data	[1]
Bi2Te3	MW, mixed solvents of water and ethylene glycol(EG)	T: 150 °C t: 30 min	Hollow spheres 0.2 mmol; 0.16 g	No data	[2]
Bi2Te3	MW, mixed solvents of water, and ethylene glycol (EG)	T: 150 °C t: 30 min	Hollow spheres, nanosaws, sheets; 0.03 mmol; 0.025 g	No data	[3]
Bi2Te3	MW, polyol (EG)	T: 170–195 °C t: 30–60 min	Nanosheets and nanotubes 0.13 mmol; 0.11 g (based on Te)	No data	[4]
Bi2Te3	MW; reduction in water; reflux system	T: No data t: 10 min	Nanocrystals; 1 mmol; 0.8 g	ZT : 1.18 @300 K	[5]
Bi2Te3	MW, polyol (EG)	T: 220 ∘C t: 2 min	Hexagonal platelets; 8 g	ZT: 1.04 @440 K	[6] ^Ŷ
Sb2Te3	MW, polyol (EG)	T: 220 ∘C t: 2 min	Hexagonal platelets; 8 g	ZT: 1.37 @523 K	[6] ^Ŷ
Bi2Te3	MW, Hydrothermal	T: 220 ∘C t: 2 min	Hexagonal platelets; 8 g	ZT: 0.9 @373 K	[7] ^Ŷ
Sb ₂ Te ₃	MW, Hydrothermal	T: 220 ∘C t: 2 min	Hexagonal platelets;	ZT : 1.03 @473 K	[7] ^Υ

			8 g		
Bi2Te3	MW, thermolysis	T: 220 ∘C t: 2 min	Hexagonal platelets; 16 g	ZT : 0.7 at 573 K	This work
Sb ₂ Te ₃	MW, thermolysis	T: 220 ∘C t: 2 min	Hexagonal platelets; 16 g	ZT : 0.9 at 523 K	This work

^{*}Quantity is estimated from the experimental details given in the respective articles, assuming 100% yield. [°]These are our earlier works on MW-assisted polyol and hydrothermal routes.

A typical reaction profile in the MW-reactor is displayed in **Supplementary Figure 1a**, where the ramping time (4 min), dwell time (2 min) and consumed MW power can be clearly seen. The products are also easily separable from the reaction mixture, as displayed in **Supplementary Figure 1b**.

Supplementary Figure 1. (a) MW-assisted reaction profile used for the synthesis of Bi₂Te₃ and Sb₂Te₃ nanoparticles. (b) Picture showing the quantity of materials obtained in a single reactor, and easy separation of particles from the reaction mixture.

MW-assisted heating provides uniform heating throughout the reaction mixture, which ensures consistent conditions and reduces temperature gradients. This method also allows for rapid heating and cooling, giving precise control over reaction times and temperatures, with drastically reduced reaction time as compared to conventional synthetic routes. The precision of the MW system helps to achieve consistent particle size, crystallinity and morphologies across different batches. Additionally, it's scalable, meaning it can be used for both small and large batches without significant changes in reaction conditions, ensuring the same quality of nanoparticles regardless of batch size. The method also allows for better control over the reaction environment, including atmosphere and pressure, essential for maintaining consistent conditions, significantly reducing time and energy consumption. With the FlexiWAVE MW system, with its 15 (each 100ml) vials (see **Supplementary Figure 2**), we can produce large quantities of materials in one run. Samples in multiple vessels were characterized with X-ray diffraction (XRD) and establish the phase purity, before mixing to ensure the scale-up reproducibility of the TE materials.

Supplementary Figure 2. (a) Screenshot of the MW reactor, for experimental design, with multivessel rotor; (b) Multivessel high pressure rotor used for the MW assisted synthesis of Bi₂Te₃ and Sb₂Te₃ nanoparticles. The system can take up to 15 reactors which can be filled up to about 100 mL each, making it possible to synthesize high and reproducible quality nanostructures with a high yield, at a pilot scale, without needing any complicated or reflux systems.

The thermal conductivity is estimated through thermal diffusivity (α) measurements using a thin (2 mm thick) disk-shaped sample, cut from the SPS compacted pellet (see **Supplementary Figure 3**). The α measurement direction is parallel (cross-plane) to the pressing direction. Other electronic properties, S and electrical conductivity (σ), are measured in perpendicular plane to the pressing direction (in-plane). This is a common practice in the transport property evaluation of bulk TE materials.

Supplementary Figure 3. Sample geometry and measurement direction of electronic and thermal transport properties (α : Thermal diffusivity, σ : Electrical conductivity; *S*: Seebeck coefficient).

Supplementary Figure 4. A comparison of the experimental and RMC/EA calculated Sb K-edge and Te K-edge EXAFS spectra $\chi(k)k^2$ and their moduli of their Fourier and Morlet wavelet transforms for the Sb and Te K-edges in Sb₂Te₃ (a,c) and Bi L₃-edge and Te K-edge in Bi₂Te₃ (b,d). Wavelet transforms, representing data in *k* and *R* space simultaneously, are shown for data corresponding to 10 K only.

REFERENCES

- 1. Zhou, B; Zhao, Y.; Pu, L.; Zhu, J. Microwave-assisted synthesis of nanocrystalline Bi₂Te₃. *Mater. Chem. Phys.* 2006, *vol.* 96, pp. 192–196.
- 2. Jiang, Y.; Zhu, Y.J.; Chen, L.D. Microwave-assisted preparation of Bi₂Te₃ hollow nanospheres. *Chem. Lett.* 2007, *vol.* 36, no. 3, pp. 382–383
- 3. Jiang,Y.; Zhu, Y.J. Bi₂Te₃ nanostructures prepared by microwave heating. *J. Cryst. Growth* 2007, *vol. 306*, no. 2, pp. 351–355.
- 4. Yao, Q.; Zhu, Y.; Chen, L.; Sun, Z.; Chen, X. Microwave-assisted synthesis and characterization of Bi₂Te₃ nanosheets and nanotubes. *J. Alloys Compd.* 2009, *vol.* 481, no. 1–2, pp. 91–95.
- Pradhan, S.; Das, R.; Bhar, R.; Bandyopadhyay, R.; Pramanik, P. A simple fast microwaveassisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reactionmixture. *J. Nanoparticle Res.* 2017, *vol. 19*, no. 2, pp. 69-1 – 69-9.
- Hamawandi, B.; Ballikaya, S.; Batili, H.; Roosmark, V.; Orlovská, M.; Yusuf, A.; Johnsson, M.; Szukiewicz, R.; Kuchowicz, M.; Toprak, M.S. Facile solution synthesis, processing and characterization of n-and p-type binary and ternary Bi-Sb tellurides. Appl. Sci. 2020, 10, doi:10.3390/app10031178.
- Hamawandi B, Batili H, Paul M, Ballikaya S, Kilic NI, Szukiewicz R, et al. Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis. Nanomaterials 2021;11(8):2053. Available from: <u>https://www.mdpi.com/2079-4991/11/8/2053</u>