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Supplementary Figure 1. Voltage-time profiles of symmetric Li plating/stripping for 

Li||Cu cells in the electrolyte with and without the LiDFOB additive at 0.5 mA cm-2 and 

1 mAh cm-2 with 4 mAh cm-2 Li pre-deposition on the Cu foil substrate.  

 

 

Supplementary Figure 2. The peak intensity of Li2CO3, C=O, C-O, LiF, and 

LixPFy/LixPFyOz on the cycled Li anode surface in base and LiDFOB-containing 

electrolyte. 

 

  



 

Supplementary Figure 3. Optimized structures in two possible reaction pathways for 

the reduction decomposition of LiDFOB- and relative Gibbs free energy (∆G) of all 

stationary points. 

 

 

Supplementary Figure 4. Cycling performance of the batteries at 1 C in the voltage 

range of 3.0-4.3 V at electrolytes with 0 wt%, 1 wt%, 2 wt%, and 3 wt% LiDFOB 

additive. 

  



 

 

Supplementary Figure 5. (A&B, E&F) The GITT curves, calculated over potential 

and (C&D, G&H) Li+ diffusion coefficient of NCM85 electrodes: charging after (A, C) 

3 cycles and (E, G) 150 cycles, discharging after (B, D) 3 cycles and (F, H) 150 cycles. 

 

 

Supplementary Figure 6. Charging/discharging curves of Li||NCM85 batteries with 

(A) base electrolyte and (B) LiDFOB-containing electrolyte at different cycles in the 

voltage range of 3.0-4.6 V.  

  



 

Supplementary Figure 7. Ex-situ XRD patterns of fresh and cycled NCM85 

electrodes after cycling at different electrolytes: (A) full range and (B) the enlarged 

patterns of 18.2 ⁰- 19 ⁰. 

 

 

Supplementary Figure 8. The peak intensity of Li2CO3, C=O, C-O, LiF, and 

LixPFy/LixPFyOz on the cycled NCM85 cathode surface in the base and 

LiDFOB-containing electrolyte. 

 

 



 

 

 

Supplementary Figure 9. The SEM and EDS-mapping of NCM85 cathode cycled in 

(A) base electrolyte and (B) LiDFOB-containing electrolyte. 

 

  



 

 

Supplementary Figure 10. (A) Possible reductive and (B) oxidative decomposition 

mechanism of EC, together with the reaction energy (kJ mol-1).  
 

 

Supplementary Figure 11. The reduction potential of CH3CH2OLi, Li2CO3, LEDC, 

BF2CH2CH2COOLi, and BF2OCH2CH2CH2CH2OBF2. 

 

 

Supplementary Figure 12. The LUMO-HOMO energy levels of CH3COOLi, BF3, 

BF2OH, BF2OBF2, CH3CH2OLi, Li2CO3, LEDC, LDBP, and TFDODBA. 



 

 

Supplementary Figure 13. The oxidation potential of CH3COOLi, BF2OH, BF2OBF2, 

and BF3. 

 

Supplementary Table 1. The fitting results of ohmic impedance (R1), interfacial 

impedance (R2), and charge transfer impedance (R3) of the cycled lithium metal 

anode of Figure 2F. 

Electrolyte R1 R2 R3 

Base 96.41 54.03 8.21 

Base+2 wt% LiDFOB 87.1 45.82 6.65 

 

  



Supplementary Table 2. Summary of electrochemical performance of the NCM(Ni

≥80 %) with different electrolyte additives at the high cutoff voltage of over 4.6 V 

Capacity promotion rate: the value of increment in the capacity retention rate of the modified electrolyte compared to that of the 

base one.   

Cathode 
Electrolyte 

composition 

Current density 

(1C=200 mAh g-1) 

Voltage range 

(V vs. Li+/Li) 

Capacity 

retention 

Capacity 

promotion 

rate  

Rate capacity Ref. 

NCM811 

1 M LiPF6 and 0.2 

M LiDFOB in 

FEC/ EMC/TFA 

(1:3:1 v/v). 

0.5 C 2.8-4.6 
81.4 % after 

200 cycles 
15.2 % 

154.5 mAh g-1 

at 5 C 

[1] 

SC-NCM88 

1.0 M LiPF6 in 

EC/EMC/DEC 

(1:1:1 v/v) with 

2wt% TCEB 

1 C 2.75-4.7 
 80 % after 

150 cycles 
23.9 % 

 ~165 mAh g-1

 at 5 C 

[2] 

SC-NCM811 

LiFSI/ 

1.6Cl-DEE/3TTE 

(in molar ratio) 

1 C 2.8-4.7 
95.7 % after 

60 cycles 
- - [3] 

NCM811 

1 M LiFSI in 

EMC/FEC, with 

3wt% UPyMA 

0.5 C  2.8-4.7 
80.4 % after 

500 cycles 
12.6 % 

122.3 mAh g-1 

at 2.5 C 

[4] 

NCM811 
 1M LiFSI in 

DMTMSA 
0.5 C 3-4.7 

88.1 % after 

100 cycles 
22 % 

  186 mAh g-1 

at 2 C 

[5] 

NCM76 

1 M LiPF6 in 

EC/EMC (3:7, 

wt%) with 1wt% 

LiDFP 

C/3 2.8-4.8 
97.6 % after 

200 cycles 
20.37 % - [6] 

SC-NCM85 

2wt% LiDFOB in 

LiPF6(EC/EMC=3:

7, wt%) 

1C 3-4.6 

 93 % after 

100 cycles 
16 % 

175.6 mAh g-1 

at 10 C 

This 

work 

 84 % after 

200 cycles 
22 % 

 74 % after 

300 cycles 
22 % 



 

Supplementary Table 3. Fitted Rf and Rct values of Figure 4H and I. 

Electrolyte Cycle number Rf Rct 

Base 
0.5 41.43 238.4 

300 214.2 11075 

Base+2 wt% LiDFOB 
0.5 63.59 159.2 

300 110.8 1115 
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