Supplementary Materials

Micro-electromechanical system-based cryogenic and heating *in situ* transmission electron microscopy for investigating phase transitions and domain evolution in single-crystal BaTiO₃

Tianshu Jiang¹, Yevheniy Pivak², Fan Ni³, Gijs van der Gugten², Junjie Li⁴, Fangping Zhuo³, Leopoldo Molina-Luna¹

 ¹Advanced Electron Microscopy Division, Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt 64287, Germany.
²DENSsolutions BV, Delft 2628, the Netherlands.
³Nonmetallic-Inorganic Materials Division, Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt 64287, Germany.
⁴Sichuan Province Key Laboratory of Information Materials and Devices Application,

College of Optoelectronic Engineering, Chengdu University of Information

Technology, Chengdu 610225, Sichuan, China.

Correspondence to: Dr. Fangping Zhuo, Nonmetallic-Inorganic Materials Division, Department of Materials and Earth Sciences, Technical University of Darmstadt, Peter-Grünberg-Straße 2, Darmstadt 64287, Germany. E-mail: zhuo@ceramics.tudarmstadt.de; Prof. Leopoldo Molina-Luna, Advanced Electron Microscopy Division, Department of Materials and Earth Sciences, Technical University of Darmstadt, Peter-Grünberg-Straße 2, Darmstadt 64287, Germany. E-mail: molina@aem.tudarmstadt.de

Supplementary Figure 1. Schematic of FIB-prepared TEM specimen along the (001)

plane of [110]-orientated sing-crystalline BTO.

Supplementary Figure 2. Spontaneous polarizations in rhombohedral (denoted as R), orthogonal (O), and tetragonal (T) phases of BaTiO₃, respectively.

Supplementary Figure 3. (A) BF-TEM image obtained at -160 °C. (B) SAED

pattern corresponds to the area highlighted by the yellow circle in (A). Scale bars are

(A) 500 nm and (B) 5 nm⁻¹, respectively.

Supplementary Figure 4. The observed domain wall configurations in (A) rhombohedral (denoted as R), (B) orthogonal (O), and (C) tetragonal (T) phases of BaTiO₃, respectively.

Supplementary Figure 5. Optical images obtained from the cooling process at

different temperatures. The scale bar is 50 $\mu m.$

Parameters	Symbol	Value	Ref.
Landau-Devonshire potential coefficients	$lpha_1$	$4.124 \times 10^5 (T - T_C)$ Nm ² /C ²	[1]
	<i>a</i> ₁₁	$-2.097 \times 10^8 \text{ Nm}^6/\text{C}^4$	
	α_{12}	$7.974 \times 10^8 \text{ Nm}^6/\text{C}^4$	
	α_{111}	$1.294 \times 10^9 \text{ Nm}^{10}/\text{C}^6$	
	<i>a</i> ₁₁₂	$-1.950 \times 10^{9} \text{ Nm}^{10}/\text{C}^{6}$	
	<i>a</i> ₁₂₃	$-2.500 \times 10^9 \text{ Nm}^{10}/\text{C}^6$	
	<i>α</i> ₁₁₁₁	$3.863 \times 10^{10} \text{ Nm}^{14}/\text{C}^{8}$	
	<i>α</i> ₁₁₁₂	$2.529 \times 10^{10} \text{ Nm}^{14}/\text{C}^{8}$	
	<i>a</i> ₁₁₂₂	$1.637 \times 10^{10} \text{ Nm}^{14}/\text{C}^{8}$	
	$lpha_{1123}$	$1.367 \times 10^{10} \text{ Nm}^{14}/\text{C}^{8}$	

Supplementary Table 1. Material parameters of BaTiO₃ for bulk free energy calculation

REFERENCES

1. Li YL, Cross LE, Chen LQ, A phenomenological thermodynamic potential for BaTiO₃ single crystals. *J Appl Phys* 2005; 98: 064101.