Supplementary Material

Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells

Yuren Xia^{1,#}, Mengfei Zhu^{1,#}, Lina Qin^{1,#}, Cheng Zhao¹, Daocheng Hong¹, Yuxi Tian¹, Wensheng Yan^{2,3}, Zhong Jin^{1,4,5}

¹State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu China.

²Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China.

³Institute of Microstructure Technology (IMT), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.

⁴Nanjing Tieming Energy Technology Co. Ltd., Nanjing 210093, Jiangsu, China.
⁵Suzhou Tierui New Energy Technology Co. Ltd., Suzhou 215228, Jiangsu, China.
[#]Authors contributed equally.

Correspondence to: Prof. Wensheng Yan, Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, No. 1158, Baiyang Street, Hangzhou 310018, Zhejiang, China. E-mail: yws118@163.com; Prof. Zhong Jin, State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Road,

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or

format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Nanjing 210023, Jiangsu, China. E-mail: zhongjin@nju.edu.cn

Supplementary Figure 1. Optical image of the as-synthesized 3-TFMBAI powder.

Supplementary Figure 2. Fourier transform infrared (FTIR) spectra of the 3-

(trifluoromethyl)benzylamine precursor and as-synthesized 3-TFMBAI.

Supplementary Figure 3. Top-view SEM images of the surface morphologies of the $(3\text{-}TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite films with (a, b) n = 4, (c) n = 40 and (d, e) n = ∞ .

Supplementary Figure 4. Typical *J*-*V* plot and corresponding photovoltaic parameters of the $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite solar cell with n = 4 measured at a scan rate of 200 mV/s.

Supplementary Figure 5. Gaussian calculation on the dipole moments of 3-TFMBA⁺ cation and chlorobenzene.

Supplementary Figure 6. Electrochemical impedance spectroscopy (EIS) results of PSCs with n = 40 and $n = \infty$.

Supplementary Figure 7. XRD patterns of the perovskite films with (a) n = 40 and (b) $n = \infty$ without encapsulation under continuous heating at 60 °C and simultaneous exposure to humid air with a RH of 60%.

Supplementary Figure 8. Normalized (a) *Voc,* (b) *Jsc and* (c) *FF* retentions of different PSCs without encapsulation under continuous heating at 60 $^{\circ}$ C and simultaneous exposure to humid air with a RH of 60%.

Supplementary Figure 9. Contact angle images of deionized water droplets on $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite films with different n values (n = 4, 40 and ∞).

Supplementary Figure 10. Light transmittance of $(3-\text{TFMBA})_2(\text{Cs}_{0.17}\text{FA}_{0.83})_{n-1}\text{Pb}_n(I_{0.83}\text{Br}_{0.17})_{3n-1}I_2$ perovskite layer with n = 40 in near infrared region. The average transmittance in near infrared region was measured to be ~90%.

Binding energy (eV)	Br 3d _{5/2}	Br 3d _{3/2}	I 3d _{5/2}	l 3d _{3/2}	Pb 4f _{7/2}	Pb 4f _{5/2}	Cs 3d _{5/2}	Cs 3d _{3/2}	F 1s
n = 1	68.2	69.2	619.3	630.8	137.0	141.9			686.1
n = 4	68.4	69.3	619.2	630.7	136.9	141.8	724.8	738.7	686.0
n = 40	68.5	69.4	619.2	630.7	136.9	141.8	724.8	738.8	686.0
n = ∞	68.6	69.4	619.2	630.7	136.9	141.8	724.9	738.8	

Supplementary Table 1. XPS binding energies of different elements measured from the $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite films with different n values.

Supplementary Table 2. Br 3d, I 3d, Pb 4f, Cs 3d and F 1s XPS peak area, relative sensitivity factor (RSF), corrected RSF, atomic concentration and atomic concentration ratio of $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite films with different n values, respectively.

Dr 3d	Dook area	DCE	Corrected	Atomic	Atomic concentration
DI SU	Peak area	КЭГ	RSF	concentration	ratio (versus n = 1)
n = 1	772.8	1.149	68.653	11.26	1.000
n = 4	993.6	1.149	68.653	14.47	1.286
n = 40	1124.8	1.149	68.653	16.38	1.455
n = ∞	1132.6	1.149	68.653	16.50	1.466
		рсг	Corrected	Atomic	Atomic concentration
130	Peak area	КЭГ	RSF	concentration	ratio (versus n = 1)
n = 1	46336.5	6.302	385.766	120.1	1.000
n = 4	35394.3	6.302	385.766	91.75	0.764
n = 40	31335.7	6.302	385.766	81.23	0.676
n = ∞	30932.4	6.302	385.766	80.18	0.668
	Dook area	рсг	Corrected	Atomic	Atomic concentration
PD 41	Реак агеа	KSF	RSF	concentration	ratio (versus n = 1)
n = 1	18295.6	9.000	546.489	33.48	1.000

n = 4	17940.8	9.000	546.489	32.83	0.981
n = 40	17592.4	9.000	546.489	32.19	0.962
n = ∞	17666.2	9.000	546.489	32.33	0.966
Cc 2d	Dook area	DCE	Corrected	Atomic	Atomic concentration
CS 50	Feak alea	NJF	RSF	concentration	ratio (versus n = 4)
n = 1		11.80	729.535		
n = 4	2984.4	11.80	729.535	4.091	1.000
n = 40	3850.8	11.80	729.535	5.278	1.290
n = ∞	4104.8	11.80	729.535	5.627	1.375
Г 1а	Dook area	DCE	Corrected	Atomic	Atomic concentration
F 15	Peak area	КЭГ	RSF	concentration	ratio (versus n = 1)
n = 1	48033.9	4.430	268.236	179.1	1.000
n = 4	13318.3	4.430	268.236	49.65	0.277
n = 40	1242.9	4.430	268.236	4.634	0.026
n = ∞		4.430	268.236		

Supplementary Table 3. The fitting parameters A_1 , A_2 , τ_1 , τ_2 and τ_{avg} of the timeresolved PL curves measured from the $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite films with different n values.

Parameters	n = 4	n = 40	n = ∞	
A ₁	0.294	0.465	0.500	
A ₂	A ₂ 0.706		0.500	
τ1	78.90	13.02	18.78	
τ2	τ ₂ 17.02		155.16	
τ _{avg}	35.24	90.65	86.97	

Supplementary Table 4. Photovoltaic parameters of 24 individual (3-TFMBA)₂(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I₂ PSCs based on 80 nm-thick Au counter electrodes with n = 40 or $n = \infty$, respectively.

	Jsc	Voc	EE	PCE		Jsc	Voc	EE	PCE
n = 40	(mA/cm ²)	(V)	FF	(%)	$\mathbf{n} = \infty$	(mA/cm ²)	(V)	FF	(%)
1	21.57	1.22	78.54	20.68	1	22.09	1.17	77.14	20.03
2	21.56	1.22	78.42	20.59	2	22.09	1.17	76.50	19.72
3	21.57	1.22	77.92	20.46	3	22.03	1.16	76.86	19.71
4	21.52	1.22	77.18	20.27	4	21.99	1.16	76.33	19.39
5	21.88	1.21	77.27	20.49	5	21.80	1.17	75.92	19.44
6	21.15	1.21	77.12	19.76	6	21.97	1.15	75.57	19.04
7	21.45	1.20	77.02	19.85	7	21.52	1.16	74.74	18.60
8	21.08	1.20	78.58	19.91	8	21.88	1.13	76.36	18.87
9	21.44	1.21	76.57	19.83	9	22.13	1.17	71.74	18.58
10	21.11	1.22	75.45	19.37	10	21.24	1.16	75.55	18.56
11	21.30	1.20	75.47	19.29	11	21.20	1.16	75.52	18.63
12	21.26	1.20	75.52	19.27	12	21.01	1.16	76.05	18.52
13	21.00	1.20	76.58	19.36	13	21.58	1.14	72.99	18.02
14	21.35	1.15	77.42	19.08	14	21.25	1.14	76.08	18.49
15	20.75	1.21	74.03	18.52	15	20.97	1.16	74.95	18.28
16	20.89	1.19	75.52	18.77	16	20.90	1.14	77.54	18.43
17	20.49	1.21	76.07	18.84	17	20.97	1.15	75.64	18.29
18	20.54	1.21	76.28	18.95	18	20.92	1.15	74.08	17.87
19	20.39	1.20	74.09	18.12	19	20.09	1.13	76.92	17.50
20	20.13	1.20	74.40	18.04	20	20.51	1.14	76.40	17.93
21	20.21	1.21	75.64	18.46	21	20.00	1.13	77.82	17.66
22	20.61	1.19	71.35	17.50	22	20.56	1.11	76.01	17.38
23	19.57	1.19	76.02	17.66	23	20.93	1.12	74.65	17.46

24	19.56	1.17	75.52	17.33	24	21.11	1.09	71.82	16.56
----	-------	------	-------	-------	----	-------	------	-------	-------

Supplementary Table 5. Photovoltaic performances of champion PSCs based on 80 nmthick Au counter electrodes and different n values (10, 20, 40, and 60) under 100 mW/cm^2 AM 1.5G illumination.

	V_{OC} (V)	J_{SC} (mA/cm ²)	FF (%)	PCE (%)
n = 10	1.09	17.29	66.49	12.57
n = 20	1.14	19.98	72.36	16.48
n = 40	1.22	21.79	78.54	20.89
n = 60	1.19	21.98	75.42	19.72

Supplementary Table 6. The average transmittance in near infrared region and the internal resistance of the whole PSCs with different thickness of Au counter electrode.

Au thickness (nm)	Average Transmittance (%)	Resistance (Ω)
10	32.46	5.63×10 ⁵
20	20.58	83.9
30	18.10	76.9
40	12.86	68.6

Supplementary Table 7. Photovoltaic performances of champion PSC with n = 40 and 20 nm-thick Au counter electrode and champion tandem solar cell based on silicon solar cell covered by PSC under 100 mW/cm² AM 1.5G illumination.

	Voc (V)	J_{SC} (mA/cm ²)	FF (%)	PCE (%)
Perovskite (top)	1.19	20.98	76.59	19.11
Silicon (bottom)	0.51	12.91	67.70	4.42
Tandem				23.53

Supplementary Table 8. Photovoltaic parameters of 48 individual $(3-TFMBA)_2(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I_2$ perovskite solar cells with n = 40 based on 20 nm-thick Au counter electrodes.

n – 40	Jsc	Voc	FF	PCE	n – 40	Jsc	Voc	FF	PCE
n = 40	(mA/cm ²)	(V)	ГГ	(%)	n = 40	(mA/cm ²)	(V)	ГГ	(%)
1	20.92	1.19	76.52	19.05	25	19.96	1.18	76.23	17.96
2	20.99	1.19	76.58	19.11	26	20.47	1.15	75.31	17.79
3	20.94	1.19	76.48	19.03	27	20.14	1.16	73.64	17.21
4	20.80	1.18	75.82	18.61	28	19.87	1.16	73.58	17.01
5	20.73	1.18	76.88	18.85	29	19.79	1.19	72.55	17.04
6	20.86	1.18	75.76	18.63	30	19.87	1.15	75.03	17.19
7	20.56	1.18	76.46	18.54	31	19.80	1.18	73.13	17.04
8	20.88	1.18	75.64	18.60	32	19.81	1.18	74.03	17.23
9	20.50	1.17	75.10	18.08	33	19.54	1.18	74.69	17.23
10	20.86	1.18	74.95	18.41	34	19.63	1.18	74.16	17.13
11	20.94	1.16	74.19	18.07	35	19.82	1.17	74.97	17.42
12	20.89	1.13	76.79	18.09	36	18.98	1.17	76.40	16.95
13	20.53	1.18	75.67	18.33	37	19.40	1.15	74.51	16.62
14	20.72	1.16	76.08	18.36	38	18.90	1.16	76.50	16.82
15	20.68	1.17	74.97	18.17	39	19.04	1.15	76.36	16.70
16	20.41	1.18	76.12	18.34	40	19.82	1.13	75.29	16.79
17	20.77	1.12	75.31	17.58	41	18.98	1.15	75.89	16.62
18	21.02	1.15	72.77	17.59	42	19.40	1.14	76.13	16.86
19	20.13	1.18	73.45	17.51	43	18.45	1.15	76.24	16.11
20	20.10	1.18	73.99	17.50	44	19.04	1.14	74.52	16.11
21	19.91	1.18	75.22	17.68	45	19.82	1.14	72.92	16.41
22	20.17	1.17	74.78	17.71	46	18.98	1.13	75.94	16.34
23	20.31	1.16	76.32	17.98	47	20.01	1.13	69.08	15.65
24	19.90	1.19	75.91	17.90	48	20.00	1.14	69.24	15.78

Supplementary Table 9. Photovoltaic parameters of 48 individual (3-TFMBA)₂(Cs_{0.17}FA_{0.83})_{n-1}Pb_n(I_{0.83}Br_{0.17})_{3n-1}I₂ perovskite solar cells with $n = \infty$ based on 20 nm-thick Au counter electrodes.

n = 40	Jsc	Voc	FF	PCE	n – 40	Jsc	Voc	FF	PCE
n = 40	(mA/cm ²)	(V)	ГГ	(%)	n = 40	(mA/cm ²)	(V)	ГГ	(%)
1	21.47	1.15	74.07	18.32	25	20.51	1.14	72.30	16.92
2	21.54	1.15	73.71	18.25	26	21.03	1.11	68.47	16.03
3	21.49	1.15	71.79	17.72	27	20.70	1.12	69.89	16.22
4	21.36	1.14	73.17	17.83	28	20.43	1.12	71.62	16.43
5	21.29	1.14	72.86	17.72	29	20.36	1.15	68.78	16.06
6	21.42	1.14	72.70	17.74	30	20.43	1.11	70.55	16.04
7	21.32	1.14	73.95	17.96	31	20.36	1.14	70.67	16.36
8	21.44	1.14	71.68	17.48	32	20.36	1.13	71.35	16.48
9	21.06	1.13	72.60	17.34	33	20.10	1.14	70.01	16.04
10	21.42	1.14	70.70	17.22	34	20.19	1.14	69.90	16.03
11	21.49	1.12	70.78	17.08	35	20.38	1.13	68.13	15.72
12	21.45	1.09	73.60	17.17	36	19.54	1.13	70.41	15.53
13	21.08	1.14	72.51	17.43	37	19.96	1.11	71.93	15.93
14	21.28	1.13	71.33	17.08	38	19.46	1.12	72.64	15.88
15	21.24	1.13	70.90	17.05	39	19.60	1.11	72.85	15.83
16	20.97	1.14	70.86	16.95	40	20.37	1.09	71.78	15.88
17	21.33	1.08	72.23	16.70	41	19.54	1.11	71.65	15.59
18	21.58	1.11	69.00	16.53	42	19.96	1.10	71.00	15.60
19	20.69	1.14	70.87	16.77	43	19.01	1.11	72.18	15.17
20	20.66	1.14	72.02	16.91	44	19.60	1.10	71.83	15.42
21	20.47	1.14	71.99	16.80	45	20.38	1.10	67.51	15.08
22	20.72	1.13	71.37	16.78	46	19.54	1.09	70.53	15.07
23	20.86	1.12	70.72	16.52	47	20.57	1.09	65.95	14.81
24	20.45	1.14	72.31	16.93	48	20.56	1.10	64.96	14.69