### **Supplementary Materials**

Enantioselective synthesis of 6-(indole-2-yl)-3,4-dihydropyran-2-one skeletons by carbene organocatalytic asymmetric [3 + 3] cycloaddition of  $\alpha$ -bromocinnamaldehyde

Gao He<sup>1,#</sup>, Xiaoyu Chen<sup>1#</sup>, Siqi Xia<sup>1</sup>, Guofu Zhong<sup>2,\*</sup>, Limin Yang<sup>1,\*</sup>,

<sup>1</sup>College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China;

<sup>2</sup>Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200,

Zhejiang, China.

#Authors contributed equally to this work.

\***Correspondence to:** Prof. Limin Yang, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China. E-mail: myang@hznu.edu.cn; ORCID: 0000-0003-1021-3942.

| 1.  | General information                                            | 2  |
|-----|----------------------------------------------------------------|----|
| 2.  | Synthetic procedures and characterization data of substrates 1 | 3  |
| 3.  | Synthetic procedures and characterization data of compounds 3  | 10 |
| 4.  | NMR spectra of substrates 1 as new compounds                   | 26 |
| 1a: | <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> )               | 26 |
| 5.  | NMR and HPLC spectra of products 3                             | 40 |
| 6.  | X-ray single crystal data                                      | 81 |
| 7.  | References                                                     | 83 |

#### 1. General information

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plates (0.2 mm thickness). After elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF- 24061/F 254 nm. Further visualization was possible by staining with a basic solution of potassium permanganate or an acidic solution of ceric molybdate.

Proton nuclear magnetic resonance spectra (<sup>1</sup>H NMR) were recorded on Bruker AMX 500 spectrophotometer (CDCl<sub>3</sub> as the solvent). Chemical shifts for <sup>1</sup>H NMR spectra are reported as  $\delta$  in units of parts per million (ppm) downfield from SiMe<sub>4</sub> ( $\delta$  0.0) and relative to the signal of chloroform-d ( $\delta$  7.26, singlet). Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (<sup>13</sup>C NMR) are reported as  $\delta$  in units of parts per million (ppm) downfield from SiMe<sub>4</sub> ( $\delta$  0.0) and relative to the signal of chloroform-d ( $\delta$  77.0, triplet).

Enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analysis on a chiral stationary phase, CHIRALCEL AD-H ( $5\mu 25cm \times 4.6mm$ ), CHIRALCEL IA ( $5\mu 25cm \times 4.6mm$ ), and CHIRALPAK OD-H ( $5\mu 25cm \times 4.6mm$ ). Optical rotations were measured in CHCl<sub>3</sub> on a Schmidt<sup>+</sup> Haensdchpolarimeter (Polartronic MH8) with a 10 cm cell (c given in 0.5 g/100 mL).

The absolute configuration of the products was determined by X-ray crystallography. High-resolution mass spectrometry (HRMS) was recorded on a QTOF premier for ESI<sup>+</sup>.

#### 2. Synthetic procedures and characterization data of substrates 1



Step 1: To a solution of the 1H-indole-2-carboxylate **A** (3.9 g, 16.4 mmol) in anhydrous acetonitrile (40 mL), added anhydrous potassium carbonate (5.7 g, 41 mmol), followed by the addition of benzyl bromide **B** (3.7 g, 21.4 mmol). After reflux for 16 hours, the reaction mixture was concentrated in vacuo, dissolved in dichloromethane (50 mL), and washed with distilled water ( $3 \times 20$  mL). The combined organic layers were then washed with brine solution (30 mL), dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum to provide **S1** (yellow solid, 4.5 g, 79% yield).<sup>[1]</sup>

Step 2: To the dried flask, added **S1** (6.0 mmol), 10% NaOH (12.0 mL), and ethanol (24.0 mL). Warmed the reaction mixture to 70 °C and stirred for 2 h. The reaction mixture was then cooled to room temperature, and then the reaction mixture was concentrated in vacuo to remove ethanol. The reaction mixture is acidified with 4 M HCl (4 mol/L) to pH = 2.0. The filtered solids were washed with water to obtain carboxylic acid substrate **S2** with a yield of 78%.<sup>[2]</sup>

Step 3: Diluted compound **S2** (5 mmol) with CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and DMF (40  $\mu$ L, 0.5 mmol). (COCl)<sub>2</sub> (508  $\mu$ L, 6 mmol) was added to the mixture at 0 °C. After stirring for 0.5 h, raised the solution to room temperature. Continued stirring for 2 hours; excess (COCl)<sub>2</sub> was removed under reduced pressure to give acyl chloride **S3** with a yield of 81%.<sup>[3]</sup>

Step 4: Under the condition of -78 °C, diisopropylamino lithium (LDA) (1.0m THF solution, 10 mmol) was dripped into THF (25 mL) solution of tert-butyl acetate (5 mmol) and stirred for 1 h. The prepared THF (5 mL) solution of acyl chloride S3 was added to the solution at the same temperature and stirred. After the reaction is complete, the reaction mixture was allowed to rest and then quenched with NH<sub>4</sub>Cl aqueous solution. The layers were extracted and separated, and the water layer was extracted three times with Et<sub>2</sub>O. The combined organic layer was dried, filtered, and concentrated under reduced pressure by Na<sub>2</sub>SO<sub>4</sub>. The resulting residue was purified by rapid column chromatography, and 3-(1-benzyl-1H-indole-2-yl)-3-oxypropionate **1** was obtained in 51% yield.

Tert-butyl 3-(1-benzyl-1H-indol-2-yl)-3-oxopropanoate (1a):



The title compound was prepared according to the typical procedure, as described above, in 51% yield; white solid; m.p. = 66 - 68 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.72 (d, *J* = 8.1 Hz, 1H), 7.39 (s, 1H), 7.38 – 7.32 (m, 2H), 7.24 – 7.15 (m, 4H), 7.06 (d, *J* = 7.1 Hz, 2H), 5.86 (s, 2H), 3.87 (s, 2H), 1.40 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.6, 165.7, 139.3, 137.1, 132.6, 127.5, 126.1, 125.7, 125.5, 125.0, 122.2, 120.2, 112.6, 110.0, 80.9, 47.8, 47.2, 26.9.

HRMS (ESI) calcd for C<sub>22</sub>H<sub>23</sub>NO<sub>3</sub> [M+Na]<sup>+</sup> m/z 372.157, found 372.1575.

### Tert-butyl 3-(1-benzyl-5-fluoro-1H-indol-2-yl)-3-oxopropanoate (1b):



The title compound was prepared according to the typical procedure, as described above,

in 61% yield; white solid; m.p. = 92 - 94 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.33 (m, 2H), 7.30 – 7.27 (m, 1H), 7.25 – 7.19 (m, 3H), 7.12 – 7.08 (m, 1H), 7.03 (d, *J* = 7.5 Hz, 2H), 5.84 (s, 2H), 3.86 (s, 2H), 1.41 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.6, 165.6, 158.2, 156.3, 136.8, 135.9, 133.8, 127.6, 126.3, 125.4, 125.0, 125.0, 115.0, 114.8, 112.0, 111.9, 111.2, 111.1, 106.2, 106.0, 81.1, 47.8, 47.4, 26.9.

HRMS (ESI) calcd for C<sub>22</sub>H<sub>22</sub>FNO<sub>3</sub> [M+Na]<sup>+</sup> m/z 390.1476, found 390.1475.

Tert-butyl 3-(1-benzyl-5-chloro-1H-indol-2-yl)-3-oxopropanoate (1c):



The title compound was prepared according to the typical procedure, as described above, in 58% yield; white solid; m.p. = 81 - 83 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.68 (s, 1H), 7.30 (s, 1H), 7.27 – 7.26 (m, 2H), 7.25 –

7.17 (m, 3H), 7.02 (d, J = 7.4 Hz, 2H), 5.82 (s, 2H), 3.85 (s, 2H), 1.40 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.6, 165.5, 137.4, 136.6, 133.5, 127.5, 126.3, 126.0,

125.8, 125.7, 125.4, 121.2, 111.5, 111.2, 81.1, 47.8, 47.3, 26.9.

HRMS (ESI) calcd for C<sub>22</sub>H<sub>22</sub>ClNO<sub>3</sub> [M+K]<sup>+</sup> m/z 422.092, found 422.093.

Tert-butyl 3-(1-benzyl-5-bromo-1H-indol-2-yl)-3-oxopropanoate (1d):



The title compound was prepared according to the typical procedure, as described above, in 71% yield; white solid; m.p. = 110 - 111 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 1.7 Hz, 1H), 7.40 – 7.38 (m, 1H), 7.30 (s,

1H), 7.25 – 7.18 (m, 4H), 7.02 (d, *J* = 7.0 Hz, 2H), 5.82 (s, 2H), 3.85 (s, 2H), 1.40 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.6, 165.5, 137.7, 136.6, 133.3, 128.5, 127.6, 126.4, 126.3, 125.4, 124.4, 113.3, 111.6, 111.4, 81.1, 47.8, 47.3, 26.9.

HRMS (ESI) calcd for  $C_{22}H_{22}BrNO_3 [M+K]^+ m/z$  466.0415, found 466.0424.

### Tert-butyl 3-(1-benzyl-5-methyl-1H-indol-2-yl)-3-oxopropanoate (1e):



The title compound was prepared according to the typical procedure, as described above, in 71% yield; white solid; m.p. = 84 - 86 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (s, 1H), 7.30 (s, 1H), 7.25 – 7.16 (m, 5H), 7.04 (d, J = 7.4 Hz, 2H), 5.83 (s, 2H), 3.85 (s, 2H), 2.43 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  184.5, 165.8, 137.8, 137.2, 132.6, 129.5, 127.7, 127.4, 126.0, 125.5, 125.2, 121.3, 112.0, 109.7, 80.9, 47.7, 47.2, 26.9, 20.3. HRMS (ESI) calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>3</sub> [M+K]<sup>+</sup> m/z 402.1466, found 402.1475.

Tert-butyl 3-(1-benzyl-5-methoxy-1H-indol-2-yl)-3-oxopropanoate (1f):



The title compound was prepared according to the typical procedure, as described above, in 72% yield; white solid; m.p. = 81 - 83 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.29 (s, 1H), 7.25 – 7.20 (m, 3H), 7.19 – 7.15 (m, 1H), 7.08 (d, J = 2.5 Hz, 1H), 7.04 – 7.00 (m, 3H), 5.82 (s, 2H), 3.84 (s, 2H), 3.83 (s, 3H), 1.40 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.3, 165.8, 153.9, 137.2, 134.9, 132.8, 127.5, 126.1, 125.4, 125.3, 117.6, 111.9, 111.0, 101.6, 80.9, 54.6, 47.7, 47.2, 26.9.

HRMS (ESI) calcd for  $C_{23}H_{25}NO_4 [M+K]^+ m/z 418.1415$ , found 418.1421.





The title compound was prepared according to the typical procedure, as described above, in 81% yield; white solid; m.p. = 88 - 89 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.71 (d, J = 2.1 Hz, 1H), 8.21 (dd, J = 9.3, 2.2 Hz, 1H), 7.56 (s, 1H), 7.43 (d, J = 9.3 Hz, 1H), 7.28 – 7.22 (m, 3H), 7.05 – 7.04 (m, 2H), 5.90 (s, 2H), 3.90 (s, 2H), 1.41 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.7, 165.2, 141.8, 141.2, 135.8, 135.3, 127.8, 126.6, 125.4, 124.0, 120.4, 119.5, 114.0, 110.4, 81.4, 47.8, 47.8, 26.9.

HRMS (ESI) calcd for  $C_{22}H_{22}N_2O_5$  [M+K]<sup>+</sup> m/z 433.116, found 433.117.

Tert-butyl 3-(1-benzyl-6-chloro-1H-indol-2-yl)-3-oxopropanoate (1h):



The title compound was prepared according to the typical procedure, as described above, in 67% yield; white solid; m.p. = 83 - 85 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.63 (d, J = 8.6 Hz, 1H), 7.36 – 7.35 (m, 2H), 7.26 – 7.19 (m, 3H), 7.14 – 7.12 (m, 1H), 7.04 – 7.03 (m, 2H), 5.80 (s, 2H), 3.85 (s, 2H), 1.40 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.4, 165.6, 139.5, 136.5, 133.2, 131.7, 127.6, 126.3, 125.4, 123.4, 123.2, 121.3, 112.5, 109.8, 81.1, 47.7, 47.3, 26.9.

HRMS (ESI) calcd for  $C_{22}H_{22}CINO_3$  [M+K]<sup>+</sup> m/z 422.092, found 422.0922.

### Tert-butyl 3-(1-benzyl-6-bromo-1H-indol-2-yl)-3-oxopropanoate (1i):



The title compound was prepared according to the typical procedure, as described above, in 67% yield; white solid; m.p. = 111 - 113 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 8.5 Hz, 1H), 7.53 (s, 1H), 7.35 (s, 1H), 7.28 – 7.20 (m, 4H), 7.04 – 7.03 (m, 2H), 5.80 (s, 2H), 3.84 (s, 2H), 1.39 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  184.4, 165.5, 139.8, 136.5, 133.0, 127.6, 126.3, 125.4, 123.9, 123.7, 123.4, 119.6, 112.9, 112.5, 81.1, 47.8, 47.3, 26.9. HRMS (ESI) calcd for C<sub>22</sub>H<sub>22</sub>BrNO<sub>3</sub> [M+K]<sup>+</sup> m/z 466.0415, found 466.0417.

### Tert-butyl 3-(1-benzyl-7-bromo-1H-indol-2-yl)-3-oxopropanoate (1j):



The title compound was prepared according to the typical procedure, as described above, in 74% yield; white solid; m.p. = 105 - 107 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.68 (d, J = 7.6 Hz, 1H), 7.55 – 7.53 (m, 1H), 7.41 (s, 1H), 7.25 – 7.16 (m, 3H), 7.01 (t, J = 7.8 Hz, 1H), 6.91 – 6.89 (m, 2H), 6.40 (s, 2H), 3.82 (s, 2H), 1.37 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.3, 165.5, 138.5, 135.3, 134.1, 131.4, 128.2, 127.3, 125.7, 124.8, 121.7, 121.1, 113.6, 103.4, 81.1, 48.2, 47.5, 26.8.

HRMS (ESI) calcd for C<sub>22</sub>H<sub>22</sub>BrNO<sub>3</sub> [M+Na]<sup>+</sup> m/z 450.0675, found 450.0678.

### Tert-butyl 3-(1-methyl-1H-indol-2-yl)-3-oxopropanoate (1k):



The title compound was prepared according to the typical procedure, as described above,

in 65% yield; white solid; m.p. = 89 – 91 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.68 (d, J = 8.1 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.28 (s, 1H), 7.17 – 7.14 (m, 1H), 4.06 (s, 3H), 3.88 (s, 2H), 1.46 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 185.0, 165.8, 139.3, 133.1, 125.3, 124.7, 122.1, 119.8, 111.5, 109.4, 80.9, 47.4, 31.1, 27.0, 26.8. HRMS (ESI) calcd for C<sub>16</sub>H<sub>19</sub>NO<sub>3</sub> [M+Na]<sup>+</sup> m/z 296.1257, found 296.1251.

Tert-butyl 3-(1-(4-methoxybenzyl)-1H-indol-2-yl)-3-oxopropanoate (11):



The title compound was prepared according to the typical procedure, as described above, in 65% yield; white solid; m.p. = 80 - 81 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.71 (d, J = 8.1 Hz, 1H), 7.40 – 7.33 (m, 3H), 7.17 – 7.14 (m, 1H), 7.05 – 7.03 (m, 2H), 6.77 – 7.75 (m, 2H), 5.79 (s, 2H), 3.86 (s, 2H), 3.72 (s, 3H), 1.41 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.6, 165.8, 157.7, 139.2, 132.5, 129.2, 126.9, 125.6, 125.0, 122.2, 120.1, 112.9, 112.6, 110.1, 80.9, 54.2, 47.8, 46.6, 26.9.

HRMS (ESI) calcd for  $C_{23}H_{25}NO_4 \ [M+K]^+ \ m/z \ 418.1415$ , found 418.1408.

```
Tert-butyl 3-(1-(4-(tert-butyl)benzyl)-1H-indol-2-yl)-3-oxopropanoate (m):
```



The title compound was prepared according to the typical procedure, as described above, in 45% yield; white solid; m.p. = 92 - 94 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 8.0 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.01 – 7.00 (m, 2H), 5.82

(s, 2H), 3.86 (s, 2H), 1.39 (s, 9H), 1.24 (s, 9H).
<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 184.5, 165.7, 148.8, 139.2, 134.0, 132.5, 125.5, 125.2, 125.0, 124.3, 122.1, 120.1, 112.5, 110.1, 80.8, 47.8, 46.7, 33.3, 30.3, 26.9.
HRMS (ESI) calcd for C<sub>26</sub>H<sub>31</sub>NO<sub>3</sub> [M+Na]<sup>+</sup> m/z 428.2196, found 428.2186.

#### Tert-butyl 3-(1H-indol-2-yl)-3-oxopropanoate (1n):



The title compound was prepared according to the typical procedure, as described above, in 78% yield; white solid; m.p. = 209 - 210 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 9.16 (s, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 3.87 (s, 2H), 1.46 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 183.9, 165.4, 136.6, 133.5, 126.5, 125.8, 122.2, 120.1, 111.2, 109.6, 81.2, 45.9, 26.9.

HRMS (ESI) calcd for C<sub>15</sub>H<sub>17</sub>NO<sub>3</sub> [M+Na]<sup>+</sup> m/z 282.11, found 282.1107.

### 3. Synthetic procedures and characterization data of compounds 3



To the oven-dried 10 mL vial, added dihydropyrazolinone **1** (0.1 mmol, 1.0 equiv.),  $\beta$ bromo- $\alpha$ , $\beta$ -unsaturated aldehyde **2** (0.1 mmol, 1.2 equiv.), cat. **A** (7.4 mg, 0.02 mmol,

0.2 equiv.), NaHCO<sub>3</sub> (12.6 mg, 0.15 mmol, 1.5 equiv.) followed by 1.5 mL of THF. Stirring overnight at room temperature, TLC monitors the starting substance until it completely disappears. The desired product **3** was purified by silica gel column chromatography with EA/PE (1:10) as an eluent. The corresponding racemic product is made of racemic catalyst cat. **D** synthesis.

tert-butyl (R)-6-(1-benzyl-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate 3a



The title compound was prepared according to the typical procedure, as described above, in 78% yield (37.3 mg); white solid; 97% *ee*;  $[\alpha]_D^{25} = -92.20$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 110 - 112 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.65 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 7.28 - 7.22 (m, 7H), 7.16 - 7.13 (m, 3H), 7.05 - 7.04 (m, 2H), 6.80 (s, 1H), 5.45 (s, 2H), 4.25 (dd, *J* = 7.3, 3.8 Hz, 1H), 2.80 (dd, *J* = 16.0, 7.3 Hz, 1H), 2.73 (dd, *J* = 16.0, 3.9 Hz, 1H), 1.06 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.6, 163.9, 148.0, 138.6, 136.9, 136.4, 129.5, 128.1, 127.6, 126.6, 126.5, 125.9, 125.8, 125.7, 122.4, 120.4, 119.2, 116.2, 108.9, 106.0, 80.8, 47.1, 38.0, 34.9, 26.5.

HRMS (ESI) calcd for  $C_{31}H_{29}NO_4 [M+H]^+ m/z 480.2169$ , found 480.2167.

HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 11.829 min, t<sub>R</sub> (major) = 15.198 min; 97% ee.

tert-butyl (R)-6-(1-benzyl-5-fluoro-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3b



The title compound was prepared according to the typical procedure, as described above, in 62% yield (30.8 mg); white solid; 97% *ee*;  $[\alpha]_D^{25} = -40.38$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 155 - 157 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 – 7.27 (m, 4H), 7.26 – 7.22 (m, 4H), 7.15 – 7.13 (m, 2H), 7.06 – 7.04 (m, 2H), 7.01 – 6.97 (m, 1H), 6.74 (s, 1H), 5.41 (s, 2H), 4.26 (dd, J = 7.3, 3.8 Hz, 1H), 2.82 (dd, J = 16.0, 7.4 Hz, 1H), 2.75 (dd, J = 16.0, 3.8 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.5, 163.7, 147.7, 138.5, 136.1, 133.4, 131.2, 128.1, 127.7, 126.7, 126.7, 125.8, 125.7, 116.7, 111.2, 111.0, 109.8, 109.7, 105.5, 105.5, 105.0, 104.8, 80.9, 47.4, 38.0, 34.8, 26.5.

HRMS (ESI) calcd for C<sub>31</sub>H<sub>28</sub>FNO<sub>4</sub> [M+Na]<sup>+</sup> m/z 520.1895, found 520.1903.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 12.680 min, t<sub>R</sub> (major) = 15.446 min; 97% *ee*.

tert-butyl (R)-6-(1-benzyl-5-chloro-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3c



The title compound was prepared according to the typical procedure, as described above, in 75% yield (38.4 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -84.82$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 104 - 107 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, J = 1.9 Hz, 1H), 7.28 – 7.27 (m, 3H), 7.26 –

7.23 (m, 4H), 7.20 – 7.18 (m, 1H), 7.13 – 7.11 (m, 2H), 7.05 – 7.04 (m, 2H), 6.72 (s, 1H), 5.41 (s, 2H), 4.26 (dd, *J* = 7.3, 3.8 Hz, 1H), 2.82 (dd, *J* = 16.0, 7.3 Hz, 1H), 2.75 (dd, *J* = 16.0, 3.8 Hz, 1H), 1.07 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.5, 164.7, 148.5, 139.5, 136.9, 136.2, 132.0, 129.2,

128.7, 127.9, 127.8, 127.7, 126.8, 126.7, 126.0, 123.9, 120.7, 117.8, 111.1, 106.2, 82.0, 48.4, 39.0, 35.8, 27.6.

HRMS (ESI) calcd for C<sub>31</sub>H<sub>28</sub>ClNO<sub>4</sub> [M+Na]<sup>+</sup> m/z 536.1599, found 536.1591.

HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 14.190 min, t<sub>R</sub> (major) = 24.914 min; 96% ee.

# tert-butyl (R)-6-(1-benzyl-5-bromo-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3d



The title compound was prepared according to the typical procedure, as described above, in 61% yield (33.9 mg); white solid; 92% *ee*;  $[\alpha]_D^{25} = -93.34$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 157 - 159 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.78 (d, *J* = 1.7 Hz, 1H), 7.33 – 7.31 (m, 1H), 7.28 – 7.24 (m, 6H), 7.21 – 7.19 (m, 1H), 7.14 – 7.10 (m, 2H), 7.05 – 7.03 (m, 2H), 6.74 – 6.70 (m, 1H), 5.41 (s, 2H), 4.26 (dd, *J* = 7.3, 3.8 Hz, 1H), 2.82 (dd, *J* = 16.0, 7.3 Hz, 1H), 2.75 (dd, *J* = 16.0, 3.8 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.4, 163.6, 147.4, 138.5, 135.8, 135.4, 130.8, 128.1, 127.7, 127.5, 126.7, 126.7, 125.8, 125.7, 125.3, 122.8, 116.8, 112.5, 110.5, 105.0, 81.0, 47.4, 37.9, 34.8, 26.5.

HRMS (ESI) calcd for  $C_{31}H_{28}NO_4 [M+Na]^+ m/z 580.1094$ , found 580.1088.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 11.780 min, t<sub>R</sub> (major) = 13.673 min; 92% *ee*.

### tert-butyl (R)-6-(1-benzyl-5-methyl-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2

H-pyran-5-carboxylate 3e



The title compound was prepared according to the typical procedure, as described above, in 61% yield (30.1 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -79.20$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 80 - 82 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.42 (s, 1H), 7.28 – 7.21 (m, 7H), 7.14 – 7.04 (m, 5H), 6.71 (s, 1H), 5.42 (s, 2H), 4.25 – 4.23 (m, 1H), 2.82 – 2.77 (m, 1H), 2.74 – 2.71 (m, 1H), 2.44 (s, 3H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.7, 164.0, 148.0, 138.6, 136.6, 135.4, 129.4, 128.5, 128.0, 127.6, 126.6, 126.5, 126.2, 125.8, 125.7, 124.2, 119.9, 116.0, 108.6, 105.6, 80.7, 47.1, 38.0, 34.9, 26.5, 20.4.

HRMS (ESI) calcd for  $C_{32}H_{31}NO_4$  [M+Na]<sup>+</sup> m/z 516.2145, found 516.2143.

HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 18.771 min, t<sub>R</sub> (major) = 24.345 min; 96% *ee*.

tert-butyl (R)-6-(1-benzyl-5-methoxy-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro -2H-pyran-5-carboxylate 3f



The title compound was prepared according to the typical procedure, as described above, in 69% yield (35.1 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -79.58$  (c = 0.5, CHCl<sub>3</sub>);

m.p. = 125 - 126 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 – 7.21 (m, 7H), 7.14 – 7.13 (m, 2H), 7.08 – 7.03 (m, 3H), 6.91 (dd, J = 9.0, 2.5 Hz, 1H), 6.71 (s, 1H), 5.40 (s, 2H), 4.25 (dd, J = 7.3, 3.7 Hz, 1H), 3.85 (s, 3H), 2.80 (dd, J = 16.0, 7.4 Hz, 1H), 2.73 (dd, J = 16.0, 3.8 Hz, 1H), 1.08 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.7, 164.0, 153.4, 148.0, 138.6, 136.5, 132.3, 129.9, 128.1, 127.6, 126.6, 126.5, 126.3, 125.8, 125.7, 116.1, 113.1, 109.8, 105.5, 101.4, 80.8, 54.8, 47.3, 38.0, 34.9, 26.5.

HRMS (ESI) calcd for C<sub>32</sub>H<sub>31</sub>NO<sub>5</sub> [M+Na]<sup>+</sup> m/z 532.2094, found 532.2093.

HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 15.774 min, t<sub>R</sub> (major) = 24.019 min; 96% ee.

## tert-butyl (R)-6-(1-benzyl-5-nitro-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2H -pyran-5-carboxylate 3g



The title compound was prepared according to the typical procedure, as described above, in 63% yield (30.0 mg); white solid; 98% *ee*;  $[\alpha]_D^{25} = -75.34$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 168 - 170 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (d, J = 2.2 Hz, 1H), 8.15 (dd, J = 9.2, 2.2 Hz, 1H), 7.38 (d, J = 9.2 Hz, 1H), 7.31 – 7.30 (m, 3H), 7.27 – 7.26 (m, 3H), 7.14 – 7.13 (m, 2H), 7.06 – 7.04 (m, 2H), 6.96 (s, 1H), 5.48 (s, 2H), 4.28 (dd, J = 7.3, 3.9 Hz, 1H), 2.85 (dd, J = 16.1, 7.4 Hz, 1H), 2.77 (dd, J = 16.1, 3.9 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.1, 163.1, 146.7, 141.2, 139.2, 138.3, 135.0, 133.2, 128.2, 127.9, 127.1, 126.8, 125.8, 125.6, 125.1, 117.9, 117.7, 117.6, 109.1, 107.5, 81.3, 47.8, 37.9, 34.6, 26.5.

HRMS (ESI) calcd for  $C_{31}H_{28}N_2O_6$  [M+Na]<sup>+</sup> m/z 547.184, found 547.1837.

HPLC: Chiralcel IB (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 24.081 min, t<sub>R</sub> (major) = 38.296 min; 98% *ee*.

## tert-butyl (R)-6-(1-benzyl-6-chloro-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3h



The title compound was prepared according to the typical procedure, as described above, in 80% yield (41.0 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -46.14$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 76 - 78 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 8.5 Hz, 1H), 7.34 (s, 1H), 7.29 – 7.28 (m, 3H), 7.26 – 7.24 (m, 3H), 7.14 – 7.10 (m, 3H), 7.04 – 7.02 (m, 2H), 6.76 (s, 1H), 5.39 (s, 2H), 4.24 (dd, J = 7.2, 3.9 Hz, 1H), 2.80 (dd, J = 16.0, 7.3 Hz, 1H), 2.73 (dd, J = 16.0, 3.9 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.5, 163.7, 147.5, 138.5, 137.2, 135.8, 130.4, 128.4, 128.1, 127.7, 126.7, 126.7, 125.8, 125.7, 124.4, 121.3, 120.2, 116.6, 108.9, 105.9, 80.9, 47.3, 37.9, 34.8, 26.5.

HRMS (ESI) calcd for  $C_{31}H_{28}CINO_4 [M+Na]^+ m/z 536.1599$ , found 536.16.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 8.718 min, t<sub>R</sub> (minor) = 12.193 min; 96% ee.

tert-butyl (R)-6-(1-benzyl-6-bromo-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3i



The title compound was prepared according to the typical procedure, as described above, in 64% yield (35.6 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -107.60$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 179 - 181 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.52 – 7.50 (m, 2H), 7.29 – 7.24 (m, 7H), 7.13 – 7.12 (m, 2H), 7.04 – 7.02 (m, 2H), 6.76 (s, 1H), 5.39 (s, 2H), 4.24 (dd, *J* = 7.1, 3.9 Hz, 1H), 2.79 (dd, *J* = 15.8, 7.1 Hz, 1H), 2.73 (dd, *J* = 15.9, 3.6 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.5, 163.7, 147.5, 138.5, 137.6, 135.8, 130.2, 128.1, 127.7, 126.7, 126.6, 125.7, 125.7, 124.7, 122.8, 121.6, 116.6, 116.2, 111.9, 106.0, 80.9, 47.2, 37.9, 34.8, 26.5.

HRMS (ESI) calcd for C<sub>31</sub>H<sub>28</sub>BrNO<sub>4</sub> [M+Na]<sup>+</sup> m/z 580.1094, found 580.1101.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 8.820 min, t<sub>R</sub> (minor) = 13.125 min; 96% *ee*.

tert-butyl (R)-6-(1-benzyl-7-bromo-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2 H-pyran-5-carboxylate 3j



The title compound was prepared according to the typical procedure, as described above, in 75% yield (41.7 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -152.10$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 163 - 165 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (dd, J = 7.9, 0.9 Hz, 1H), 7.43 (dd, J = 7.6, 0.9 Hz, 1H), 7.27 – 7.23 (m, 6H), 7.06 – 6.99 (m, 5H), 6.80 (s, 1H), 6.13 (d, J = 17.3 Hz, 1H),

5.83 (d, *J* = 17.3 Hz, 1H), 4.26 (dd, *J* = 7.2, 3.8 Hz, 1H), 2.80 (dd, *J* = 16.1, 7.2 Hz, 1H), 2.74 (dd, *J* = 16.1, 3.8 Hz, 1H), 1.07 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.3, 163.3, 147.9, 138.6, 137.6, 132.8, 132.2, 129.2, 128.1, 128.1, 127.5, 126.7, 126.2, 125.7, 125.1, 120.4, 120.0, 117.2, 106.3, 102.8, 81.0, 47.5, 37.8, 34.7, 26.5.

HRMS (ESI) calcd for C<sub>31</sub>H<sub>28</sub>BrNO<sub>4</sub> [M+Na]<sup>+</sup> m/z 580.1094, found 580.1103. HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 6.077 min, t<sub>R</sub> (minor) = 8.119 min; 96% *ee*.

tert-butyl (R)-6-(1-methyl-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate 3k



The title compound was prepared according to the typical procedure, as described above, in 78% yield (31.4 mg); white solid; 98% *ee*;  $[\alpha]_D^{25} = -85.24$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 140 - 142 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.62 (d, J = 7.9 Hz, 1H), 7.37 – 7.33 (m, 3H), 7.30 – 7.24 (m, 4H), 7.14 – 7.11 (m, 1H), 6.68 (s, 1H), 4.40 (dd, J = 7.7, 2.8 Hz, 1H), 3.77 (s, 3H), 3.14 (dd, J = 16.0, 7.8 Hz, 1H), 2.98 (dd, J = 16.0, 2.9 Hz, 1H), 0.99 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.8, 163.8, 148.4, 138.8, 136.7, 130.5, 128.2, 126.8, 125.9, 125.7, 122.1, 120.3, 119.0, 117.4, 108.5, 103.9, 80.7, 37.8, 35.1, 29.8, 26.4. HRMS (ESI) calcd for C<sub>25</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub> [M+Na]<sup>+</sup> m/z 426.1676, found 426.1671. HPLC: Chiralcel IA (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 11.231 min, t<sub>R</sub> (minor) = 12.153 min; 98% *ee*.

# tert-butyl (R)-6-(1-(4-methoxybenzyl)-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydr o-2H-pyran-5-carboxylate 3l



The title compound was prepared according to the typical procedure, as described above, in 67% yield (34.1 mg); white solid; 98% *ee*;  $[\alpha]_D^{25} = -79.62$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 120 - 122 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.27 – 7.23 (m, 4H), 7.15 – 7.06 (m, 5H), 6.80 – 6.77 (m, 3H), 5.38 (d, J = 3.9 Hz, 2H), 4.27 (dd, J = 7.4, 3.7 Hz, 1H), 3.76 (s, 3H), 2.86 (dd, J = 15.9, 7.5 Hz, 1H), 2.77 (dd, J = 16.0, 3.4 Hz, 1H), 1.05 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.7, 164.0, 158.0, 148.0, 138.7, 136.8, 129.5, 128.4, 128.0, 127.2, 126.6, 125.9, 125.8, 122.4, 120.4, 119.2, 116.2, 113.0, 109.0, 105.9, 80.7, 54.2, 46.6, 38.0, 34.9, 26.5.

HRMS (ESI) calcd for C<sub>32</sub>H<sub>31</sub>NO<sub>5</sub> [M+Na]<sup>+</sup> m/z 532.2094, found 532.2098.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 15.100 min, t<sub>R</sub> (minor) = 23.055 min; 98% *ee*.

tert-butyl (R)-6-(1-(4-(tert-butyl)benzyl)-1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihy dro-2H-pyran-5-carboxylatee 3m



The title compound was prepared according to the typical procedure, as described above, in 60% yield (32.1 mg); white solid; 98% *ee*;  $[\alpha]_D^{25} = -68.94$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 129 - 131 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.29 - 7.23 (m, 6H), 7.15 - 7.08 (m, 5H), 6.78 (s, 1H), 5.45 - 5.35 (m, 2H), 4.24 (dd, *J* = 7.1, 4.3 Hz, 1H), 2.75 (dd, *J* = 16.0, 7.2 Hz, 1H), 2.69 (dd, *J* = 16.0, 4.3 Hz, 1H), 1.28 (s, 9H), 1.03 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.8, 163.9, 149.5, 148.1, 138.7, 136.8, 133.4, 129.6, 128.0, 126.6, 126.0, 125.8, 125.7, 124.5, 122.3, 120.4, 119.2, 116.4, 109.0, 105.8, 80.7, 46.8, 37.9, 34.8, 33.5, 30.3, 26.5.

HRMS (ESI) calcd for C<sub>35</sub>H<sub>37</sub>NO<sub>4</sub> [M+Na]<sup>+</sup> m/z 558.2615, found 558.2625.

HPLC: Chiralcel IB (n-hexane/i-PrOH, 97/3, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 8.420 min, t<sub>R</sub> (major) = 9.163 min; 98% ee.

tert-butyl (R)-6-(1H-indol-2-yl)-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carbox ylate 3n



The title compound was prepared according to the typical procedure, as described above, in 71% yield (27.6 mg); white solid; 87% *ee*;  $[\alpha]_D^{25} = -64.38$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 162 - 164 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  11.72 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.33 – 7.26 (m, 5H), 7.22 – 7.20 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 4.41 (dd, J = 7.0, 3.6 Hz, 1H), 3.05 (dd, J = 15.8, 7.1 Hz, 1H), 2.90 (dd, J = 15.8, 3.6 Hz, 1H), 1.35 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.8, 164.5, 151.0, 139.7, 136.2, 128.0, 127.9, 126.5, 126.0, 125.7, 123.6, 120.8, 119.4, 111.0, 108.8, 107.5, 81.9, 39.4, 35.5, 26.8. HRMS (ESI) calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>4</sub> [M+Na]<sup>+</sup> m/z 412.1519, found 412.1528. HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm), t<sub>R</sub>

 $(major) = 7.407 \text{ min}, t_R (minor) = 11.927 \text{ min}; 87\% ee.$ 

tert-butyl (R)-6-(1-benzyl-1H-indol-2-yl)-4-(2-methoxyphenyl)-2-oxo-3,4-dihydr

o-2H-pyran-5-carboxylate 3o



The title compound was prepared according to the typical procedure, as described above, in 65% yield (33.1 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -102.30$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 146 - 148 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.63 (d, *J* = 7.9 Hz, 1H), 7.33 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.27 – 7.20 (m, 9H), 7.13 – 7.10 (m, 1H), 6.77 – 6.73 (m, 1H), 6.69 (d, *J* = 8.7 Hz, 1H), 5.40 (s, 2H), 4.39 (dd, *J* = 8.6, 3.0 Hz, 1H), 3.59 (s, 3H), 2.82 (dd, *J* = 16.6, 8.6 Hz, 1H), 2.74 (dd, *J* = 16.5, 3.0 Hz, 1H), 1.05 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.4, 163.9, 155.2, 147.7, 136.5, 136.4, 130.8, 130.6, 130.3, 128.8, 127.6, 126.5, 126.1, 125.8, 122.2, 120.3, 119.2, 114.3, 111.8, 111.4, 109.2, 105.0, 80.9, 53.8, 47.3, 34.6, 32.4, 26.5.

HRMS (ESI) calcd for  $C_{32}H_{31}NO_5 [M+Na]^+ m/z 532.2094$ , found 532.2102.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (minor) = 13.570 min, t<sub>R</sub> (major) = 15.689 min; 96% *ee*.

tert-butyl (R)-6-(1-benzyl-1H-indol-2-yl)-4-(4-fluorophenyl)-2-oxo-3,4-dihydro-2 H-pyran-5-carboxylate 3p



The title compound was prepared according to the typical procedure, as described above, in 50% yield (24.8 mg); white solid; 97% *ee*;  $[\alpha]_D^{25} = -78.80$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 118 - 120 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.28 - 7.24 (m, 4H), 7.17 - 7.13 (m, 3H), 6.99 - 6.90 (m, 4H), 6.80 (s, 1H), 5.46 (s, 2H), 4.23 (dd, J = 7.4, 3.4 Hz, 1H), 2.79 (dd, J = 16.0, 7.5 Hz, 1H), 2.69 (dd, J = 16.0, 3.5 Hz, 1H), 1.08 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.5, 164.9, 163.1, 161.1, 149.2, 138.0, 137.4, 135.4, 135.4, 130.3, 128.7, 128.4, 128.4, 127.6, 126.9, 126.8, 123.6, 121.5, 120.4, 116.9, 116.1, 115.9, 109.9, 107.3, 82.0, 48.1, 38.3, 36.0, 27.6.

HRMS (ESI) calcd for  $C_{31}H_{28}FNO_4 [M+Na]^+ m/z 520.1895$ , found 520.1904.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 10.780 min, t<sub>R</sub> (minor) = 15.026 min; 97% ee.

# tert-butyl (R)-6-(1-benzyl-1H-indol-2-yl)-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran -5-carboxylate 3q



The title compound was prepared according to the typical procedure, as described above, in 62% yield (30.5 mg); white solid; 96% *ee*;  $[\alpha]_D^{25} = -87.22$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 120 - 122 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.28 - 7.23 (m, 4H), 7.16 - 7.12 (m, 3H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 1H), 5.44 (s, 2H), 4.21 (dd, *J* = 7.1, 3.7 Hz, 1H), 2.77 (dd, *J* = 16.0, 7.2 Hz, 1H), 2.71 (dd, *J* = 15.9, 3.7 Hz, 1H), 2.30 (s, 3H), 1.06 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.8, 164.0, 147.9, 136.8, 136.4, 136.2, 135.6, 129.6, 128.7, 127.6, 126.5, 126.0, 125.9, 125.6, 122.4, 120.4, 119.2, 116.5, 108.9, 105.9, 80.7, 47.1, 37.5, 35.0, 26.5, 20.0.

HRMS (ESI) calcd for  $C_{32}H_{31}NO_4 [M+Na]^+ m/z 516.2145$ , found 516.2145.

HPLC: Chiralcel AD (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub>

 $(minor) = 11.541 min, t_R (major) = 13.394 min; 96\% ee.$ 

# tert-butyl (R)-6-(1-benzyl-1H-indol-2-yl)-4-(4-methoxyphenyl)-2-oxo-3,4-dihydr o-2H-pyran-5-carboxylate 3r



The title compound was prepared according to the typical procedure, as described above, in 64% yield (32.6 mg); white solid; 93% *ee*;  $[\alpha]_D^{25} = -172.94$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 167 - 169 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.33 – 7.32 (m, 1H), 7.28 – 7.24 (m, 4H), 7.16 – 7.14 (m, 3H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.78 – 6.76 (m, 3H), 5.44 (s, 2H), 4.20 (dd, *J* = 7.2, 3.6 Hz, 1H), 3.77 (s, 3H), 2.76 (d, *J* = 7.3 Hz, 1H), 2.72 (d, *J* = 3.7 Hz, 1H), 1.07 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.8, 164.0, 157.9, 147.8, 136.9, 136.4, 130.6, 129.6, 127.6, 126.8, 126.5, 126.0, 125.8, 122.4, 120.4, 119.3, 116.6, 113.4, 108.9, 105.9, 80.8, 54.2, 47.1, 37.2, 35.1, 26.5.

HRMS (ESI) calcd for C<sub>32</sub>H<sub>31</sub>NO<sub>5</sub> [M+Na]<sup>+</sup> m/z 532.2094, found 532.21.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 23.497 min, t<sub>R</sub> (minor) = 25.358 min; 93% *ee*.

tert-butyl (S)-6-(1-benzyl-1H-indol-2-yl)-4-(furan-2-yl)-2-oxo-3,4-dihydro-2H-py ran-5-carboxylate 3s



The title compound was prepared according to the typical procedure, as described above,

in 68% yield (31.9 mg); yellow solid; 83% *ee* ; $[\alpha]_D^{25} = -53.32$  (c = 0.5, CHCl<sub>3</sub>); m.p. = 102 - 104 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.63 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.25 – 7.22 (m, 4H), 7.14 – 7.11 (m, 3H), 6.73 (s, 1H), 6.25 (dd, *J* = 3.1, 1.9 Hz, 1H), 5.99 (d, *J* = 3.2 Hz, 1H), 5.37 (s, 2H), 4.37 (dd, *J* = 7.2, 1.8 Hz, 1H), 2.98 (dd, *J* = 16.0, 2.1 Hz, 1H), 2.70 (dd, *J* = 16.0, 7.3 Hz, 1H), 1.10 (s, 9H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.4, 163.6, 151.0, 149.1, 141.5, 136.7, 136.3, 129.6, 127.5, 126.5, 126.0, 126.0, 122.4, 120.4, 119.2, 114.1, 109.4, 109.0, 105.7, 105.4, 80.9, 47.1, 31.8, 31.6, 26.5.

HRMS (ESI) calcd for C<sub>29</sub>H<sub>27</sub>NO<sub>5</sub> [M+Na]<sup>+</sup> m/z 492.1781, found 492.1775.

HPLC: Chiralcel IA (n-hexane/i-PrOH, 95/5, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 12.628 min, t<sub>R</sub> (minor) = 13.463 min; 83% *ee*.

### (4S)-5-benzoyl-4-(2-bromophenyl)-6-phenyl-3,4-dihydro-2H-pyran-2-one 3t



The title compound was prepared according to the typical procedure, as described above, in 85% yield (36.7 mg); White solid; 87% *ee* ; $[\alpha]_D^{25} = -6.40$  (c = 0.05, CHCl<sub>3</sub>); m.p. = 155 - 159 °C.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.61 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.56 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.33 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 7.19 – 7.06 (m, 5H), 5.04 (dd, *J* = 7.9, 2.5 Hz, 1H), 3.19 (dd, *J* = 16.0, 7.9 Hz, 1H), 3.06 (dd, *J* = 16.0, 2.5 Hz, 1H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 195.01, 166.02, 156.52, 138.09, 136.68, 133.83, 132.78, 131.85, 130.54, 129.48, 129.31, 129.03, 128.27, 128.20, 128.16, 127.83, 123.94, 117.04, 39.64, 35.24.

HRMS (ESI) calcd for  $C_{24}H_{17}BrO_3 [M+Na]^+ m/z 455.0253$ , found 455.0257.

HPLC: Chiralcel AD-H (n-hexane/i-PrOH, 90/10, flow rate 1.0 mL/min,  $\lambda = 254$  nm), t<sub>R</sub> (major) = 19.164 min, t<sub>R</sub> (minor) = 16.162 min; 87% *ee*.

### 4. NMR spectra of substrates 1 as new compounds















#### 














## 5. NMR and HPLC spectra of products 3

















3d: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)







| 1 Cak | Ret. Time | Alta    | Ineight | Alca /0 | fieight 70 |
|-------|-----------|---------|---------|---------|------------|
| 1     | 11.780    | 379500  | 15134   | 4.169   | 3.321      |
| 2     | 13.673    | 8723238 | 440650  | 95.831  | 96.679     |
| Total |           | 9102738 | 455784  | 100.000 | 100.000    |























































## 





## 


























# 3t: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)



# 3t: <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)







| Peak# | Ret. Time | Area   | Height | Area %  | Height % |
|-------|-----------|--------|--------|---------|----------|
| 1     | 16.162    | 36695  | 885    | 6.371   | 8.132    |
| 2     | 19.164    | 539299 | 9999   | 93.629  | 91.868   |
| Total |           | 575994 | 10884  | 100.000 | 100.000  |

#### **Practical reaction**





| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 12.212    | 54497   | 2304   | 2.127   | 3.182    |
| 2     | 14.716    | 2508207 | 70095  | 97.873  | 96.818   |
| Total |           | 2562705 | 72399  | 100.000 | 100.000  |

### 6. X-ray single crystal data

X-ray single crystal data for compound  $3t^{[4]}$ .



Experimental: The sample (30mg) was dissolved in appropriate amount of THF (1 mL), followed by the addition of ether (4mL) to furnish a saturated solution. Afterward, the mixture was allowed to stand at room temperature to form the crystals. The crystal structure was determined on a Bruker APEX-II CCD diffractometer.



| Empirical formula | $C_{24}H_{17}BrO_3$ |
|-------------------|---------------------|
| Formula weight    | 433.28              |
| Temperature/K     | 170.0               |
| Crystal system    | orthorhombic        |
| Space group       | $P2_{1}2_{1}2_{1}$  |
| a/Å               | 7.6062(4)           |
| b/Å               | 11.6121(5)          |
| c/Å               | 21.4232(10)         |

| $\alpha/^{\circ}$                                      | 90                                                   |  |  |  |
|--------------------------------------------------------|------------------------------------------------------|--|--|--|
| β/°                                                    | 90                                                   |  |  |  |
| $\gamma/^{\circ}$                                      | 90                                                   |  |  |  |
| Volume/Å <sup>3</sup>                                  | 1892.18(16)                                          |  |  |  |
| Z                                                      | 4                                                    |  |  |  |
| $\rho_{calc}g/cm^3$                                    | 1.521                                                |  |  |  |
| $\mu/mm^{-1}$                                          | 3.146                                                |  |  |  |
| F(000)                                                 | 880.0                                                |  |  |  |
| Crystal size/mm <sup>3</sup>                           | $0.42 \times 0.35 \times 0.26$                       |  |  |  |
| Radiation                                              | $CuK\alpha$ ( $\lambda = 1.54178$ )                  |  |  |  |
| 20 range for data collection/°8.254 to 136.612         |                                                      |  |  |  |
| Index ranges                                           | $-9 \le h \le 9, -13 \le k \le 13, -23 \le l \le 25$ |  |  |  |
| Reflections collected                                  | 17296                                                |  |  |  |
| Independent reflections                                | 3435 [ $R_{int} = 0.0464, R_{sigma} = 0.0352$ ]      |  |  |  |
| Data/restraints/parameters                             | 3435/0/253                                           |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                      | 1.136                                                |  |  |  |
| Final R indexes [I>= $2\sigma$ (I)]                    | $R_1 = 0.0256, wR_2 = 0.0643$                        |  |  |  |
| Final R indexes [all data]                             | $R_1 = 0.0257, wR_2 = 0.0643$                        |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.37/-0.64 |                                                      |  |  |  |
| Flack parameter                                        | 0.062(6)                                             |  |  |  |

## 7. References

- 1. González Cabrera D, Douelle F, Feng T-S, et al. Novel Orally Active Antimalarial Thiazoles. *J Med Chem* 2011; 54:7713-7719. <u>https://doi.org/10.1021/jm201108k</u>.
- Jiang X, Zhang F, Yang J, et al. Synthesis of 3,3-Dihalo-2-oxindoles from 2-Substituted Indoles via Halogenation–Decarboxylation/Desulfonamidation– Oxidation Process. *Adv Synth Catal* 2016; 358:3938-3942. <u>https://doi.org/10.1002/adsc.201600771</u>.
- Parker AN, Martin MC, Shenje R, France S. Calcium-Catalyzed Formal [5 + 2] Cycloadditions of Alkylidene β-Ketoesters with Olefins: Chemodivergent Synthesis of Highly Functionalized Cyclohepta[b]indole Derivatives. Org Lett 2019; 21:7268-7273. <u>https://doi.org/10.1021/acs.orglett.9b02498</u>.
- Rong Z-Q, Jia M-Q, You S-L. Enantioselective N-Heterocyclic Carbene-Catalyzed Michael Addition to α,β-Unsaturated Aldehydes by Redox Oxidation. *Org Lett* 2011; 13:4080-4083. <u>https://doi.org/10.1021/ol201595f</u>.