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XPS Analysis 

The deconvoluted C 1s, F 1s, O 1s, and Ti 2p XPS profiles of the Mo2CTx and Mo2TiC2Tx 

MXenes are provided in [Supplementary Figure 4 and 5]. In the C 1s region, the observed 

peaks at (281.86, 284.56, 285.97, and 287.92) eV correspond to Mo–C, C−C, C−H, and C−O 

species, respectively. The F 1s region is fitted with a single component at a BE of 685.03 eV, 

corresponding to an −F surface termination. For the O 1s region in Mo2CTx, the peaks at 

(529.72, 531.22, and 532.37) eV are assigned to Mo2COx, Mo2C−OHx, and Mo2C(OHx) −H2Ox, 

respectively [Supplementary Figure 4]. In the C 1s region of Mo2TiC2Tx, the peak at 282.88 

eV is attributed to C atoms bonded to both Mo and Ti atoms (Mo–C/Ti–Tx), while the peaks at 

(284.61, 285.91, and 287.48) eV are associated with C−C, C−H, and C−O species, respectively. 

The F 1s region is fitted by a single component at a BE of 684.95 eV, corresponding to F–
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terminations. In the O 1s region, the peak at 530.01 is attributed to Molybdenum oxides (Mo/Ti–

O), while peaks at (531.41 and 532.59) eV are assigned to C–Mo–OHx species. The Ti 2p region 

displays peaks at (455.82, 456.78, 458.39, and 464.23) eV that correspond to Ti–C, Ti2+, Ti3+, 

and TiO2 (Ti4+), respectively [Supplementary Figure 5]. For Mo2Ti2C3Tx, the Ti 2p peaks at 

(455.72, 456.96, and 458.63) correspond to the C−Ti+, Ti2+, and Ti3+ bonds, respectively. 

Furthermore, the C 1s peaks at (282.96, 284.61, 286.18, and 287.98) eV are ascribed to the Ti–

C–Mo, C−C, CHx, and C−O bonds, respectively. Additionally, the XPS spectra for the O 1s 

and F 1s indicate that the Mo2Ti2C3Tx contains Mo/Ti atoms covalently bonded to surface 

terminal groups, such as −O, −OH, and −F [Supplementary Figure 6]. 

 

 

Supplementary Figure 1. HR−TEM images of the (A) Mo2TiC2Tx and (B) Mo2CTx MXene 

sheets. 

 

 

 
 

Supplementary Figure 2. Single flake SEM imagery of the (A) Mo2Ti2C3Tx, (B) Mo2TiC2Tx, 

and (C) Mo2CTx MXene sheets. 

 

 



 

3 

 

 
 

Supplementary Figure 3. Photographs of the vacuum-filtered (A) Mo2CTx, (B) Mo2TiC2Tx, 
and (C) Mo2Ti2C3Tx MXene films. 

 

 
 

Supplementary Figure 4. (A) C 1s, (B) F 1s, and (C) O 1s XPS spectra of the Mo2CTx MXene. 
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Supplementary Figure 5. (A) C 1s, (B) F 1s, (C) O 1s, and (D) Ti XPS spectra of the 

Mo2TiC2Tx MXene. 
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Supplementary Figure 6. (A) C 1s, (B) F 1s, (C) O 1s, and (D) Ti XPS spectra of the 

Mo2Ti2C3Tx MXene. 

 

 
Supplementary Figure 7. Optical imagery of the Mo2TiC2Tx, and Mo2CTx powder coated Cu 

electrodes. 
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Supplementary Figure 8. (A) Top-view SEM image of the surface of Mo2Ti2C3Tx-Cu. (B) Mo, 

(C)  Ti, (D) F, (E) O, and (F) C EDS mapping on the surface of Mo2Ti2C3Tx-Cu. 

 
Supplementary Figure 9. Rate performance comparison at different current densities of (0.2, 

0.5, 1, 3, and 5) mA·cm−2. 
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Supplementary Figure 10. The voltage profile for 3 mAh cm-2  Li deposition on anode in 

half-cell configuration. 

 

 
Supplementary Figure 11. The voltage profile for the Li-bare Cu//NCM622. 
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Supplementary Table 1. XPS elemental concentration of Mo2Ti2C3Tx, Mo2TiC2Tx, and 

Mo2CTx films. 

Element ratio 

(Atomic %) 

Mo Ti C O F 

Mo2Ti2C3Tx 16.943 9.354 43.781 21.422 5.214 

Mo2TiC2Tx 20.975 7.367 40.731 20.391 3.041 

Mo2CTx 24.341 - 50.098 22.421 1.397 

 

Supplementary Table 2. Comparison summary of the half-cell performance of the Mo2Ti2C3Tx 

Cu with the previously reported literature. 

 

Materials Test conditions LMB performance Electrolyte Ref. 

LASS−Cu//Li 
1 mAh cm−2, 

3 mA cm−2 

70 cycles, 

CE: 96.27 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 2 wt.% LiNO3 
[1] 

Cu–Ag 
1 mAh cm−2, 

3 mA cm−2 

200 cycles, 

CE: 98.23 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 1 wt.% LiNO3 
[2] 

Nitrogen–carbon  

Cu nanorod 

1 mAh cm−2, 

5 mA cm−2 

30 cycles, 

CE: 90 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 0.1M LiNO3 
[3] 

3D porous 

Copper 

1 mAh cm−2, 

5 mA cm−2 

50 cycles, 

CE: 98.7 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 1 wt.% LiNO3 
[4] 

ZnO−Cu mesh 
1 mAh cm−2, 

5 mA cm−2 

70 cycles, 

CE: 95 % 

0.6M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 0.4 wt.% LiNO3 
[5] 

PNIPAM 

polymer Cu 

1 mAh cm−2, 

5 mA cm−2 

150 cycles, 

CE: 90 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 2 wt.% LiNO3 
[6] 

Ti3C2Tx Cu 
1 mAh cm−2, 

5 mA cm−2 

160 cycles, 

CE: 90 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 2 wt.% LiNO3 
[7] 

Mo2Ti2C3Tx Cu 
1 mAh cm−2, 

3 mA cm−2 

544 cycles, 

CE: 99.79 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 5 wt.% LiNO3 

This 

work 

Mo2Ti2C3Tx Cu 
1 mAh cm−2, 

5 mA cm−2 

298 cycles, 

CE: 98.15 % 

1M LiTFSI in (DOL)/(DME) 

(V/V = 1:1) with 5 wt.% LiNO3 

This 

work 
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Supplementary Table 3. Comparison of electrochemical performance of Mo2Ti2C3Tx with 

Mo2Ti2C3Tx, Mo2CTx, and a bare Cu reference sample. 

Material Nucleation 

overpotential 

(mV) 

Cycling stability and CE 

(1 mAh cm-2) 

EIS 

(Ω) 

Full cell performance Ref 

 

 

 

 

 

 

 

This 

work 

3 mA cm-2 5 mA cm-2 After 

200 

cycles 

Initial 

discharge 

capacity 

(mAh cm-

2) 

Capacity 

retention 

(After 

100 

cycles) 

Mo2Ti2C3Tx 13 544 

(99.79 %) 

298 

(98.15 %) 

11.5 1.64 70 % 

Mo2Ti2C3Tx 16 402 

(98.14 %) 

248 

(97.5 %) 

13 1.24 48 % 

Mo2CTx 21 282 

(96.91 %) 

206 

(96.78 %) 

26 1.19 37 % 

Bare Cu 32 143 

(96.24 %) 

99 

(95.32 %) 

44 1.16 35 % 

 

Supplementary Table 4. Comparison summary of full cell performance of the Mo2Ti2C3Tx 

Cu||NCM622 with the literature. 

 

Cell Condition Electrolyte Initial Capacity Capacity Retention Ref. 

Cu@Sn||LiNiCoAlO2 
1M LiPF6 in FEC/EMC 

(1/4, WT/WT) 
1.0 mAh cm−2 

~C/2 charge/discharge, 

~0 % after 80 cycles 
[8] 

3DLN||LFP 
1M LiPF6 in EC/DMC 

(1/1, v/v) 
1.5 mAh cm−2 

C/3 charge/discharge, 

65.1 % after 50 cycles 
[9] 

Cu||LFP 

1M LiTFSI + 2M LiFSI in 

(DOL)/(DME) (V/V = 1:1) 

with 3 wt.% LiNO3 

0.85 mAh cm−2 39 % after 100 cycles [10] 

Cu||LFP 
1M LiTFSI + 2M LiFSI in 

(DOL)/(DME) (1:1, v/v) 
1.5 mAh cm−2 

~C/8 charge/discharge, 

~50 % after 50 cycles 
[11] 

Cu||LNMO 7M LiFSI in FEC 1.43 mAh cm−2 ~54 % after 50 cycles [12] 

Mo2Ti2C3Tx 

Cu||NCM622 

1M LiPF6 in EC/DMC 

(1/1, v/v) 
1.64 mAh cm−2 

~C/2 charge/discharge, 

~70 % after 100 cycles 

This 

work 
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