Energy Materials

Supplementary Materials

Multifunctional zinc silicate coating layer for high-performance aqueous zinc-ion batteries

Keliang Wang^{1,*}, Nina Baule¹, Hong Jin^{2,*}, Hui Qiao^{3,*}, Aaron Hardy¹, Thomas Schuelke¹, Qi Hua Fan^{4,*}

¹Fraunhofer USA, Inc. Center for Midwest, East Lansing, Michigan 48824, USA.
²Suzhou Research Institute, Xi'an Jiaotong University, Suzhou 215123, Jiangsu, China.
³Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China.

⁴Department of Electrical Engineering and Computer Engineering & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.

*Correspondence to: Dr. Keliang Wang, Fraunhofer USA, Inc. Center for Midwest, East Lansing, Michigan 48824, USA. E-mail: kwang@fraunhofer.org; Dr. Hong Jin, Suzhou Research Institute, Xi'an Jiaotong University, Suzhou 215123, Jiangsu, China. E-mail: jhjinhong@mail.xjtu.edu.cn; Prof. Hui Qiao, Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China. E-mail: huiqiao@jiangnan.edu.cn; Prof. Qi Hua Fan, Department of Electrical Engineering and Computer Engineering & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA. E-mail: qfan@msu.edu

Reactions procedures to form Zinc silicate polymer protection film:

Figure 1. SEM images of (A, B) Zn-LSO-0.5; (D, E) Zn-LSO-1.5 with different magnification and cross-section of (C) Zn and Zn-LSO-0.5; (F) Zn and Zn-LSO-1.5.

Figure 2. Elements mapping of Zn-LSO-1.

Figure 3. Tafel curves of Zn, Zn-LSO-0.5 and Zn-LSO-1.5 anode under the three-electrode system.

Figure 4. Nyquist plots of Zn-LSO-0.5 and Zn-LSO-1.5 anode.

Figure 5. Galvanostatic cycling stability at a current density of 3 mA cm⁻² with an areal capacity of 0.1 mAh cm⁻² for symmetrical (A) Zn and Zn-LSO-0.5; (B) Zn and Zn-LSO-1.5 cells, and initial voltage profiles of symmetrical (C) Zn and Zn-LSO-0.5; (D) Zn and Zn-LSO-1.5 cells.

Figure 6. (A) X-ray diffraction of MnO2 Zn-LSO-1.5; (B) SEM images of MnO₂.

Figure 7. (A) galvanostatic charge and discharge potential profiles of (B) Zn/MnO₂ and (d) Zn-LSO-1/MnO₂ cells at different current densities.

Figure 8. Rate performance of Zn/MnO₂ and Zn-LSO-1/MnO₂ cells from 0.2 to 2 A g⁻¹.

Electrode	Electrolyt e	Capacity (mAh cm ⁻²)	Current density (mA cm ⁻ ²)	Voltage hysteresis (mV)	Cycling life (h)	Referenc e
Graphite- coated Zn anode	2 M ZnSO4	0.1	0.1	28	200	[1]
Nanoporou s CaCO ₃	3 M ZnSO ₄ + 0.1 M MnSO ₄	0.05/0.1/0.1/ 0.1	0.25/1/2/3	80/140/200 /160	836/80/80/80	[2]
Kaolin- coated Zn anode	2 M ZnSO ₄ + 0.1 M MnSO ₄	1.1	4.4	70	800	[3]
PVB@Zn	ZnSO ₄	0.5	0.5	108.6	2200	[4]
Zn/CNT	2 M ZnSO4	2	2	27	200	[5]
MXene@Z n Paper	2 M ZnSO ₄	1	1	75	300	[6]
100TiO ₂ @ Zn	3 M Zn(SO ₃ CF 3)2	1	1	57.2	150	[7]
Zn/rGO	2 M ZnSO ₄ + 0.1 M MnSO ₄	1/2	1	60/100	200	[8]

Table 1. Comparison of lifespan of Zn-LSO-1 with reported Zn anodes
Curront

Zn-LSO-1	2 M								
	$ZnSO_4 +$	0.1	0.5/1/3/5	66/80/118/	835/455/344/	This work			
	0.1 M			141	260	THIS WOLK			
	MnSO ₄								

References

1. Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. *Adv Funct Mater* 2021;31:2006495.

 Kang L, Cui M, Jiang F, et al. Nanoporous CaCO₃ coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. *Adv Energy Mater* 2018;8:1801090.

3. Deng C, Xie X, Han J, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. *Adv Funct Mater* 2020;30:2000599.

4. Hao J, Li X, Zhang S, et al. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. *Adv Funct Mater* 2020;30:2001263.

5. Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. *Adv mater* 2019;31:1903675.

6. Tian Y, An Y, Wei C, et al. Flexible and free-standing $Ti_3C_2T_x$ MXene@ Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. *ACS nano* 2019;13:11676-85.

7. Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal anode. *Adv Mater Inter* 2018;5:1800848.

8. Shen C, Li X, Li N, et al. Graphene-boosted, high-performance aqueous Zn-ion battery. *ACS Appl Mater inter* 2018;10:25446-53.