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Abstract
Adaptive cruise control is one of the essential technologies of advanced driver assistance systems, which is used
to maintain a safe distance between an ego vehicle and a preceding vehicle and has been extensively applied in the
automotive industry and control community. Note that some vehicle manoeuvres may approach handling limits to
prevent collisions under complex road conditions, which often leads to vehicle lateral instability while cruising. In this
study, a T-S fuzzy model predictive control framework is applied to the problem of adaptive cruise control. Variations
in the preceding vehicle velocity and road surface conditions are considered to formulate adaptive cruise control as
a tracking control problem of a T-S fuzzy system subject to parameter uncertainties and external persistent pertur-
bations. Then, a robust positively invariant set is introduced to derive an admissible T-S fuzzy controller by solving a
min-max optimization problem under a series of linear matrix inequality constraints. Finally, a CarSim/MATLAB joint
simulation is conducted to illustrate the effectiveness of the proposed method, which ensures longitudinal adaptive
cruise control for a car-following scenario with lateral vehicle stability.
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1. INTRODUCTION
Advanced driver assistance systems (ADASs) play a critical role in the automobile industry [1] by significantly
decreasing drivers’ workload while considerably improving driving safety and comfort [2–5]. A few examples of
common applications of ADASs in automobiles in recent years are lane-keeping assist (LKA), adaptive cruise
control (ACC), electronic stability control (ESC), and the precrash system (PCS) [6]. The ACC system is one
of the first ADAS technologies for maintaining a safe distance between an ego car and a preceding vehicle [7].
Radar sensors detect the velocity of the preceding vehicle, which the ACC system uses to automatically modify
the speed of the driving vehicle by managing the throttle opening or brake pedal levels [8].

Many adaptive cruise control strategies can be found in the literature to achieve longitudinal car-following and
enhance driving performance . A fuzzy logic control technique is described in Ref. [9] that executes the ACC
function on an AIT intelligent vehicle using the distance error and relative velocity information. In Ref. [10], a
control system is presented that decreases vehicle waiting time at stop lights, as well as fuel consumption, by
utilizing upcoming traffic signal information and short-range radar for optimal velocity trajectory planning. In
Ref. [11], a safe and comfortable longitudinal automation systemwith a human-in-the-loop strategy is integrated
into an ACC system. In Ref. [12], the use of a longitudinal controller for a smart and green ACC system is
investigated to minimize energy expenditure and maximize energy regeneration.

Model predictive control (MPC) is a traditional control approachwith demonstrated utility for solvingmultiob-
jective optimization problems under a variety of system constraints [13,14]. In the past few years, MPC has been
widely applied to the design of ACC systems. A few examples are presented here: in Ref. [15], MPC is applied to
the design of spacing-control laws for transitional vehicle manoeuvres. A fuel economy-oriented ACC system
is developed in Ref. [16] to minimize vehicle fuel consumption, and a generic scale reduction framework is for-
mulated to alleviate computational loads induced by the MPC optimization solution. In Ref. [17], a benchmark
setting for the MPC on a piecewise affine system is presented for the design of ACC algorithms, and differ-
ent methods are implemented and evaluated to assess their main attributes, characteristics, and strong/weak
points. A stochastic MPC approach for minimizing vehicle fuel consumption is investigated in Ref. [18]. An
MPC method for increasing vehicle tracking accuracy and reducing fuel consumption is developed [19] by tak-
ing into account external road information, spatiotemporal constraints and nonlinear powertrain dynamics. In
Ref. [20], a personalized ACC system based on driving style identification is proposed to accommodate various
driving types within an MPC framework.

The Takagi-Sugeno (T-S) fuzzy system consists of a cluster of linear subsystems as an approximation for a non-
linear system. Extensive studies have been performed on this system in recent decades [21–24]. In vehicle con-
trol, vehicle dynamics are typically regarded as linear parameter varying (LPV) systems because of inevitable
variations in parameters, such as longitudinal and lateral velocities. T-S fuzzy systems are constructed to
model the vehicle dynamics and address parameter variations in the system. For example, in Ref. [25], a fuzzy
path-tracking controller is designed considering uncertain lateral tire forces, a time-varying vehicle speed,
steering-input saturation and vehicle state conditions. In Ref. [26], a fuzzy-model-basedH∞ control algorithm
is proposed considering constraints on the amplitude and rate of steering. In Ref. [27], a path tracking controller
based on output feedback is developed considering the transient behaviour of the system. However, few studies
have been performed on integrating T-S fuzzy modelling into ACC systems, and this subject requires further
investigation.

The aforementioned literature review shows that substantial progress has beenmade in both theoretical formu-
lations and practical applications of ACC design for car-following within the model-based predictive control
framework. Notably, cars may lose lateral stability when employing a cruise controller in some emergency
situations, such as rapid braking on roads with low friction coefficients. Thus, vehicle lateral stability needs to
be considered when developing ACC strategies. In some studies, a linear force relationship is utilized between
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tires and roads, which does not precisely describe the lateral dynamical characteristics involved, leading to
severe degradation or even instability of a closed-loop system, especially when a vehicle travels at high accel-
eration. The longitudinal velocity is intrinsically time-varying but is regarded as a constant in a few studies,
which should also be addressed. The present study has been motivated by all these considerations.

The problem of adaptive cruise control design for longitudinal car-following considering vehicle lateral stabil-
ity is investigated in this study. Vehicle longitudinal car-following kinematics are used in conjunction with two
degrees-of-freedom vehicle lateral dynamics to formulate an adaptive cruise control system as a robust track-
ing control problem of a T-S fuzzy system by considering real-time variations of the velocity of the preceding
vehicle. The corresponding control problem is then transformed into a min-max optimization problem within
the T-S fuzzy control framework. The concept of robust positively invariant sets is introduced to effectively
address some external norm-bounded disturbances, such as the steering angle of the front wheel and the accel-
eration of the preceding vehicle, to ensure that the states of the closed-loop tracking dynamics converge to a
compact set. Finally, results of simulations using the CarSim/MATLAB joint platform are presented to demon-
strate the effectiveness of using the proposed adaptive cruise controller to realize longitudinal car-following
while ensuring vehicle lateral stability.

The main contributions of this study are as follows:

(1) a T-S fuzzy control framework is used to first establish a unifiedT-S fuzzy dynamicalmodel for car-following
based on a combination of longitudinal kinematics, lateral dynamics, time-varying vehicle velocity, and non-
linear lateral tire/road forces as a basis for designing adaptive cruise control;

(2) a method is proposed for designing a coordinated controller of an adaptive cruise control system and a
direct yaw moment control system that ensures simultaneous vehicle longitudinal car-following and lateral
stability;

(3) the developed controller design method is validated by tests in a high-fidelity CarSim/Simulink joint simu-
lation environment, and the results clearly show the effectiveness of the T-S fuzzy model predictive controller
and its superiority over a conventional controller design process that does not consider vehicle lateral stabi-
lization.

The remainder of this paper is organized as follows. Amathematical model for a vehicle is presented in Section
II, which includes longitudinal kinematics, lateral dynamics, and a tire/road force model. A design for a robust
T-S fuzzy model predictive controller is presented in Section III. In Section IV, the lower layer of the designed
adaptive cruise control algorithm is described. The CarSim/Simulink joint simulation results are presented in
Section V. Finally, we conclude the paper in Section VI.

Notations and definitions: The notations used throughout this paper are quite standard. For any 𝑥 in R𝑛, 𝑥𝑇

is its transpose and |𝑥 | its Euclidean norm. For a 𝑛 × 𝑚 matrix 𝐴, | |𝐴| | stands for its induced matrix norm.
Z+ denotes the set of all nonnegative integers. We use an asterisk “∗” to represent a term that is induced by
symmetry in symmetric matrices. A real-value function Φ : R≥0 → R≥0 is a K-function if it is continuous,
strictly increasing, and Φ(0) = 0; it is a K∞-function if it is a K-function and when 𝑠 → ∞, Φ(𝑠) → ∞. A
function 𝛽 : R≥0 ×R≥0 → R≥0 is aKL-function if, for each fixed 𝑘 ≥ 0, Φ(·, 𝑘) is aK-function, and for each
fixed 𝑠 ≥ 0, Φ(𝑠, ·) is decreasing and Φ(𝑠, 𝑘) → 0 as 𝑘 → ∞.
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Figure 1. Vehicle longitudinal kinematics.

2.1. Vehicle longitudinal kinematic model
The following symbols are used in the car-following situation shown in Figure 1: Δ𝑠 is the distance between
the preceding and ego vehicles; 𝑣1 and 𝑣2 are the longitudinal velocities of the preceding and ego vehicles,
respectively; and 𝑎1 and 𝑎2 are the corresponding longitudinal accelerations.

The desired spacing distance between the preceding and ego vehicles is given as follows [28]:

𝑑des = 𝑑0 + 𝑡0𝑣2, (1)

where 𝑑0 is vehicle desired distance at standstill and 𝑡0 is the constant headway time.

The difference in the desired and actual distances between the vehicles is defined asΔ𝑑, and the relative velocity
between the preceding and ego vehicles is defined as Δ𝑣; then,

Δ𝑑 = Δ𝑠 − 𝑑des, (2)

Δ𝑣 = 𝑣1 − 𝑣2. (3)

Considering the time delay of the engine in the driving system, we employ a first-order system to relate the
actual vehicle longitudinal acceleration 𝑎2 and the desired acceleration 𝑎des as follows [29]:

𝑎2 =
1

1 + 𝜏0𝑠
𝑎des, (4)

where 𝜏0 is the engine time constant, and 𝑎des is the acceleration to be determined.

The definitions given above are used to express the vehicle longitudinal kinematic model as follows:
¤Δ𝑑 = Δ𝑣 − 𝑡0𝑎2
¤Δ𝑣 = −𝑎2 + 𝑎1
¤𝑎2 = −𝑎2+𝑎des

𝜏0

. (5)

2.2. Vehicle lateral dynamics
Figure 2 shows the classical two-degree-of-freedom (2-DOF) bicycle model of vehicle dynamics, which is
simplified in this study by collapsing each axle to a single tire to reflect the fundamental features of lateral
motions.

The mass of the ego vehicle is 𝑚. 𝐼𝑧 is the moment of inertia about the yaw axis through the vehicle’s centre
of gravity (CG). 𝑙 𝑓 and 𝑙𝑟 represent the distances from the vehicle centre to the front and rear axles of the
vehicle, respectively. 𝐹𝑦 𝑓 and 𝐹𝑦𝑟 denote the lateral forces on the vehicle front and rear tires, respectively. 𝛿

2. METHODS
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Figure 2. 2-DOF vehicle lateral dynamics.

is the steering angle for the front wheel of the vehicle. 𝛽, 𝛾 and 𝑣𝑥 represent the sideslip angle, yaw rate, and
longitudinal velocity of the ego vehicle, respectively. The vehicle lateral dynamics can be described in terms of
the sideslip angle and yaw rate as follows:{

𝑚𝑣2 ¤𝛽(𝑡) = 𝐹𝑦 𝑓 (𝑡) + 𝐹𝑦𝑟 (𝑡) − 𝑚𝑣2𝛾(𝑡)
𝐼𝑧 ¤𝛾(𝑡) = 𝑙 𝑓 𝐹𝑦 𝑓 (𝑡) − 𝑙𝑟𝐹𝑦𝑟 (𝑡) + 𝑀𝑧 (𝑡)

(6)

where 𝑀𝑧 is the external yaw moment generated by the differences in the longitudinal tire/road forces among
the four tires of the vehicle.

2.3. Tire/road force model
The vehicle lateral tire/road force is generated by contact between the vehicle tires and the road surface [30].
A tire operates in the linear region for a small vehicle lateral acceleration, which can be characterized by the
cornering stiffness of the front and rear tires 𝐶 𝑓 and 𝐶𝑟 , respectively, and the corresponding sideslip angles.
The relationship between the tire lateral force and sideslip angle is{

𝐹𝑦 𝑓 (𝑡) = 2𝐶 𝑓 𝛼 𝑓 (𝑡)
𝐹𝑦𝑟 (𝑡) = 2𝐶𝑟𝛼𝑟 (𝑡)

where 𝛼 𝑓 and 𝛼𝑟 are the slip angles of front and rear tire and can be given by:{
𝛼 𝑓 (𝑡) = 𝛿(𝑡) −

𝑙 𝑓 𝛾(𝑡)
𝑣2

− 𝛽(𝑡)
𝛼𝑟 (𝑡) = 𝑙𝑟 𝛾(𝑡)

𝑣2
− 𝛽(𝑡)

.

However, at high lateral acceleration, the tire/road force may not be linearly proportional to the slip angle
owing to differences in the road surface characteristics and cannot be simply expressed in terms of a constant
cornering stiffness and sideslip angles. Therefore, we adopt an uncertain cornering stiffness, which varies over
a range, to model the uncertainty in the tire/road force [31]:{

𝐹𝑦 𝑓 (𝑡) = 2𝐶 𝑓 + 2Δ𝐶 𝑓 (•),
𝐹𝑦𝑟 (𝑡) = 2𝐶𝑟 + 2Δ𝐶𝑟 (•).

(7)

where 𝐶𝑖 = max(𝐶𝑖 (•))+min(𝐶𝑖 (•))
2 , Δ𝐶𝑖 (•) ∈ [−Δ𝐶𝑖 ,Δ𝐶𝑖], Δ𝐶𝑖 = max(𝐶𝑖 (•))−min(𝐶𝑖 (•))

2 (𝑖 = 𝑓 , 𝑟), 𝐶𝑖 (•) denotes
the uncertain cornering stiffness, and (•) represents all possible variables causing variations in the cornering
stiffness.
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2.4. Vehicle­following system with lateral stability
Longitudinal kinematics, lateral dynamics, and an uncertain tire/road force model are integrated to formulate
the following model for closed-loop car-following dynamics [32]:

¤𝑥(𝑡) = ( �̃� + Δ�̃�)𝑥(𝑡) + �̃�𝑢𝑢(𝑡) + (�̃�𝑑 + Δ�̃�𝑑)𝑑 (𝑡), (8)

�̃� =



0 1 −𝑡0 0 0
0 0 −1 0 0
0 0 − 1

𝜏0
0 0

0 0 0 − 2𝐶 𝑓 +2𝐶𝑟

𝑚𝑣2

2𝑙𝑟𝐶𝑟−2𝑙 𝑓 𝐶 𝑓

𝑚𝑣2
2

− 1

0 0 0 − 2𝑙 𝑓 𝐶 𝑓 −2𝑙𝑟𝐶𝑟

𝐼𝑧
−

2𝑙2𝑓 𝐶 𝑓 +2𝑙2𝑟𝐶𝑟

𝐼𝑧𝑣2


�̃�𝑢 =



0 0
0 0
1
𝜏0

0
0 0
0 1

𝐼𝑧


, �̃�𝑑 =



0 0
1 0
0 0
0 2𝐶 𝑓

𝑚𝑣2

0 2𝑙 𝑓 𝐶 𝑓

𝐼𝑧


,

where 𝑥(𝑡) = [Δ𝑑,Δ𝑣, 𝑎2, 𝛽, 𝛾]𝑇 , 𝑢(𝑡) = [𝑎des, 𝑀𝑧]𝑇 , and the external disturbance 𝑑 (𝑡) = [𝑎1, 𝛿]𝑇 .

The uncertain terms Δ�̃� and Δ�̃�𝑑 are denoted as Δ�̃� = �̃�1𝐹 (𝑡)�̃�1 and Δ�̃�𝑑 = �̃�1𝐹 (𝑡)�̃�2, respectively, where

�̃�1 =



0 0
0 0
0 0

2Δ𝐶 𝑓

𝑚𝑣2
2Δ𝐶𝑟
𝑚𝑣2

2𝑙 𝑓 Δ𝐶 𝑓

𝐼𝑧
−2𝑙𝑟Δ𝐶𝑟

𝐼𝑧


, �̃�1 =



0 0
0 0
0 0
−1 −1
−𝑙 𝑓
𝑣𝑥

𝑙𝑟
𝑣𝑥



𝑇

,

𝐹 (𝑡) =
[
𝑁 (𝑡) 0

0 𝑁 (𝑡)

]
, �̃�2 =

[
0 1
0 0

]
,

and 𝑁 (𝑡) : 𝑅𝑡≥0 → [−1, 1] represents an unknown real-value function.

Note that in the car-following scenario, the velocity of the ego vehicle varies with that of the preceding vehicle
to maintain a desired safe distance. In this study, we assume that the velocity of the preceding car varies within
a bounded range 𝑣1 ∈ [𝑣min, 𝑣max], where 𝑣min and 𝑣max represent the minimum and maximum velocities
during vehicle adaptive cruising.

2.5. T­S fuzzy modeling for longitudinal car­following with vehicle lateral stability
For real-time implementation of the proposed T-S fuzzy model predictive controller in the discrete-time do-
main, we adopt Euler’s discretization method with the sampling time 𝑇𝑠; then, the discrete-time model of
System Equation (8) is given as

𝑥(𝑘 + 1) = (𝐴 + Δ𝐴)𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + (𝐵𝑑 + Δ𝐵𝑑)𝑑 (𝑘), (9)

where

𝐴 = 𝐼 + 𝑇𝑠 �̃�,Δ𝐴 = 𝐼 + 𝑇𝑠Δ�̃�,
𝐵𝑢 = 𝑇𝑠 �̃�𝑢, 𝐵𝑑 = 𝑇𝑠 �̃�𝑑 ,Δ𝐵𝑑 = 𝑇𝑠Δ�̃�𝑑 .

As the velocity of the ego vehicle 𝑣2 changes with the speed of the preceding vehicle 𝑣1, Equation (9) is clearly
a parameter-varying system.

http://dx.doi.org/10.20517/ir.2022.26
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The T-S fuzzy modelling approach is then employed to describe the time-varying car-following dynamics. We
use the classical sector nonlinearity method to derive the discrete-time T-S fuzzy model given in Equation (9):

Fuzzy ruleℛ𝑖 : if 𝜃1(𝑘) ∈ ℱ𝑖
1 and 𝜃2(𝑘) ∈ ℱ𝑖

2 , then

𝑥(𝑘 + 1) = (𝐴𝑖 + Δ𝐴𝑖)𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + (𝐵𝑑𝑖 + Δ𝐵𝑑𝑖)𝑑 (𝑘), (10)

where 𝑖 = 1, 2, · · · , 𝑟 , 𝜃1(𝑘) = 1
𝑣2
and 𝜃2(𝑘) = 1

𝑣2
2
are premise variables,ℱ𝑖

𝑗 is the fuzzy set, and 𝐴𝑖 , 𝐵𝑑𝑖 , Δ𝐴𝑖 and
Δ𝐵𝑑𝑖 are the systemmatrices defined in Equation (9), with 𝑣2 being replaced by 𝑣min and 𝑣max. We use 𝜂(𝜃 (𝑘))
to denote the normalized membership function of ℱ𝑖 , where 𝜃 (𝑘) = [𝜃1(𝑘), 𝜃2(𝑘)] represents the premise
variable vector, ℱ𝑖 = ℱ𝑖

1ℱ
𝑖
2 and

∑𝑟
𝑖=1 𝜂𝑖 (𝜃 (𝑘)) = 1. For brevity, 𝜂𝑖 (𝜃 (𝑘)) is denoted as 𝜂𝑖 . Considering the

velocity restrictions enables us to easily derive the following weighting factors for the established T-S fuzzy
system [Equation (10)]:

ℱ1max =
𝜃1max − 𝜃1

𝜃1max − 𝜃1min
, ℱ1min =

𝜃1 − 𝜃1min
𝜃1max − 𝜃1min

, (11)

ℱ2max =
𝜃2max − 𝜃2

𝜃2max − 𝜃2min
, ℱ2min =

𝜃2 − 𝜃2min
𝜃2max − 𝜃2min

, (12)

where 𝜃1max, 𝜃2max, 𝜃1min and 𝜃2min are the maximal and minimal values of 𝜃1 and 𝜃2, respectively, and
ℱ𝑖
𝑗 (𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2) can be obtained accordingly from Equation (11) and Equation (12). Therefore,

ℱ𝑖 is derived from 22 combinations of ℱ𝑖
1 and ℱ𝑖

2 . The following compact representation of Equation (9) is
obtained by using a standard fuzzy inference approach:

𝑥(𝑘 + 1) = 𝒜(𝜂)𝑥(𝑘) +ℬ𝑢𝑢(𝑘) +ℬ𝑑 (𝜂)𝑑 (𝑘), (13)

where 
𝒜(𝜂) = 𝐴(𝜂) + Δ𝐴(𝜂) = ∑𝑟

𝑖=1 𝜂𝑖 (𝐴𝑖 + Δ𝐴𝑖)
ℬ𝑢 (𝜂) =

∑𝑟
𝑖=1 𝜂𝑖𝐵𝑢𝑖

ℬ𝑑 (𝜂) = 𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂) =
∑𝑟
𝑖=1 𝜂𝑖 (𝐵𝑑𝑖 + Δ𝐵𝑑𝑖)

𝜂 = 𝜂(𝑘) = [𝜂1, · · · , 𝜂𝑟 ] .

Note that using the sector nonlinearity modelling approach with the premise variables 1
𝑣2

and 1
𝑣2

2
yields a T-

S fuzzy expression for the car-following system with lateral stability. The discretized form of the tracking
system in Equation (9) is represented using 𝑟 = 22 linear subsystems with the aforementioned membership
functions. Inspired by [33], we further exploit the relationships among the premise variables to reduce the
numerical computational complexity and conservativeness of the controller design. Here, we define

𝑣2 =
�̂�0�̂�1

�̂�1 + �̂�0𝜌
, (14)

where 𝜌 is a scalar variable, �̂�0 = 2𝑣min𝑣max
𝑣min+𝑣max

and �̂�1 = 2𝑣min𝑣max
𝑣min−𝑣max

. Therefore, we have

1
𝑣2

=
1
�̂�0

+ 1
�̂�1
𝜌. (15)

The new premise variable 𝜌 is bounded as follows:

𝜌 ∈ [−1, 1], (16)

where 𝑣2 = 𝑣min for 𝜌 = −1 and 𝑣2 = 𝑣max for 𝜌 = 1. Therefore, 𝜌 can be used to describe the variation in 𝑣2
from 𝑣min to 𝑣max. In addition, the following equation can be obtained based on Taylor’s approximation:

1
𝑣2

2
' 1
�̂�2

0
(1 + 2

�̂�0

�̂�1
𝜌). (17)
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Figure 3. The whole algorithm framework.

Thenumber of subsystems in the T-S fuzzymodel Equation (10) is thus reduced from 4 to 2, which considerably
decreases the computational burden associated with the controller parameters in each sampling period within
the MPC framework, and facilitates real-time implementation of the model, as expected.

3. T-S FUZZY MODEL PREDICATIVE CONTROL DESIGN
In this section, we provide a detailed description of the design of an adaptive cruise controller with lateral
stability based on the T-S fuzzy MPC framework. Figure 3 shows the proposed adaptive cruise control sys-
tem divided into upper and lower layers. The upper layer calculates the required acceleration and direct yaw
moment for vehicle-following control subject to various constraints, and the lower layer calculates the vehicle
throttle opening or hydraulic cylinder pressure of the four wheels to generate control signals corresponding
to the results provided by the upper layer. Before proceeding further, some definitions and lemmas are first
stated.

3.1. Robust positively invariant set
Consider a discrete-time dynamical system

𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑑 (𝑘)), (18)

where 𝑓 (0, 0) = 0, 𝑥(𝑘) ∈ R𝑛 is a state vector, and 𝑑 (𝑘) is a control input or external disturbance that belongs
to a compact set D ⊂ R𝑚 containing the origin. A robust positively invariant (RPI) set is defined below.

Definition 3.1: If 𝑥(𝑘) ∈ Ω (Ω ⊂ R𝑛), it holds that 𝑥(𝑘 + 1) ∈ Ω for all 𝑑 (𝑘) ∈ D; then, Ω is called an RPI set
for System [Equation (18)].

Lemma 3.1 [34]: The following two expressions are equivalent for System [Equation (18)] with 𝑑𝑇𝑑 ≤ 𝑐2, where
𝑐 is a positive constant:

• the ellipsoidal set Ω𝑝 ≜ {𝑥𝑇𝑃𝑥 ≤ 𝛾}, where 𝑃 > 0, is a robust positively invariant set;
• the inequality 𝑥(𝑘 + 1)𝑇𝑃𝑥(𝑘 + 1) ≤ 𝑥𝑇𝑃𝑥 holds if the external disturbance satisfies 1

𝑐2 𝑑
𝑇𝑑 ≤ 1

𝛾 𝑥
𝑇𝑃𝑥.

3.2.Input­to­state stability
We define input-to-state stability (ISS) for use in the following sections.

Definition 3.2: A discrete-time system 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑑 (𝑘)) is ISS if there exist a KL-function 𝛽 : R≥0 ×
Z+ → R≥0 and a K-function 𝜌 satisfying

| |𝑥(𝑘, 𝑥0, 𝑑 (𝑘)) | | ≤ 𝛽(| |𝑥0 | |, 𝑘) + 𝜌(sup𝑘≥0 | |𝑑 (𝑘) | |), (19)

where 𝑥0 is the initial state, 𝑑 (𝑘) is the input sequence, and 𝑘 is the sampling time instant.
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Definition 3.3: A function 𝑉 : R𝑛 → R≥0 is called an ISS-Lyapunov function for the system 𝑥(𝑘 + 1) =
𝑓 (𝑥(𝑘), 𝑑 (𝑘)) if there exist K∞-functions 𝛼1, 𝛼2, 𝛼3 and a K-function 𝜌 satisfying

𝛼1( | |𝑥(𝑘) | |) ≤ 𝑉 (𝑥(𝑘)) ≤ 𝛼2(| |𝑥(𝑘) | |),
𝑉 (𝑥(𝑘 + 1)) −𝑉 (𝑥(𝑘)) ≤ −𝛼3(| |𝑥(𝑘) | |) + 𝜌(sup𝑘≥0 | |𝑑 (𝑘) | |).

Lemma 3.2 [35]: A system is said to have ISS if it admits a continuous ISS-Lyapunov function.

3.3. T­S fuzzy model­based predictive control
We adopt the following model within the framework of predictive control to represent the future dynamics of
the T-S fuzzy system for vehicle-following considering lateral stability:

𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝒜(𝜂)𝑥(𝑘 + 𝑖 |𝑘) +ℬ𝑢𝑢(𝑘 + 𝑖 |𝑘) +ℬ𝑑 (𝜂)𝑑 (𝑘 + 𝑖 |𝑘), (20)

where 𝑥(𝑘 + 𝑖 |𝑘), 𝑢(𝑘 + 𝑖 |𝑘) and 𝑑 (𝑘 + 𝑖 |𝑘) represent the predicted state, control input and external disturbances
at the (𝑘 + 𝑖)th time instant, respectively, and 𝑖 ∈ {1, 2, · · · }. The stage cost ℓ(𝑘 + 𝑖 |𝑘) can be represented as

ℓ(𝑘 + 𝑖 |𝑘) = 𝑥(𝑘 + 𝑖 |𝑘)𝑇𝑄𝑥(𝑘 + 𝑖 |𝑘) + 𝑢(𝑘 + 𝑖 |𝑘)𝑇𝑅𝑢(𝑘 + 𝑖 |𝑘) − 𝜏𝑑 (𝑘 + 𝑖 |𝑘)𝑇𝑑 (𝑘 + 𝑖 |𝑘) (21)

where 𝑄 and 𝑅 are the weighting matrices of the state variables of the system and control inputs, respectively.
𝜏 is the weight related to the external disturbance. We simplify this notation by using 𝑥(𝑘 + 𝑖), 𝑢(𝑘 + 𝑖) and
𝑑 (𝑘 + 𝑖) to denote 𝑥(𝑘 + 𝑖 |𝑘), 𝑢(𝑘 + 𝑖 |𝑘) and 𝑑 (𝑘 + 𝑖 |𝑘), respectively.

Consider the following objective function J𝑝

J𝑝 (𝑘) =
𝑝−1∑
𝑖=0

ℓ(𝑘 + 𝑖 |𝑘) +𝑉 (𝑥(𝑘 + 𝑝 |𝑘)), (22)

where ℓ(𝑘 +𝑖 |𝑘) is the stage cost at the predicated time instant, and the positive-definite function𝑉 (𝑥(𝑘 + 𝑝 |𝑘))
is called the terminal cost. This type of cost function was proposed in Ref. [36] to develop a novel synthesis
method with enhanced robustness.

As the cost function cannot be optimized in real time due to the unknown external disturbance, the upper
limit of the cost function is minimized here. We define the following fuzzy quadratic Lyapunov function:

𝑉 (𝑥(𝑘)) =
2∑
𝑖=1

𝜂𝑖 (𝜃)𝑥(𝑘)𝑇𝑃𝑖𝑥(𝑘) = 𝑥(𝑘)𝑇𝑃(𝜂)𝑥(𝑘) (23)

where 𝑃 𝑗 is a positive definite matrix. Let the Lyapunov function satisfy the following inequality constraint:

𝑉 (𝑥(𝑘 + 𝑖 + 1)) −𝑉 (𝑥(𝑘 + 𝑖)) ≤ [𝑥(𝑘 + 𝑖)𝑇𝑄𝑥(𝑘 + 𝑖) + 𝑢(𝑘 + 𝑖)𝑇𝑅𝑢(𝑘 + 𝑖) − 𝜏𝑑 (𝑘 + 𝑖)𝑇𝑑 (𝑘 + 𝑖)] . (24)

Add both sides of the inequality from 𝑖 = 0 to∞, then we get

J∞(𝑘) ≤ 𝑉 (𝑥(𝑘)) −𝑉 (𝑥(∞)),

which implies that we can infer the upper bound of the objective function J∞ from the positiveness property
of the function 𝑉 (𝑥(∞)). Assume a scalar 𝛾 exists that satisfies

𝑉 (𝑥(𝑘)) ≤ 𝛾. (25)

Defining 𝑋 𝑗 = 𝛾𝑃−1
𝑗 and applying the Schur complement operation yields the following sufficient condition

for Equation (24): [
1 𝑥(𝑘)𝑇

𝑥(𝑘) 𝑋 𝑗

]
≥ 0. (26)
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Then, the aforementioned optimization problem is converted into the minimization of the upper bound of the
infinite-horizon objective function:

min 𝛾
s.t. 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (25). (27)

A state feedback law 𝑢(𝑘) = 𝐹𝜂𝑥(𝑘) is applied to minimize the upper bound of the performance functions J𝑝
and 𝐹𝜂 =

∑𝑛
𝑗=1 𝜂𝑖 (𝜃)𝐹𝑗 , where 𝐹𝑗 = 𝑌 𝑗𝑋 𝑗 . Considering the inequality [Equation (24)] yields

𝑥(𝑘)𝑇
[ (
𝐴(𝜂) + Δ𝐴(𝜂) + 𝐵𝑢 (𝜂)𝐹𝜂

)𝑇
𝑃𝜂 ∗ −𝑃𝜂 +𝑄 + 𝐹𝑇𝜂 𝑅𝐹𝜂

]
𝑥(𝑘)

+𝑥(𝑘)𝑇
(
𝐴(𝜂) + Δ𝐴(𝜂) + 𝐵𝑢 (𝜂)𝐹𝜂

)𝑇
𝑃𝜂 (𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂)) ∗ 𝑑 (𝑘)

+𝑑 (𝑘)𝑇 (𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂))𝑇 𝑃𝜂
(
𝐴(𝜂) + Δ𝐴(𝜂) + 𝐵𝑢 (𝜂)𝐹𝜂

)
𝑥(𝑘)

+𝑑 (𝑘)𝑇
[
(𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂))𝑇 𝑃𝜂 ∗ −𝜏𝐼

]
𝑑 (𝑘) ≤ 0,

(28)

which is equivalent to [
𝑥(𝑘)
𝑑 (𝑘)

]𝑇 [
Π1 Π2
∗ Π3

] [
𝑥(𝑘)
𝑑 (𝑘)

]
≤ 0, (29)

Π1 =
[
𝐴(𝜂) + Δ𝐴(𝜂) + 𝐵𝑢 (𝜂)𝑌𝜂

]𝑇
𝑃𝜂 ∗ −𝑃𝜂 +𝑄 + 𝐹𝑇𝜂 𝑅𝐹𝜂

Π2 =
[
𝐴(𝜂) + Δ𝐴(𝜂) + 𝐵𝑢 (𝜂)𝐹𝜂

]𝑇
𝑃𝜂 [𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂)]

Π3 = [𝐵𝑑 (𝜂) + Δ𝐵𝑑 (𝜂)]𝑇 𝑃𝜂 ∗ −𝜏𝐼.

(30)

𝐼 is an identity matrix with appropriate dimensions. The inequality [Equation (28)] can be guaranteed as long
as [

Π1 Π2
∗ Π3

]
≤ 0 (31)

holds.

Here, we introduce a lemma for use in the following sections.

Lemma 3.3 [37]: For matrices Γ, 𝐻 and 𝐸 with appropriate dimensions and Γ𝑇 = Γ, the following inequality

Γ + 𝐻𝐹 (𝑘)𝐸 + 𝐸𝑇𝐹 (𝑘)𝐻𝑇 ≤ 0 (32)

holds for all 𝐹 (𝑘)𝑇𝐹 (𝑘) ≤ 1 if and only if there is a positive scalar 𝜖 such that

Γ + 𝜖𝐸𝑇𝐸 + 1
𝜖
𝐻𝐻𝑇 ≤ 0. (33)

By Lemma 3.3, the following sufficient condition can be derived to guarantee the inequality [Equation (31)]:

−𝑋𝑖 0
(
𝐴 𝑗𝑋 𝑗 + 𝐵𝑢 𝑗𝑌 𝑗

)𝑇 (𝑄𝑋 𝑗 )𝑇 (𝑅𝑌 𝑗 )𝑇 (𝐸 𝑗1𝑋 𝑗 )𝑇 0
∗ −𝜁 𝐼 𝛾𝐵𝑇𝑑𝑗 0 0 0 (𝛾𝐸 𝑗2)𝑇
∗ ∗ 𝜖 𝑗 (𝐻 𝑗1𝐻

𝑇
𝑗1 + 𝐻 𝑗2𝐻

𝑇
𝑗2) − 𝑋 𝑗 0 0 0 0

∗ ∗ ∗ −𝛾𝑄 0 0 0
∗ ∗ ∗ ∗ −𝛾𝑅 0 0
∗ ∗ ∗ ∗ ∗ −𝜖 𝑗 𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖 𝑗 𝐼


≤ 0, 𝑗 = 1, 2, (34)

where 𝜁 = 𝛾𝜏.
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We also need to consider the control input constraints to ensure driving comfort:

|𝑢𝑖 (𝑘) | ≤ 𝑢𝑖,max, 𝑖 = 1, 2 (35)

According to inequality [Equation (26)], we have:

𝑥(𝑘)𝑇𝑋−1
𝑗 𝑥(𝑘) ≤ 1. (36)

Therefore, we have:

max ‖𝑢(𝑘)‖2 = max ‖ (𝐹 (𝜂)𝑥(𝑘)) ‖2

= max ‖(𝑌 (𝜂)𝑋 (𝜂)−1𝑥(𝑘))‖2

= max ‖(𝑌 (𝜂)𝑋 (𝜂)− 1
2 𝑋 (𝜂)− 1

2 𝑥(𝑘))‖2

≤ ‖(𝑌 (𝜂)𝑋 (𝜂)− 1
2 )‖2‖𝑋 (𝜂)− 1

2 𝑥(𝑘) |2

= (𝑌 (𝜂)𝑋 (𝜂)−1𝑌 (𝜂)) [𝑥(𝑘)𝑇𝑋 (𝜂)−1𝑥(𝑘)]
≤ 𝑌 (𝜂)𝑋 (𝜂)−1𝑌 (𝜂).

(37)

Considering the Schur complement, the input constraint can be guaranteed by the following LMI if there exists
a symmetric matrix𝑈 [38] [

𝑈 𝑌 𝑗
∗ 𝑋 𝑗

]
≥ 0, (38)

where𝑈𝑖𝑖 ≤ 𝑢2
𝑖,max.

To deal with the external disturbance, the concept of RPI is introduced to ensure the closed-loop stability of
car-following system. According to the concept of RPI and quadratic boundedness as shown in Lemma 3.1,
Ω𝑘 is an RPI set if

𝑥(𝑘 + 1|𝑘)𝑇𝑃𝑖𝑥(𝑘 + 1|𝑘) ≤ 𝑥(𝑘 |𝑘)𝑇 P 𝑗 𝑥(𝑘 |𝑘)

holds under
𝑑 (𝑘)𝑇𝑑 (𝑘)

𝜙2 ≤ 𝑥(𝑘)𝑇𝑄−1
𝑗 𝑥(𝑘),

where 𝑑 (𝑘)𝑇𝑑 (𝑘) ≤ 𝜙2.

The S-procedure is used to obtain a sufficient condition as follows:

𝑥(𝑘 + 1)𝑇𝑋−1
𝑖 𝑥(𝑘 + 1) − 𝑥(𝑘)𝑇𝑋−1

𝑗 𝑥(𝑘) − 𝜆
[
𝑑 (𝑘)𝑇 𝑑 (𝑘)

𝜙2 − 𝑥(𝑘)𝑇𝑋−1
𝑗 𝑥(𝑘)

]
≤ 0, (39)

where 𝜆 is a positive scalar belonging to (0, 1).

By Lemma 3.3, the above mentioned inequality can be guaranteed by the following matrix: inequality:

(−1 + 𝜆)𝑋𝑖 0
(
𝐴 𝑗𝑋 𝑗 + 𝐵𝑢 𝑗𝑌 𝑗

)𝑇 (
𝐸 𝑗1𝑋

)𝑇 0
∗ − 𝜆

𝜙2 𝐼
(
𝐵𝑑𝑗

)𝑇 0
(
𝐸 𝑗2

)𝑇
∗ ∗ 𝜖 𝑗

(
𝐻 𝑗1𝐻

𝑇
𝑗1 + 𝐻 𝑗2𝐻

𝑇
𝑗2

)
− 𝑋 𝑗 0 0

∗ ∗ ∗ −𝜖 𝑗 𝐼 0
∗ ∗ ∗ ∗ −𝜖 𝑗 𝐼


≤ 0, 𝑗 = 1, 2. (40)
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Therefore, the controller design can be summarized as the following:

min
𝑋 𝑗>0,𝜖 𝑗>0,𝑌 𝑗

𝜁

s. t. (26), (34), (38), (40), and 0 < 𝜆 < 1.
(41)

The T-S fuzzy state feedback controller is derived by solving the optimization problem in Equation (40) under
parameter uncertainties and external persistent perturbations. The inequality Equation (34) ensures that the
cost function J∞(𝑘) is upper-bounded by the Lyapunov function 𝑉 (𝑥(𝑘)), the inequality Equation (38) guar-
antees that the input constraints are satisfied, and the inequality Equation (40) leads to 𝑥(𝑘) ∈ Ω𝑘 , where Ω𝑘

is an RPI set.

Remark 3.1: Note that 𝜁 isminimized instead of 𝛾 in the abovementioned optimization problem. This approach
is used because both 𝛾 and 𝜏 need to be minimized, and a smaller 𝜏 implies a higher system performance. We
adopt the approach given in Ref. [23] to simultaneously optimize 𝛾 and 𝜏 by defining 𝜁 = 𝛾𝜏 in Equation (34).
The introduction of the variable 𝜆 makes the constraint Equation (40) a bilinear matrix inequality, which can
be handled with existing solvers, e.g., PENBMI. The computational load is reduced further by predefining a
suboptimal value of 𝜆 by trial and error.

Theorem3.1: Theoptimization problemEquation (40) has the property of recursive feasibility, that is, a solution
will always exist once the problem is initially solvable.

Proof: Implementation of the predictive control strategy based on the T-S fuzzymodel requires the constrained
optimization problem Equation (40) to be solved at each time instant. Therefore, it is important to guarantee
the recursive feasibility of the optimization problem. As an external disturbance is considered, the recursive
feasibility is no longer a natural characteristic of the proposed controller. In this study, only the constraint
Equation (26) depends on the time instant 𝑘 , which involves 𝑥(𝑘). Therefore, we only need to ensure the
feasibility of the constraint Equation (26).

Note that the inequality Equation (26) is equal to 𝑥(𝑘) ∈ Ω𝑘 . The inequality Equation (40) ensures that the
set Ω𝑘 is an RPI set, which implies that the inequality Equation (26) is still feasible at the (𝑘 + 1) time instant.
That is, 𝑥(𝑘 + 1) ∈ Ω𝑘+1 ∈ Ω𝑘 is still satisfied. Hence, recursive feasibility is guaranteed. Thus, the proof is
completed. □

Theorem 3.2: The closed-loop system in this paper has ISS based on the proposed MPC strategy under an
external disturbance.

Proof: It has been proven that the optimization problem Equation (41), once solvable, will always be solvable.

Define the optimal solution at time instant 𝑘 as {𝛾∗, 𝑋∗
𝑗 , 𝜖

∗
1 𝑗 , 𝜖

∗
2 𝑗 , 𝑌

∗
𝑗 , 𝜁

∗}, and𝑉∗(𝑥(𝑘)) = ∑2
𝑖=1 𝜂𝑖 (𝜃)𝑥𝑇 (𝑘)𝑃∗

𝑖 𝑥(𝑘),
where 𝑃∗ = 𝛾∗𝑋∗

𝑗
−1. We need to prove that the 𝑉∗(𝑥(𝑘)) is an ISS-Lyapunov function. Define �̄� as the upper

bound of eigenvalue of 𝑃∗
𝜂, and 𝜆 as the lower bound of the eigenvalue of 𝑃∗

𝜂. We can obtain:

𝜆‖𝑥(𝑘)‖2 ≤ 𝑉∗(𝑥(𝑘)) ≤ �̄�‖𝑥(𝑘)‖2. (42)

Furthermore, from inequality Equation (24), we can derive the following inequality:

𝑉∗(𝑥(𝑘 + 1)) −𝑉∗(𝑥(𝑘)) ≤ −𝑥(𝑘)𝑇𝑄𝑥(𝑘) − 𝑥(𝑘)𝑇𝐹∗𝑇𝑅𝐹∗𝑥(𝑘) + 𝜏𝑑 (𝑘)𝑇𝑑 (𝑘), (43)

where 𝐹∗ =
∑2
𝑗=1 𝜂𝑖 (𝜃)𝑌 𝑗𝑋−1

𝑗 . Therefore, we get

𝑉∗(𝑥(𝑘 + 1)) −𝑉∗(𝑥(𝑘)) ≤ −𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝜏𝑑 (𝑘)𝑇𝑑 (𝑘). (44)
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Figure 4. Engine model.

From the inequalities Equation (42), Equation (44) and Lemma 3.2, we can conclude that 𝑉 (𝑥(𝑘)) is an ISS-
Lyapunov function, and the closed-loop system is ISS. Thus the proof is completed. □

4. LOWER LAYER
According to the vehicle longitudinal motions in the car-following scenario, the lower layer is divided into two
blocks for calculating the acceleration throttle opening and the brake pressure, which are designed to realize
the desired longitudinal acceleration or deceleration and direct yaw moment. To this end, a logic switch in the
lower layer is utilized to implement an accelerating or braking manoeuvre based on the desired longitudinal
acceleration 𝑎𝑑𝑒𝑠 and the direct yaw moment 𝑀𝑑𝑒𝑠 calculated by the T-S fuzzy controller in the upper layer.
The vehicle throttle opening or brake pressure on all four wheels can then be obtained.

4.1. Accelerating control
Figure 4 shows the engine speed versus the torque at different throttle openings, which are shown at the bottom.
If the engine speed 𝑤𝑒 and the desired torque 𝑇e,des are known, the corresponding expected throttle opening
𝜎des is obtained based on this look-up table:

𝜎des = 𝑓
(
𝑇e,des, 𝑤𝑒

)
. (45)

The vehicle longitudinal dynamics are produced by the combined effect of vehicle traction, wind resistance, and
ground resistance. Therefore, the vehicle state depends strongly on the road smoothness and the magnitude
of the wind resistance coefficient during cruising. The equivalent air friction during longitudinal driving is

𝐹 𝑓 =
1
2
𝜌𝑎𝐶𝑑𝐴𝐹

(
𝑟eff𝑅𝑝𝑤𝑒

)2
, (46)

where 𝜌𝑎 is the air mass density, 𝐶𝑑 is the coefficient of air friction, 𝐴𝐹 is the windward area of the ego vehicle,
𝑅𝑝 is the ratio between the wheel speed 𝑤𝑤 and engine speed 𝑤𝑒 , and 𝑟eff is the effective tire radius.

During vehicle acceleration, the engine torque 𝑇e,des is related to the expected acceleration 𝑎des is [39] as

𝑇e,des =
𝐽𝑒

𝑅𝑝𝑟eff
𝑎𝑑𝑒𝑠 +

[
𝑐𝑎𝑅

3
𝑝𝑟

3
eff𝑤

2
𝑒 + 𝑅𝑝 (𝑟eff𝑅𝑥)

]
, (47)

where 𝐽𝑒 = 𝐼𝑒 + 𝐼𝑡 + (𝑚𝑟2
eff + 𝐼𝑤)𝑅

2
𝑝 is the effective moment of inertia for the engine side, 𝐼𝑒 is the moment of

inertia of the engine, and 𝑅𝑥 is the sum of all the rolling resistances related to the rolling damping coefficient

http://dx.doi.org/10.20517/ir.2022.26
a
图章



Page 384 Zhang et al. Intell Robot 2022;2(4):371­90 I http://dx.doi.org/10.20517/ir.2022.26

Figure 5. Structure of the car-following systems in Carsim/Simulink joint simulation environment.

𝑓 . As 𝑓 ∈ (0.01, 0.04), 𝑅𝑥 is sufficiently small to be neglected in this study. The following exist:

𝑚 � 𝐼𝑒

𝑟2
eff
, 𝑚 � 𝐼𝑡

𝑟2
eff
, 𝑚 � 𝐼𝑤

𝑟2
eff
. (48)

Then, 𝐽𝑒 can be rewritten as 𝐽𝑒 = 𝑚𝑟2
eff𝑅

2
𝑝 . Therefore, Equation (47) can be rewritten as follows:

𝑇e,des = 𝑅𝑝𝑟eff(𝑚𝑎𝑑𝑒𝑠 + 𝐹 𝑓 ). (49)

Thus, the corresponding expected throttle opening 𝜎des can be obtained from the inverse dynamic relation.

4.2. Braking control
During vehicle braking, the desired acceleration 𝑎𝑑𝑒𝑠 and the yaw moment 𝑀𝑑𝑒𝑠 given by the upper controller
can be used to determine the longitudinal tire force from the following equation [40]:

−𝑚𝑎𝑑𝑒𝑠 = 𝐹 𝑓 𝑙 + 𝐹 𝑓 𝑟 + 𝐹𝑟𝑙 + 𝐹𝑟𝑟
𝑀𝑑𝑒𝑠 =

(
𝐹 𝑓 𝑟 + 𝐹𝑟𝑟 − 𝐹 𝑓 𝑙 − 𝐹𝑟𝑟

)
𝑏

𝐹𝑟𝑙 =
𝑙 𝑓 𝑔+𝑎2ℎ

𝑙𝑟 𝑔−𝑎2ℎ
𝐹 𝑓 𝑙

𝐹𝑟𝑟 =
𝑙 𝑓 𝑔+𝑎2ℎ

𝑙𝑟 𝑔−𝑎2ℎ
𝐹 𝑓 𝑟

, (50)

where 𝑏 is the distance between the right and left wheels and ℎ is the height of the centre of mass of the vehicle.

Equation (50) can be solved for the longitudinal force on the four wheels. Then, we can calculate the hydraulic
pressure wheel cylinder from the following equation:

𝑃𝐵,𝑖 𝑗 =
𝑟𝑤
𝐾𝐵

𝐹𝑖 𝑗 , (51)

where 𝑟𝑤 denotes the efficient wheel radius and 𝐾𝐵 represents the pressure constant of a single wheel.

5. SIMULATION VALIDATIONS
CarSim/Simulink joint simulations are conducted to verify the effectiveness of the proposed predictive control
based on the T-S fuzzy model. The structure of the car-following system is shown inFigure 5. The proposed
controller is derived by solving the optimization problem in Equation (41) with the YALMIP toolbox intro-
duced in [41] within the MATLAB/Simulink environment, where the vehicle model and road conditions are
provided by the CarSim platform. We simulate a severe riding condition by considering a road with snow
cover on the left-hand side of the vehicle. The test scenario is shown in Figure 6.
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Figure 6. The scenario setting in Carsim platform.

Table 1. Parameters in the simulation model

Parameters Values

𝑚(kg) 1110
𝐼𝑧 (kg/m2) 1343.1
𝜏0 (s) 0.25
𝑏 (mm) 1480
ℎ (mm) 350
𝑟𝑒 𝑓 𝑓 (mm) 298
𝑡0 (s) 2
𝐶𝛼 𝑓 (N/rad) 66900
𝐶𝛼 𝑓 (N/rad) 62700

The B-Class Hatchback car is selected as the ego vehicle to be controlled, and its physical parameters are
given in Table 1. We illustrate the advantages of the methods developed in this study by comparison against a
conventional controller design without vehicle lateral stabilization.

The preceding vehicle is set to be 60m ahead of the ego vehicle at the start of the simulation. We compare the
simulation results for two different speed profiles: (1) a ramp speed profile and (2) a 𝑐𝑜𝑠𝑖𝑛𝑒 speed profile.

5.1. Case I: ramp speed profile
The initial condition in this case is a zero relative velocity between vehicles: we assume 𝑣1 = 𝑣2 = 25 m/s and
a desired distance between vehicles at standstill 𝑑0 = 10m. Considering the nonlinearity of the lateral forces
between the tires and the road surface, the cornering stiffness for the front and rear tires is set to (66900 ±
10000)N/rad and (62700 ± 10000)N/rad, respectively. The upper bound on the control input for the vehicle
acceleration is set to 2m2/s. Substituting the corresponding parameters into the systemmodel Equations 8-17
easily yields the system matrices. According to Remark 3.1, 𝜆 is selected as 0.01 in this study.

The optimization problem given by Equation (41) is solved recursively to yield the closed-loop system re-
sponses in the CarSim/Simulink joint simulation environment, which are shown in Figure 7. In Figure 7A,
the blue and red curves represent the speeds of the preceding and ego vehicles, respectively. Figure 7B and
Figure 7C show the errors in the longitudinal velocity and between the desired and actual longitudinal dis-
tances, respectively, where the maximum velocity error is 5.9 m/s at 4.5 s and the maximum distance error is
3.8 m at 19.7 s. Figure 7 shows that although the preceding vehicle velocities vary in the range [10, 25]m/s,
the predictive controller based on the T-S fuzzy model guarantees the velocity and the desired safe following
distance for the ego vehicle under the considered extreme road conditions.

To further demonstrate the advantages of the proposed car-following controller design, Figure 8 shows the

http://dx.doi.org/10.20517/ir.2022.26
a
图章



Page 386 Zhang et al. Intell Robot 2022;2(4):371­90 I http://dx.doi.org/10.20517/ir.2022.26

Figure 7. (A) Velocity of the preceding and ego vehicle; (B) Relative velocity; (C) Relative distance.

responses of sideslip angles and yaw rate (which reflect the lateral stability of the vehicle) obtained using the
conventional controller (without consideration of the lateral stability) and the controller developed in this
study. Figure 8 shows that compared to the results obtained using the conventional controller, the sideslip an-
gle and yaw rate obtained using the proposed controller are smaller in magnitude, indicating improved vehicle
stability.

5.2. Case II: 𝑐𝑜𝑠𝑖𝑛𝑒 speed profile
In this case, the initial velocities of the preceding and ego vehicles and the relative distance are set to 25 m/s
and 50 m, respectively. Figure 9A shows the 𝑐𝑜𝑠𝑖𝑛𝑒-function speed profile of the preceding vehicle and the
simulation results as a blue dash-dotted curve. In Figure 9A, the red curve represents the closed-loop response
for the speed of the ego vehicle. Figure 9B and Figure 9C show the errors in the longitudinal velocity and
between the desired and actual distances, respectively. Figure 9D shows the acceleration of the ego vehicle,
which satisfies the input constraint given by |𝑎𝑑𝑒𝑠 | ≤ 2m2/s.

It can be concluded from Figure 9 that the proposed method completes the car-following task with satisfactory
performance for a time-varying velocity. Figure 10 shows the dynamics of the sideslip angle, yaw rate, and ve-
hicle lateral offset. Figure 10C clearly shows that the lateral offset increases when the car-following manoeuvre
is conducted under the conventional MPC without lateral stabilization. These three aspects of the results show
that the proposed car-following controller outperforms the conventional controller in terms of guaranteeing
both satisfactory tracking performance and lateral stability of the vehicle in emergency scenarios.

6. CONCLUSION
In this paper, a T-S fuzzy model-based predictive adaptive cruise controller is designed while ensuring vehicle
lateral stability by integrating the ACC system with a direct yaw moment control system. To consider varia-

AA
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Figure 8. (A) Vehicle sideslip angle of the ego vehicle in Case I. (B) Vehicle yaw rate of the ego vehicle in Case I.

Figure 9. (A) Velocity of preceding and ego vehicle; (B)Relative velocity; (C) Relative distance; (D)Ego vehicle acceleration.

tions in the preceding vehicle velocity and road surface conditions, the adaptive cruise control is formulated
as a tracking control problem of a T-S fuzzy system subject to parameter uncertainties and external persis-
tent perturbations. Then, a robust positively invariant set is introduced to develop an admissible T-S fuzzy
controller by solving a min-max optimization problem under a series of linear matrix inequality constraints.
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Figure 10. (A) Sideslip angle in Case II; (B) Yaw rate in Case II; (C) Vehicle lateral offset in Case II.

CarSim/Simulink joint simulation results verify that the developed method exhibits good performance for
vehicle tracking and ensures vehicle lateral stability.
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