SupplementaryMaterials

Supplementary Table 1. Articles (n = 16) reporting the applications of next-generation sequencing including both shotgun metagenomics and 16S amplicon sequencing of fecal samples on athlete microbiome research. Articles describing the association of gut microbiota with *exercise performance of non-athlete individuals were also considered*. Some articles (n = 12) reported the associations between specific microbial clades and sports performance

Database	Study	Technique	Participants	Sex	Age range	n	Taxa associated to sports performance		
Sequencing	Sequencing experiments describing microbial taxa associated to sports performance (n = 12)								
Scopus, WOS	Barton <i>et al</i> . ^[14]	Shotgun	Professional rugby players $(n = 40)$ and controls $(n = 46)$	Male	-	86	Akkermansia, Erysipelotrichaceae incertae sedis		
Scopus, WOS	Cronin <i>et al.</i> ^[15]	Shotgun	Healthy sedentary adults $(n = 90)$ with a short-term exercise regime	Male and female	18-40	90	Prevotella copri		
WOS	Kostic ^[16]	Shotgun	Marathon runners, ultramarathon runners, Olympic-caliber rowers and sedentary controls ($n = 50$)	Male and female	-	50	Veillonella		
Scopus, WOS	Keohane <i>et al.</i> ^[17]	Shotgun	Athletes who completed an unsupported transatlantic row $(n = 4)$	Male	-	4	Dorea longicatena, Prevotella copri, Roseburia hominis, unclassified members of Subdoligranulum		
Scopus, WOS	Scheiman et al. ^[18]	16S and Shotgun	Marathon athletes $(n = 15)$ and sedentary controls $(n = 10)$	Male and female	-	25	Veillonella atypica		
Scopus, WOS	Petersen <i>et al.</i> ^[19]	Shotgun	Competitive cyclists ($n = 33$)	Male and female	19-49	33	Akkermansia, Bacteroides, Eubacterium, Prevotella, Methanobrevibacter smithii, Ruminococcus		
Scopus, WOS	O'Donovan <i>et al.</i> ^[20]	Shotgun	International level athletes ($n = 37$) across 16 different sports	Male and female	-	37	Streptococcus suis, Clostridium bolteae, Lactobacillus phage LfeInf, Anaerostipes		

							 hadrus in sports with moderate dynamic component. Bifidobacterium animalis, Lactobacillus acidophilus, Prevotella intermedia, Faecalibacterium prausnitzii in sports with high dynamic and low static
							components. <i>Bacteroides caccae</i> in sports with high dynamic and static components
Scopus	Fart <i>et al</i> . ^[21]	Shotgun	Physically active senior orienteers $(n = 28)$ and community-dwelling older adults $(n = 70)$	Male and female	67-76	98	Faecalibacterium prausnitzii
Scopus, WOS	Kulecka <i>et al</i> . ^[22]	16S	Marathon runners $(n = 11)$, crosscountry skiers $(n = 11)$ and healthy sedentary controls $(n = 46)$	Male and female	14-72	68	Lachnospiraceae, Prevotella
Scopus, WOS	Moitinho-Silva <i>et</i> <i>al</i> . ^[23]	16S	Healthy sedentary adults exposed to endurance and strength training and controls (n = 42)	Male and female	20-45	42	Coprococcus, Parasutterella, Ruminococcaceae
Scopus	Fukuchi et al. ^[24]	16S	Endurance athletes $(n = 13)$	Male and female	19-21	13	Firmicutes
Scopus	Han <i>et al</i> . ^[25]	165	Rowing athletes $(n = 19)$	Female	Dec-26	19	Firmicutes, Bacteroidetes, Proteobacteriaand Actinobacteria in all athletes.Faecalibacterium and unclassifiedmembers of Clostridiales andLachnospiraceae in adult elite athletes.Bacteroides in young elite athletes

Sequencing experiments describing athlete microbiota but no microbial taxa associated to sports performance (n = 4)

Scopus, WOS	Genç ^[26]	Shotgun	Professional athletes $(n = 5)$, amateur athletes $(n = 5)$ and sedentary individuals $(n = 5)$	Male	18-24	15	-
Scopus, WOS	O'Donovan <i>et al</i> . ^[27]	16S and Shotgun	Cricket players $(n = 21)$	Male and female	-	21	-
Scopus	Axelrod et al. ^[28]	Shotgun	Endurance athletes $(n = 7)$	-	18-45	7	-
Scopus	Özkan <i>et al</i> . ^[29]	168	Professional football players ($n = 5$), amateur football players ($n = 5$) and sedentary controls ($n = 5$)	Male	18-24	15	-

Full texts were available for all articles. WOS: Web of Science.