Supplementary Materials

A scalable, robust and high-sensitivity fiber sensor for real-time body temperature monitoring

Pan Li^{1,2}, Jing Zhou¹, Yuyang Cui³, Jingyu Ouyang¹, Ziyi Su¹, Yuqi Zou¹, Jun Liang¹, Fuhong Wang¹, Kaidong He¹,Yueheng Liu¹, Zihao Zeng¹, Fang Fang⁴, Chong Hou^{1,2,5}, Ning Zhou^{1,6}, Tianhuan Peng⁷, Quan Yuan^{7,*}, Guangming Tao^{1,2,3,8,9,10,*}

¹Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

²Research Center for Intelligent Fiber Devices and Equipments and State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
³School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

⁴College of Fashion and Design, Donghua University, Shanghai 200051, China.
⁵School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

⁶Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China. ⁷Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China. ⁸Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China. ⁹Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030,

Hubei, China.

¹⁰School of Physical Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

*Correspondence to: Prof. Guangming Tao, Wuhan National Laboratory for

Optoelectronics, Huazhong University of Science and Technology, Luoyu Road, Wuhan 430074, Hubei, China. E-mail: tao@hust.edu.cn; Prof. Quan Yuan, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Lushan Road, Changsha 410082, Hunan, China. E-mail: yuanquan@whu.edu.cn

Fibrous temperature sensors	Sample 1 ^[1]	Sample 2 ^[2]	Sample 3 ^[3]	Sample 4 ^[4]	Sample 5 ^[5]	Sample 6 ^[6]	This work
Materials	CNT/Ionic liquid/Silk/ PET	rGO	PEDOT/TPU	PEDOT: PSS/SWCNT/ PU	PANI/PAA	PEDOT/Silk	Ionic liquid/Cotton yarn
Fabrication	Dip-coating	Wet spinning	Situ polymerizatio n	Dip-coating	Two-step method	In-situ chemical polymerizati on	Dip-coating
Detection range	30-65 °С	30-80 °С	20-40 °C	20-120 °C	40-110 °C	20-50 °C	25-40 °C
Sensitivity	1.23 %/°C	0.64 %/°C	0.95 %/°C	0.93 %/°C	0.016 %/°C	0.47 %/°C	2.61 %/°C
Resistance to stress	N/A	N/A	N/A	N/A	N/A	N/A	V
Resistance to bending	N/A	N/A	N/A	N/A	N/A	N/A	V
Resistance to twisting	N/A	N/A	N/A	N/A	N/A	N/A	\checkmark
Resistance to humidity	N/A	N/A	N/A	N/A	N/A	N/A	\checkmark
Working in extreme environments (pH)	N/A	N/A	N/A	N/A	N/A	N/A	V

Supplementary Table 1. Comparison between this work and existing temperature sensors

Supplementary Figure 1. Robust performance of the fibrous temperature sensor. (A) Dependence of temperature and resistance response on twisting angle, the twisting angle varied from -20° to 20°. T₀ and T correspond to the temperature measurement before and after twisting respectively, $|\Delta T|=|T-T_0|$. (B) Dependence of temperature response on relative humidity, T₀ correspond to the temperature measurement at 25 °C on 40% relative humidity, and T correspond to the temperature measurement at 25 °C on different relative humidity, $|\Delta T|=|T-T_0|$.

Supplementary Figure 2. Performance of the fibrous temperature sensor. (A) System-level block diagram of the temperature monitoring system. (B) Signal amplification circuit schematic. (C) Firefighting suit alarm process.

REFERENCES

1. Wu R, Ma L, Hou C, *et al.* Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. *Small* 2019;15:1901558. DOI:10.1002/smll.201901558.

2. Trung T, Le H, Dang T, *et al.* Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. *Adv. Healthcare Mater.* 2018;7:1800074. DOI:10.1002/adhm.201800074.

3. Li F, Xue H, Lin X, *et al.* Wearable Temperature Sensor with High Resolution for Skin Temperature Monitoring. *ACS Appl. Mater. Interfaces* 2022;14:43844-43852. DOI:10.1021/acsami.2c15687.

4. Lee J, Kim D, Chun S, *et al.* Intrinsically strain-insensitive, hyperplastic temperature-sensing fiber with compressed micro-wrinkles for integrated textronics. *Adv. Mater. Technol.* 2020;5:2000073. DOI:10.1002/admt.202000073.

5. Ge G, Lu Y, Qu X, *et al.* Muscle-inspired self-healing hydrogels for strain and temperature sensor. *ACS Nano* 2019;14:218-228. DOI:10.1021/acsnano.9b07874.

6. Wang Y, Ai X, Lu S, *et al.* Fabrication of a type of silk/PEDOT conductive fibers for wearable sensor. *Colloids Surf.* 2021;625:126909.

DOI:10.1016/j.colsurfa.2021.126909.