Energy Materials

Supporting Information

NiFe prussian blue analogue cocatalyzed TiO₂/In₂S₃ type-II heterojunction for solar water splitting

Ming Zhang¹, Pingping Yang², Wenyan Tao³, Xiangui Pang², Youyi Su², Pai Peng², Lin Zheng², Runhan Li², Shuxiang Wang², Jing Huang², Li Zou², Jiale Xie²

¹School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China.
²School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China.
³Tongwei Solar Company, Chengdu 610299, Sichuan, China.

Correspondence to: Dr. Jiale Xie, School of New Energy and Materials, Southwest Petroleum University, 8 Xindu Road, Xindu District, Chengdu 610500, Sichuan, China. E-mail: <u>jialexie@swpu.edu.cn</u>

Figure S1. EDS images of $TiO_2/In_2S_3(a, b)$ and $TiO_2/In_2S_3/NFP(c, d)$.

Figure S2. EDS pattern of TiO₂/In₂S₃/NFP photoanode.

Figure S3. (a) XPS survey spectra of TiO_2 , TiO_2/In_2S_3 , and $TiO_2/In_2S_3/NFP$. (b) XPS spectra of In 3d of TiO_2/In_2S_3 photoanode.

Figure S4. (a) Optical images of TiO₂ (right), TiO₂/In₂S₃ (left), and TiO₂/In₂S₃/NFP (middle) photoanodes. (b) Optical image of as-prepared In₂S₃ powder.

Figure S5. Photovoltage (a), it (b), LSV (c) curves of TiO_2/In_2S_3 with different precursor concentrations.

Figure S6. (a) M-S plots of TiO_2 and TiO_2/In_2S_3 photoanodes measured at 2000 Hz in the dark. (b) Histogram of the corresponding carrier concentration. (c) Nyquist plots of TiO_2 -based photoanodes measured at 0.47 V vs. RHE under AM1.5G illumination.

Figure S7. CV curves of TiO₂ (a) and TiO₂/In₂S₃ (b-e) prepared with different precursor concentrations in 1 M KOH at a scan rate of 5-100 mV s⁻¹. (f) Determination of capacitance (C_{dl}) values through $\Delta J vs$. scan rate plots for TiO₂-based photoanodes.

Figure S8. LSV curves of $TiO_2/In_2S_3/NFP$ at different reaction times (a) and various reaction temperatures (b).

Figure S9. Dark LSV curves of TiO_2 , TiO_2/In_2S_3 , and $TiO_2/In_2S_3/NFP$ electrodes measured at a scan rate of 20 mV s⁻¹.

Figure S10. LSV (a) and CV (b) curves of TiO₂/In₂S₃/NFP photoanode before and after stability testing. (c) Determination of capacitance (C_{dl}) values through $\Delta J vs$. scan rate plots for TiO₂/In₂S₃/NFP photoanode before and after stability testing.

Figure S11. (a, b) SEM images of TiO_2/In_2S_3 photoanode after the stability test. (c, d) SEM images of $TiO_2/In_2S_3/NFP$ photoanode after the stability test. (e) S 2p XPS spectra of the tested TiO_2/In_2S_3 and $TiO_2/In_2S_3/NFP$ photoanodes. (f) Ni 2p XPS spectra of the as-prepared and tested $TiO_2/In_2S_3/NFP$ photoanodes.

Figure S12. Relationship of photocurrent density *vs.* light intensity of TiO_2 , TiO_2/In_2S_3 , and $TiO_2/In_2S_3/NFP$ photoanodes.

Figure S13. CV curves of TiO_2 (a), TiO_2/In_2S_3 (b), and $TiO_2/In_2S_3/NFP$ (c) in 1 M KOH at a scan rate of 5-100 mV s⁻¹.

Figure S14. CV curves of TiO_2/In_2S_3 and $TiO_2/In_2S_3/NFP$ electrodes measured at a scan rate of 20 mV s⁻¹ and in the dark.

Figure S15. Transmission spectra and UV-vis absorption spectra of TiO_2 , TiO_2/In_2S_3 , and $TiO_2/In_2S_3/NFP$ photoanodes.

The bandgap (E_g) and the theoretical photocurrent density (J_{abs}) of TiO₂-based films are obtained by:

$$(\alpha h\nu)^{1/n} = A(h\nu - E_g) \tag{S1}$$

$$J_{abs} = \frac{1}{E_g} \int_{\lambda_2}^{\lambda_1} A_\lambda \ \Phi_\lambda d\lambda \tag{S2}$$

where α denotes the absorbance index, *h* represents the Planck constant, *v* signifies the frequency of light, *A* stands for a material-specific constant, *E*_g represents the band gap of the semiconductor, *A*_{λ} characterizes the absorption rate of the semiconductor photocathode, and Φ_{λ} delineates the photon flux within the AM1.5G spectrum.

 Table S1. Comparison of the performance of this work with the reported related photoanodes.

-

Photoanode	Electrolyte (AM 1.5G)	J (mA cm ⁻²) (1.23 V vs. RHE)	Stability	Ref.
S,N-TiO ₂ /In ₂ S ₃	1 M NaOH	2.74 mA cm ⁻² , 3.5 times	20 h, 80%	[1]
FTO/TiO ₂ /In ₂ S ₃	Na ₂ S/Na ₂ SO ₃	1.74 mA cm ⁻² (0 V <i>vs</i> . Ag/AgCl)	6 h, 86.4%	[2]
TiO ₂ /In ₂ S ₃	$1 \text{ M Na}_2\text{S}_2\text{O}_3$	1.1 mA cm ⁻²	N/A	[3]
GO/In ₂ S ₃ /TiO ₂	0.5 M Na ₂ SO ₄	0.2 mA cm ⁻² , 20 times (0 V <i>vs</i> . Ag/AgCl)	1000 s, ~76%	[4]
$V-TiO_2@\beta-In_2S_3$	0.25 M Na ₂ S + 0.35 M Na ₂ SO ₃	1.42 mA cm ⁻² , 3 times (0.5 V <i>vs.</i> Ag/AgCl)	2000 s	[5]
Fe ₂ O ₃ /Fe ₂ TiO ₅ /CoFe- PBA	0.1 M NaNO ₃ + 0.1 M HNO ₃	1.25 mA cm^{-2}	24 h, 80%	[6]
ZnO/BiVO ₄ /NiFePB	0.5 M Na ₂ SO ₄	1.66 mA cm ⁻²	N/A	[7]
TiO ₂ @FeFe-PB	0.1 M Na ₂ SO ₄	1.5 mA cm ⁻² , 2 times	2400 s, 80%	[8]
CoFe-PBA/PiH	1 M NaOH	1.24 mA cm^{-2}	N/A	[9]
α/γ -Fe ₂ O ₃ /FCP	1 М КОН	3.5 mA cm ⁻² , 7.8 times	2h, 94%	[10]
TiO ₂ /[CoFe–JG]	0.1 M PBS, pH=7	551 µA cm ⁻²	2 h, 80%	[11]
CoFe(OH) _x @Sb- TiO ₂	0.5 M Na ₂ SO ₄	1.48 mA cm ⁻²	N/A	[12]
TiO ₂ /In ₂ S ₃ /NFP	1 M KOH	1.81 mA cm ⁻² , 6 times	12 h, 95.17%	This work

REFERENCES

- Park J, Lee TH, Kim C et al. Hydrothermally obtained type-II heterojunction nanostructures of In₂S₃/TiO₂ for remarkably enhanced photoelectrochemical water splitting. *Appl Catal B Environ*. 2021;295:120276. [DOI: 10.1016/j.apcatb.2021.120276]
- Hsieh PY, Chiu YH, Lai TH et al. TiO₂ Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. ACS Appl Mater Interfaces. 2019;11:3006-3015. [DOI: 10.1021/acsami.8b17858]
- Wang X, Li H, Zhang J, Liu X, Zhang X. Wedged β-In₂S₃ sensitized TiO₂ films for enhanced photoelectrochemical hydrogen generation. *J Alloys Compd.* 2020;831:154798. [DOI: 10.1016/j.jallcom.2020.154798]
- Braiek Z, Ben Naceur J, Jrad F, Ben Assaker I, Chtourou R. Novel synthesis of graphene oxide/In₂S₃/TiO₂ NRs heterojunction photoanode for enhanced photoelectrochemical (PEC) performance. *Int J Hydrog Energy*. 2022;47:3655-3666. [DOI: 10.1016/j.ijhydene.2021.10.268]
- Mumtaz A, Mohamed NM, Mazhar M, Ehsan MA, Mohamed Saheed MS. Core–Shell Vanadium Modified Titania@β-In₂S₃ Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity. *ACS Appl Mater Interfaces*. 2016;8:9037-9049. [DOI: 10.1021/acsami.5b10147]
- Tang P, Han L, Hegner FS et al. Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification. *Adv Energy Mater*. 2019;9:1901836. [DOI: 10.1002/aenm.201901836]
- 7. Bai S, Jia S, Zhao Y et al. NiFePB-modified ZnO/BiVO₄ photoanode for PEC water oxidation. *Dalton Trans*. 2023;52:5760-5770. [DOI: 10.1039/d3dt00013c]
- Mao G, Li C, Li Z et al. Efficient charge migration in TiO₂@PB nanorod arrays with core-shell structure for photoelectrochemical water splitting. *CrystEngComm*. 2022;24:2567-2574. [DOI: 10.1039/d1ce01710a]
- Khan AZ, Kandiel TarekA, Abdel-Azeim S, Jahangir TN, Alhooshani K. Phosphate ions interfacial drift layer to improve the performance of CoFe–Prussian blue hematite photoanode toward water splitting. *Appl Catal B Environ*. 2022;304:121014. [DOI: 10.1016/j.apcatb.2021.121014]
- 10. Li Y, Chen Y, Wu Q et al. Revealing long-lived electron-hole migration in core-shell α/γ -Fe₂O₃/FCP for efficient photoelectrochemical water oxidation. *Catal Sci Technol.*

2022;12:250-258. [DOI: 10.1039/D1CY01628H]

- Ulusoy Ghobadi TG, Ghobadi A, Buyuktemiz M et al. A Robust, Precious-Metal-Free Dye-Sensitized Photoanode for Water Oxidation: A Nanosecond-Long Excited-State Lifetime through a Prussian Blue Analogue. *Angew Chem Int Ed.* 2020;59:4082-4090. [DOI: 10.1002/anie.201914743]
- Pal D, Maity D, Sarkar A et al. Multifunctional Ultrathin Amorphous CoFe-Prussian Blue Analogue Catalysts for Efficiently Boosting the Oxygen Evolution Activity of Antimony-Doped TiO₂ Nanorods Photoanode. ACS Appl Energy Mater. 2022;5:15000-15009. [DOI: 10.1021/acsaem.2c02608]