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Abstract

Aim: To predict the peak wall stress in abdominal aortic aneurysms (AAAs) considering both morphological factors 
(maximum diameter, asymmetry index, and wall thickness) and sex differences, in order to assess the risk of AAA 
rupture more accurately. 

Methods: Basic models of AAA focusing on different sexes with a range of morphological parameters were 
constructed. Using the Design-expert software for three-factor response surface methodology, 20 experimental 
models were built as well with the SolidWorks software. Fluid-structure interaction analysis was used to obtain stress 
distribution along the AAA wall. Polynomial regression equations were fitted to peak stresses in all experimental 
models. 

Results: Based on fluid-structure interaction simulation data in the nonlinear polynomial regression model, separate 
equations for peak wall stress in AAA with regard to males and females were obtained. Morphological factors 
and sex differences have significant influence on peak wall stress. In some models, even when the maximum AAA 
diameter was relatively small, the peak wall stress became high. For the same maximal transverse measurement, 
when the AAA wall was thin and the asymmetry index large, or the former was thick and the latter small, the peak 
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wall stress observed in males was higher than that in females. 

Conclusion: To evaluate the risk of rupture of AAA more precisely and specifically, the present study proposes a 
new prediction method (based on equations) that includes more indicators such as sex and morphology, based 
on numerical biomechanical simulations, which were confirmed as such. This study provides a sex-specific clinical 
reference to assess the aforementioned risk of AAA rupture. 

Keywords: Abdominal aortic aneurysm, sex difference, morphology, peak stress, rupture risk assessment

INTRODUCTION
Abdominal aortic aneurysms (AAAs) are a high-risk vascular disease characterised by local expansion of 
the abdominal aorta to more than 50% of its original diameter. If AAAs are not treated in time, it is likely 
to expand and rupture eventually[1]. Its prevalence in individuals older than 60 years is at least four times 
higher in men than women[2]. The mortality rate associated with a ruptured AAA is as high as 60%-80%[3] 
and about 15,000 such deaths occur in the United States every year[4]. Clinically, the treatment for AAA 
includes open repair and endovascular aneurysm repair.

Previously, indications for surgical treatment of AAA were based on the largest vessel diameter (greater 
than 5.5 or 5 cm)[5]. However, relying mainly on maximal transverse measurement as a criterion to 
determine whether an AAA should be treated may delay the optimal timing for intervention in some 
patients or even lead to serious consequences such as rupture. In recent years, other biomechanical risk 
factors for AAA rupture have been used to more accurately predict its development, such as morphological 
factors (maximum diameter, asymmetry index, wall thickness, etc.)[6,7]. Vorp et al.[8] established a three-
dimensional model of an AAA and found that an aneurysm which was asymmetric had a great influence 
on the distribution of wall stress, and peak wall stress increased nonlinearly with greater asymmetry. From 
a biomechanical point of view, a ruptured AAA occurs when local stress of the vascular wall exceeds the 
mechanical strength of its material. Thus, the higher local stress is along the AAA’s wall, the higher the risk 
of a ruptured AAA[9]. Besides peak wall stress, blood flow rheology has also been considered. For example, 
the wall shear stress induced by pulsatile flow, due to friction between blood flow and the inner wall of 
an AAA, was found to influence the rupture risk and function of AAA by damaging the endothelium and 
inducing AAA wall remodelling[10-13].

Recent studies have found that the risk of AAA rupture has significant sex differences. The UK Small 
Aneurysm Trial, after a 10-year (1991-2001) follow-up of 496 patients, found that 5% of 411 males died of 
a ruptured AAA, while 14% of 85 females did, which suggests that the risk of rupture in affected women 
was three to four times higher[14]. The medical literature has also reported a myriad of publications about 
the importance of sex differences[15-18] with poorer outcomes in women. This observation has also been 
confirmed in a large number of observational studies and randomized controlled ones in recent years[19,20]. 
As noted by Ash et al.[21], there has been significant debate among vascular specialists regarding AAA 
between men and women. A much higher incidence is seen in men, with a male to female ratio of 4:1[22]. 
Women though, are older at presentation, exhibit faster rates of AAA growth and thus have a higher risk of 
rupture at lower diameters[23]. As the debate surrounding the definition, diagnosis and treatment of AAA in 
women continues, more specific guidelines are needed[24].

The mechanism underlying sex-dependent differences in AAA rupture is still unclear however. The reason 
may be due to women having an aorta diameter that is generally smaller than in men. Therefore, for 
similarly sized AAAs, the degree of expansion in females is greater, and consequently, the risk of rupture 
increases accordingly, which suggests that the threshold for treatment of the maximum diameter in female 
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AAA patients should be reduced[25,26].

In the present study, a series of quantitative simulations were conducted to investigate the relationships 
between the risk of a AAA rupture and patient sex and AAA morphology parameters. Based on these 
simulation results, equations for the peak wall stress for male and female patients were derived. A three-
dimensional grid cube representing the risk comparison between both sexes has also been built considering 
wall thickness, asymmetry and maximum diameters of an AAA.

METHODS
Design of experiments 
Based on the central composite design in response surface methodology, the maximum diameter, 
asymmetry index and wall thickness of AAA were selected as independent variables, and the peak wall 
stress measurement was used as the response value[27-29]. Firstly, the morphology parameters for AAA 
in males and females over 70 years of age were determined according to clinical studies found in the 
literature[30]. Measurements of the diameter in the upper and lower parts of the AAA were 2.8 and 2.3 cm 
for males, and 2.7 and 2 cm respectively for females. The length of the abdominal aorta was set at 12 cm for 
both sexes. The maximum diameters in AAA ranged from 3 to 6 cm for males and 2.7 to 5 cm for females. 
As shown in Figure 1, the asymmetry index β in AAA is defined as the ratio of the maximum posterior 
radius rp to the maximum anterior radius ra (β = rp/ra), which is identified to range from 0.3 to 1. Previous 
studies have revealed that the average wall thickness in AAA is generally 1.5 mm[31]. Therefore, its variation 
range in the test design was set to 0.8 mm to 2.2 mm.

To define experimental groups, we selected a two-factor central composite design for this design as an 
example. Figure 2 represents the test points during a setup for a two-factor universal spiral combination 
design. For a full factorial one with p = 3 variables, there were total mc = 2p = 8 points in this work, 
including two test points of ± r on each axis, so their mr = 2p = 6. As for m0, it was defined as how often the 
centre point test in which each factor takes a zero level[32]. Therefore, the overall number of trials was m = 
mc + mr + m0.

Finally, for the experiment design in this study, the coding factors of the models for males and females and 
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Figure 1. Three-dimensional model of abdominal aortic aneurysm. rp: maximum posterior radius; ra: maximum anterior radius 



Figure 2. Distribution of test points for a two-factor general rotating combination design

Factors
Coded levels

-r (-1.682) -1 0 +1 +r (1.682)
Diameter (mm) Male 30 36.1 45 53.9 60

Female 27 31.7 38.5 45.3 50
Asymmetry index 0.3 0.44 0.65 0.86 1
Wall thickness (mm) 0.8 1.08 1.5 1.92 2.2

Table 1. Coding factors for abdominal aortic aneurysm models designed for males and females and corresponding values

Table 2. Design matrix as well as simulated and predicted peak wall stresses for the abdominal aortic aneurysm models 
designed for males

Test model 
(male)

Maximum diameter 
Dmax (mm) Asymmetry index β Wall thickness t (mm) Simulated peak wall 

stress (KPa)
Predicted peak wall 

stress (KPa)
1 1 (53.9) 1 (0.86) 1 (1.92) 273.85 276.29
2 1 (53.9) 1 (0.86) -1 (1.08) 531.13 533.65
3 1 (53.9) -1 (0.44) 1 (1.92) 415.19 415.67
4 1 (53.9) -1 (0.44) -1 (1.08) 822.74 823.11
5 -1 (36.1) 1 (0.86) 1 (1.92) 167.33 178.41
6 -1 (36.1) 1 (0.86) -1 (1.08) 326.61 337.61
7 -1 (36.1) -1 (0.44) 1 (1.92) 267.29 276.23
8 -1 (36.1) -1 (0.44) -1 (1.08) 576.48 585.51
9 r (60) 0 (0.65) 0 (1.5) 487.86 489.81
10 -r (30) 0 (0.65) 0 (1.5) 225.48 207.67
11 0 (45) r (1) 0 (1.5) 257.02 245.41
12 0 (45) -r (0.3) 0 (1.5) 574.79 571.11
13 0 (45) 0 (0.65) r (2.2) 228.5 220.15
14 0 (45) 0 (0.65) -r (0.8) 820.63 817.73
15 0 (45) 0 (0.65) 0 (1.5) 374.61 375.67
16 0 (45) 0 (0.65) 0 (1.5) 374.73 375.67
17 0 (45) 0 (0.65) 0 (1.5) 371.05 375.67
18 0 (45) 0 (0.65) 0 (1.5) 372.17 375.67
19 0 (45) 0 (0.65) 0 (1.5) 378.92 375.67
20 0 (45) 0 (0.65) 0 (1.5) 379.23 375.67
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their values are defined in Table 1. Accordingly, 20 model parameters were generated for men and women, 
respectively (columns 1-4 of Tables 2 and 3).

Geometric model
All geometric models in this study were built using a three-dimensional modelling software SolidWorks 
2016 (Dassault Systèmes SolidWorks Corporation, Waltham, MA, USA) based on the parameters listed in 
Tables 2 and 3. In order to obtain relatively smooth blood flow, the diameter at the upper and lower parts of 
the model were extended by 1.5 times. The schematic diagrams of all AAA designs are shown in Figure 3.

Governing equations, boundary conditions and material properties
The fluid-solid coupling analysis was carried out with ANSYS Workbench 15.0 (Ansys, Inc., Lebanon, NH, 
USA). The pressure distribution obtained by the Fluid Flow calculation was transmitted to the vascular wall 
through a fluid-solid coupling system, and the solid structure was determined by using the Static Structural 
Analysis module to figure out how stress is distributed in the final vascular wall. The fluid-filled domain 
was stitched using tetrahedral meshes. In order to ensure convergence of the physical quantities calculated 
iteratively such as velocity and force on the fluid-solid coupling surface, the vascular wall was also stitched 
as above.

Numerical simulation calculations were based on the Navier-Stokes equation and the mass conservation 
continuity one, neglecting gravity force:

			   0）（ =∆−∇+∇⋅
→→→

upuu µρ 		  (1)

			   0u =⋅∇
→

					     (2)
where, u and p represent the velocity vector (m/s) and pressure (Pa) respectively, and ρ and μ are the 
density (kg/cm3) and viscosity (Pa·s) of the blood.

In order to facilitate convergence of the fluid-solid coupling calculation, a steady-flow analysis was used. 

Test model 
(female)

Maximum diameter 
Dmax (mm) Asymmetry index β Wall thickness t (mm) Simulated peak wall 

stress (KPa)
Predicted peak wall 

stress (KPa)
1 1 (45.3) 1 (0.86) 1 (1.92) 222.16 226.76
2 1 (45.3) 1 (0.86) -1 (1.08) 455.46 460.90
3 1 (45.3) -1 (0.44) 1 (1.92) 352.66 355.21
4 1 (45.3) -1 (0.44) -1 (1.08) 719.4 721.11
5 -1 (31.7) 1 (0.86) 1 (1.92) 146.29 151.73
6 -1 (31.7) 1 (0.86) -1 (1.08) 286.3 290.90
7 -1 (31.7) -1 (0.44) 1 (1.92) 234.01 235.72
8 -1 (31.7) -1 (0.44) -1 (1.08) 504.1 506.65
9 r (50) 0 (0.65) 0 (1.5) 416.54 411.55
10 -r (27) 0 (0.65) 0 (1.5) 203.25 198.25
11 0 (38.5) r (1) 0 (1.5) 218.87 210.26
12 0 (38.5) -r (0.3) 0 (1.5) 498.78 497.10
13 0 (38.5) 0 (0.65) r (2.2) 191.94 186.79
14 0 (38.5) 0 (0.65) -r (0.8) 689.14 684.00
15 0 (38.5) 0 (0.65) 0 (1.5) 315.72 316.63
16 0 (38.5) 0 (0.65) 0 (1.5) 315.86 316.63
17 0 (38.5) 0 (0.65) 0 (1.5) 312.13 316.63
18 0 (38.5) 0 (0.65) 0 (1.5) 314.27 316.63
19 0 (38.5) 0 (0.65) 0 (1.5) 318.85 316.63
20 0 (38.5) 0 (0.65) 0 (1.5) 319.94 316.63

Table 3. Design matrix as well as simulated and predicted peak wall stresses for the abdominal aortic aneurysm models 
designed for females
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Blood was assumed to be a uniform, continuous, isotropic, incompressible Newtonian fluid with a density 
value of 1050 kg/m3 and a viscosity of 0.0035 Pa·s. For boundary conditions, the inlet flow rate and the 
outlet pressure were fitted to the simulation with reference to the literature[33]. The outlet pressure of 
models for males and females was equivalent to that of systolic blood at 16,414 Pa (~123 mmHg), and the 
corresponding inlet flow velocity were 0.1614 m/s for men and 0.1797 m/s for women. The CFD software 
package which consisted of ANSYS Fluent 15.0 was used for simulation, and the SIMPLE algorithm was 
applied.

The wall of the AAA was assumed as a linear, isotropic elastic material. According to previous studies, the 
stiffness of the blood vessel wall in males is higher than that in females[34,35]. Therefore, the Young’s modulus 
obtained for women in this study was defined as 80% of men. Finally, the density was set to 2000 kg/m3, 
the Poisson’s ratio 0.45, and the Young’s modulus was 2.7 MPa for men and 2.16 MPa for women[36]. 
Displacements along all directions at two ends were constrained.

After all the simulations, a multivariate regression analysis will be performed on the peak Von Mises stress 
values of the test models using Design-Expert software Version 10 to obtain cubic polynomial equations to 
predict the related stresses.

RESULTS
The simulated peak wall stress of each model has been shown in Table 2 and Table 3 (the penultimate 
column).

Two models with significant differences in the maximum diameter of AAA for the male group were 
selected, and the stress distribution contours are shown in Figure 4. Although the maximum diameter 
measured for model 2 was higher than that of model 8 (5.39 cm vs. 3.61 cm), the peak wall stress of model 

Figure 3. All geometric models (left: male; right: female, the number under each model represents the Test model number from Columns 
1 of Tables 2 and 3)
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2 remained lower than that of model 8 (531.13 KPa vs. 576.48 KPa). Similar results were observed when 
model 2 was compared with models 9, 12, and 14, and when model 1 was compared with models 6, 8, 12, 
14, and 15. In the female testing group, the stress distribution contours of models 9 and 12 are presented 
in Figure 5. The maximum diameter measured for the model 9 was higher than that of model 12 (5 cm 
vs. 3.85 cm), but the peak wall stress of model 9 turned out lower than that of model 12 (416.54 KPa vs. 
498.78 KPa). This situation was also not unique in the female group, when model 9 was compared with 
models 2, 4, and 14. Comparison of results obtained for stress distribution showed that using only the 
maximum diameter to predict the risk of AAA rupture was not enough and might lead to non-optimal 
decisions.

Based on all simulation results, a multivariate regression analysis was performed on the peak Von Mises 
stress values of the test models in Tables 2 and 3 using Design-Expert software Version 10 to obtain cubic 
polynomial equations to predict the related stresses:

t  35.98d+50.64t+11.52a+9.52d-37.52at+                        
24.54dt-10.39ad-177.64t-96.82a-83.87d+375.67_ale

2222

=PWSM 	

								        	 (3)

d
PWSmaleF

22222 9.31a+t22.89d+42.76t+13.34a+4.1d-32.94at+                           
23.74dt-11.11ad-149.16t-86.05a-63.06d+316.63_e =

		  (4)

where a, d, t are coded dimensionless variables of the asymmetry index, the maximum diameter of the 

Figure 4. Stress distribution in models 2 and 8 of the male group. A: anterior; P: posterior

Figure 5. Stress distribution in models 9 and 12 of the female group.A: anterior; P: posterior
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AAA, and wall thickness, respectively. 

To verify the two equations for predicting outcomes, the coefficients of determination were obtained:  for 
R 2

M = 0.9982 for Male_PWS, and R 2
F = 0.9993 for Female_PWS, which indicates that the model is applicable. 

The analysis of variance [Tables 4 and 5] showed that the three selected factors (diameter, asymmetry 
and wall thickness) were significant for peak stress (P < 0.05). However, the lack of fit in this work was 
biased towards the other side of statistical significance (P < 0.05), because the computation was ideal when 
simulating a repeating model, instead of true replication of the simulation[21]. Using the two predictive 
equations, the predicted peak stress in each model were obtained and presented in Tables 2 and 3 (the last 
column). Comparison of the simulated and predicted peak stresses in Tables 2 and 3 reveals good fit of the 
two regression models.

In Equations 3 and 4, the absolute value of the coefficient for first order from the regression equation 
reflects the contributions of each single factor to the response value. Then, we can sort out the three factors 
by their contribution to peak stress: AAA wall thickness, asymmetry index and maximum AAA diameter. 

Source Seq SS DF MS F  value P  value
Model 615,971.1 10 61,597.11 505.79 < 0.0001
A-Diameter 96,231.85 1 96,231.85 790.18 < 0.0001
B-Asymmetry 127,100 1 127,100 1043.33 < 0.0001
C-Wall thickness 175,300 1 175,300 1439.51 < 0.0001
AB 863.62 1 863.62 7.09 0.0259
AC 4819.66 1 4819.66 39.58 0.0001
BC 11,263.50 1 11,263.50 92.49 < 0.0001
A2 1318.21 1 1318.21 10.82 0.0094
B2 1859.77 1 1859.77 15.27 0.0036
C2 35,937.61 1 35,937.61 295.09 < 0.0001
A2C 4243.63 1 4243.63 34.85 0.0002
Residual error 1096.06 9 121.78
Lack of fit 1039.04 4 259.76 22.78 0.0021
Pure error 57.01 5 11.40
Total 617,100 19

Table 4. Analysis of variance for fit regression regarding male function

Table 5. Analysis of variance for fit regression regarding female function

DF: degree of freedom; MS: mean square deviation

DF: degree of freedom; MS: mean square deviation

Source Seq SS DF MS F  value P  value
Model 458,400 11 41,675.00 994.59 < 0.0001
A-Diameter 22,746.31 1 22,746.31 542.85 < 0.0001
B-Asymmetry 100,400 1 100,400 2395.54 < 0.0001
C-Wall thickness 123,600 1 123,600 2949.85 < 0.0001
AB 988.35 1 988.35 23.59 0.0013
AC 4509.65 1 4509.65 107.62 < 0.0001
BC 8680.35 1 8680.35 207.16 < 0.0001
A2 247.06 1 247.06 5.90 0.0413
B2 2493.07 1 2493.07 59.50 < 0.0001
C2 25,615.03 1 25,615.03 611.31 < 0.0001
A2C 1718.25 1 1718.25 41.01 0.0002
AB2 289.27 1 289.27 6.90 0.0303
Residual error 335.21 8 41.90
Lack of fit 300.76 3 100.25 14.55 0.0066
Pure error 34.45 5 6.89
Total 458,800 19
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This conclusion was consistent in both types of models for males and females. When the asymmetry index 
corresponded to 0.44 and the wall thickness to 2 mm, AAAs featuring maximum diameters of 5 cm for 
women and 5.5 cm for men had comparable risk of rupture. Similarly, according to Forbes et al.[20], AAAs 
with maximal values of 5.2 cm for females and 5.5 cm for males presented a comparable risk. However, 
when the asymmetry index and wall thickness change, the peak stress of the AAA does the same, which 
means that the conclusions of Forbes et al.[20] are not applicable in all cases[37].

To more accurately reflect the relative magnitude of the risk of rupture in AAA, a range of values were 
selected for each variable in the models designed for males and females (a maximum diameter from 3 cm 
to 5 cm, an asymmetry index from 0.3 to 1, and a wall thickness from 0.8 mm to 2.2 mm) to determine 
their intersection. Eleven discrete points were uniformly taken within the variation range of each factor, 
and the dimensions were unified. Then, a scatter [Figure 6] and a 3D mesh [Figure 7] plots were obtained. 
As presented in Figure 6, the plot is projected onto the plane of the wall thickness-maximum diameter. It 
can be seen that the distribution trend of the points is obvious and there was no scatter in space. For AAAs 
featuring the same maximum diameter, PWSmale > PWSfemale occurred when the vascular wall was thin and 
the asymmetry index was large, or when the former was thick and the latter was small.

DISCUSSION
Traditionally, the maximum diameter of AAA has generally been used as a criteria for surgical treatment. 
Increasingly however, clinical studies have suggested a deficiency in this maximal transverse measurement, 
with greater consideration of morphology parameters in risk assessment of AAA over the last decades. 
In recent years, studies have revealed that male and female differences were also important and should 
be evaluated[19,20,25]. In the present study, both sex differences and morphological factors were considered 
concurrently in predicting AAA rupture in high-risk patients. Nevertheless, it is of paramount importance 
to include biomechanical assessment of the structures involved in AAA for a more thorough evaluation. 
Collagen composition in the wall of AAAs in men and women are similar exception for its cross-linking[38] 
but the risk of rupture is multifactorial from a biomechanical point of view[39,40]. Sex affects AAA formation 
but the role of hormones is still poorly understood.

Based on a series of numerical FSI simulations that considered patient sex and morphological factors 

Figure 6. Scatter plot showing the correlation between peak stress and relative magnitude of the wall thickness in males and females with 
abdominal aortic aneurysm (into the plane of the wall thickness - maximum diameter)
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(including maximum diameter, asymmetry index, and wall thickness), peak stress equations for males 
and females were developed to predict AAA rupture. According to these simulation results and the two 
equations developed above, some common and sex-specific features have been revealed.

For both sexes, the geometric features of the AAA have an obvious influence on peak wall stress. Among 
the three morphological factors, wall thickness is critical for developing a ruptured AAA in both men and 
women, which suggests that more attention should be paid to its distribution and change when predicting 
the risk of rupture. Regarding the specific equation for males or females, there were some models where 
even when the maximum diameter in AAA was relatively small, the corresponding peak wall stress 
conversely became large, which demonstrated the limitation of maximal transverse measurement as a 
criterion for AAA rupture risk assessment. In turn, this maximum diameter criterion may even result in 
delaying AAA repair.

The AAA peak wall stress also has sex differences. When the AAA wall is thin and the asymmetry index is  
large, or the vessel wall is thick and the asymmetry index is small, the peak wall stress observed in males 
would be higher than that in females with the same maximum diameter. When the asymmetry index was 
0.44 and the corresponding wall thickness was 2 mm, AAAs with maximum diameters of 5 cm for women 
and 5.5 cm for men posed a comparable risk of rupture. This difference should alert surgeons to consider 
the influence of sex when assessing this risk of rupture of an AAA.

For ease of use in a clinical setting, equations to predict peak wall stress and a 3D grid have been developed 
in the present study (Equations 3 and 4, Figure 7). Both equations could assess the risk of AAA rupture in 
men and women separately. The 3D grid presented in Figure 7 revealed the relationship between peak wall 
stress in males and females with different maximum diameters, asymmetry index and wall thickness. Thus, 
the present study provides more biomechanical information with respect to the development and rupture 
of AAA to help with patient-specific assessment and treatment decision-making, i.e., open surgery or 
percutaneous deployment of a stent-graft.

As this is a preliminary study, there are several shortcomings. AAA models were simplified and 
idealised. Numerical calculations used unidirectional fluid-solid coupling. Material properties of the 
vascular wall were defined as linear, isotropic elastic, and its thickness was assumed to be uniform. 
These limitations would result in less accurate results than that using more realistic biomechanical 
properties, e.g., anisotropic, nonlinear, which entails residual stresses and implies statistically distributed 
heterogeneities[41-43]. Despite these simplifications, the results still have qualitative significance. With the 
development of numerical simulation methodologies and further imaging technology, coupled with 

Figure 7. 3D grid cube presenting the relationship between peak wall stresses in males and females 
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consideration of blood flow rheology, predictive models of peak wall stress in AAA would be more accurate 
and complete.

In conclusion, to be more precise and specific in evaluating the risk of rupture in AAA, the present study 
developed a new prediction method (predictive equations) that included more patient sex and AAA 
morphology, based on quantitative biomechanical simulation. Results revealed that the risk of an AAA 
rupture is not only related to morphological factors, but sex differences as well. This study provides a sex-
specific clinical reference tool to assess the aforementioned risk. Future studies should integrate more 
information from simulation and imaging technologies.
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