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The supplementary figures

Materials Project Dataset:

The crystal structures were retrieved from the Materials Project (MP) database, and a

statistical analysis is provided here.

Supplementary Figure 1. The distribution of crystals in the MP database across

space groups.
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Supplementary Figure 2. The distribution of crystals in the MP database with 3-4

Wyckoff sites across space groups.
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Supplementary Figure 3. (A) The six Bravais lattice styles of all MP structure (Real)

for unit cell, generated samples in and (B) training set from ASU representation. (C)

The crystal family, where the samples classified as Trigonal have been reassigned to

Hexagonal of all in MP structure (Real) for unit cell, generated samples in and (D)

training set from ASU representation.

Supplementary Figure 4. Statistics of lattice parameters for the generated structures,

after filtering by M3GNet and subsequent DFT calculations of structural relaxation,

(A) length parameter a, (B) length parameter b, (C) length parameter c, (D) angle

parameter α, (E) angle parameter β, and (F) angle parameter γ.
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Supplementary Figure 5. The workflow of crystals generation in CGWGAN.

After obtaining the template from the generator, the elements are assigned to the

positions of the template in the form of permutations and combinations, and M3GNet

is used to perform energy sorting and select the combination with the lowest energy to

determine the atomic filling.

The phonon spectrum of the system was calculated using the widely employed

first-principles-based phonon package, Phonopy. The vibrational frequencies were

computed along all paths in the entire Brillouin zone. These paths were automatically

supplemented by crystal symmetry through Seekpath. If the minimum phonon

frequency is greater than -0.5, the system is considered to have passed the phonon

stability criterion. M3GNet-calculated phonon results are available at Hugging Face

and can be independently verified using the included program run_all.py. Structures

subjected to rapid filtering can later undergo high-precision optimization using VASP.

The deformation ratio of lattice parameters reflects how closely the generated

candidate materials approach the local minima on the potential energy surface. The

proximity of these materials to saddle points or local optima helps in predicting

reaction pathways and energy barriers under specific conditions, facilitating structural

relaxation to converge with minimal ionic steps.

Supplementary Figure 4 shows that the structures screened and those further relaxed

via DFT exhibit high correlation, with coefficients of determination R² of 0.86, 0.81,

and 0.93 for lattice parameters a, b, and c, respectively. This indicates that the

generated structures predominantly occupy low-energy sites on the potential energy

surface. The interatomic distances of the candidate crystals remain reasonable after

expansion through the ASU, with minimal overall expansion or compression during

relaxation. Similarly, the coefficients of determination for lattice parameters α, β, and

https://huggingface.co/datasets/caobin/CGWGAN
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γ are 0.96, 0.98, and 0.92, respectively, suggesting that the crystals generated by

CGWGAN closely approximate physically realistic structures. This consistency

ensures that the initially screened crystals do not exhibit significant structural

mismatches after DFT optimization, confirming the accuracy and reliability of the

material design. The high correlation coefficients reflect CGWGAN's effectiveness in

capturing and retaining crucial crystal properties, which reduces the computational

burden in subsequent optimization processes and indicates the inherent rationality of

the generated structures.

Execution details of the convergence rate test

PyXtal requires pre-specification of elemental compositions and atomic ratios after

symmetry expansion, where a priori valence combinations lend plausibility to the

generated crystal structures. For benchmarking the model’s convergence rate,

pre-generated crystal templates were extracted, maintaining the same total number of

atoms in the unit cell (ranging from 2 to 32), with identical elemental systems. The

final chemical compositions of our model were entirely determined by the atomic

ratios after template infill, which could lead to new compositional ratios.

The PyXtal test system included 14,400 crystals in total, with 6,941 crystals tested

through template substitution. The dataset size was determined by the criterion that

the overall fluctuation in the convergence rate remained below 3%, which was

achieved for each PyXtal test system. The template as a whole also adhered to this

standard (For convergence requirements, see the VASP parameter configuration in the

SM). Structures that passed the convergence threshold were further filtered using ASE

to ensure that the force on any individual atom was less than 0.01 eV/Å.



7

The supplementary tables

Supplementary Table 1. Algorithm: Res 1D Self-Attention Layer

Algorithm: Res 1D Self-Attention Layer

Input:

- Input tensor x with dimensions (batch_size, channels, length)

Parameters:

- in_dim: Input dimension of the tensor

- query_conv, key_conv, value_conv: Convolution layers

- gamma: Learnable scale parameter

- softmax: Softmax function for attention

1. Initialize query_conv, key_conv, value_conv with 1x1 convolution layers

2. Initialize gamma as a learnable parameter

function FORWARD(x)

proj_query <- query_conv(x) reshaped to (batch_size, -1, length)

proj_key <- key_conv(x) reshaped to (batch_size, -1, length)

proj_value <- value_conv(x) reshaped to (batch_size, -1, length)

e <- batch matrix multiplication of proj_query (permuted) and proj_key

attention <- softmax(e) along the last dimension

out <- batch matrix multiplication of proj_value and attention (permuted)

out <- reshape out to the dimensions of x

out <- gamma * out + x
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Supplementary Table 2. Fractional Coordinates of the Asymmetric Units Generated

for Space Group No. 99 and Space Group No. 123 Structures.

No. 99 No. 123

ASU Fractional

Coordinates

[0.00, 0.00, 0.50]

[0.25, 0.25, 0.25]

[0.25, 0.25, 0.50]

[0.00, 0.25, 0.25]

[0.00, 0.00, 0.00]

[0.25, 0.25, 0.25]

[0.25, 0.25, 0.00]

[0.00, 0.25, 0.25]

group operation set 1 "x, y, z"

2 "-x, -y, z"

3 "-y, x, z"

4 "y, -x, z"

5 "x, -y, z"

6 "-x, y, z"

7 "-y, -x, z"

8 "y, x, z"

1 "x, y, z"

2 "-x, -y, z"

3 "-y, x, z"

4 "y, -x, z"

5 "-x, y, -z"

6 "x, -y, -z"

7 "y, x, -z"

8 "-y, -x, -z"

9 "-x, -y, -z"

10 "x, y, -z"

11 "y, -x, -z"

12 "-y, x, -z"

13 "x, -y, z"

14 "-x, y, z"

15 "-y, -x, z"

16 "y, x, z"
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Supplementary Table 3. training parameters employed a WGAN architecture

Parameter Name Value / Type

Generator Learning Rate 0.0001

Discriminator Learning Rate 0.0004

Cosine annealing period T 10

Minibatch size 64

Random Initialization Xavier Initialization

Number of Epochs 10000

Discriminator Update Steps 5

Noise Vector Dimension 100

The Xavier initialization method is determined based on the number of input neurons

��� and output neurons ���� of a neural network layer. Specifically, in this work, the

weights are randomly sampled from a normal distribution with a mean of 0 and a

variance of 2
���+����

.
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Supplementary Table 4. The output of AFLOW Xtalfinder from the inputting of the

7 crystals.

Input Output

Space group No. 1 crystal. formatting issues

Space group No. 25 crystal. Prototype does not match

Space group No. 35 crystal. Prototype does not match

Space group No. 71 crystal. Prototype does not match

Space group No. 99 crystal. Prototype does not match

Space group No. 123 crystal. formatting issues

Space group No. 166 crystal. formatting issues

The efficiencies of the DFT calculations and M3GNet screening steps have been

investigated and are reported in Table S5 and the linked file

(https://github.com/WPEM/CGWGAN/eff.zip).

Supplementary Table 5. The comparison of VASP and M3GNet computing

efficiencies.

Parameter M3GNet VASP

CPU Model C86-7185 C86-7185

Architecture X86_64 X86_64

Total Cores 1 128

Ionic Steps Time 0.26 sec 3.13 sec

https://github.com/WPEM/CGWGAN/eff.zip


11

Supplementary Table 6. Detailed comparison of novel crystals generated by

CGWGAN and those recorded in the MP database.

Compositions SG PG Total atoms Ef Source

BaRuO6 �1 (1) 1 8 -2.01 eV CGWGAN

BaRuO3 ���2 (25) ��2 5 -1.93 eV CGWGAN

BaRu2O3 ���2 (35) ��2 6 -1.94 eV CGWGAN

BaRuO2 ���� (71) ��� 4 -1.87 eV CGWGAN

BaRuO3 �4�� (99) 4�� 5 -1.97 eV CGWGAN

BaRuO3 �4/��� (123) 4/��� 5 -1.97 eV CGWGAN

Ba3Ru3O9 �3�� (166) 3�� 15 -2.04 eV CGWGAN

Ba2Ru7O18 �1� (2) 1� 27 -1.75 eV* MP

Ba4Ru3O10 P12₁/c1 (14) 2/� 34 -2.29 eV* MP

Ba₅Ru₂O₁₁ C2/c (15) 2/� 72 -2.25 eV* MP

Ba4Ru3O10 Cmce (64) ��� 34 -2.29 eV* MP

Ba(RuO₂)₆ P4/n (85) 4/� 76 -1.59 eV* MP

Ba2RuO4 I4/mmm (139) 4/��� 14 -2.39 eV* MP

BaRuO3 �3�� (166) 2/� 30 -2.19 eV* MP

BaRuO5 �3�� (167) 3�� 126 -1.78 eV* MP

Ba5(RuO5)2 P6₃/mmc (194) 6/��� 34 -2.44 eV* MP

BaRuO3 P6₃/mmc (194) 6/��� 20 -2.19 eV* MP

BaRuO₃ P6₃/mmc (194) 6/��� 30 -2.16 eV* MP

BaRuO₃ Pm3�m (221) �3�� 5 -2.12 eV* MP

*The formation energy values are retrieved from the MP database.

To make a comparison of CGWGAN with existing crystal structure prediction

methods, one must have criterions and Jiao et al. (2024)[1] proposed three criterions to

compare generated crystals, which are Validity, Coverage and Property Statistics. The

structural validity evaluates whether the structures of generated samples are valid, and

the structural validity rate is defined as the ratio of samples with a minimal pairwise

distance greater than 0.5 Å over the number of total generated samples. The minimal

pairwise distance in CGWGAN is defined as 1 Å, double the criterion of 0.5 Å, which

means that these generated samples pass the 0.5 Å criterion validity may fail the 1 Å

criterion validity. The composition validity criterion is based the electron valence and

https://arxiv.org/abs/2402.03992
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charge neutrality solved by SMACT (Davies et al., 2019)[2], where no fractional

charges are allowed in the crystals. This classical picture is not consistent with

ab-initial calculation results, in which the charge partition gives fractional charges to

each ion in a crystal cell. Therefore, the composition validity is not considered here.

The coverage assesses the generated crystals having how much coverage with

available crystals. For this purpose, a testing data subset must be randomly taken from

the used dataset and these testing data cannot be seen by the crystal generation model.

The coverage recall (COV-R) and precision (COV-P) metrics represent the percentage

of crystals in the testing set that match those in the generated samples within a

specified fingerprint distance threshold. The property statistics are represented by

three Wasserstein distances between the generated and testing structures, specifically

focusing on density (��) , formation energy (�� ), and the number of elements. As

mentioned in main text, CGWGAN generates crystal templates first, then fills-in

atoms of the same or different elements by designer, and then uses M3GNet to

estimate the formation energy and phonon spectrum. Clearly, the accuracies of

estimated formation energy and phonon spectrum rely completely on M3GNet. Only

these generated crystals passing M3GNet will be further examined by the ab-initial

calculations.

The comparison employs the Perov-5 dataset (Castelli et al., 2012)[3], which includes

18,928 perovskite crystals with similar structures but distinct compositions and each

structure contains exactly five atoms per unit crystal cell. The structural validity and

coverage metrics are calculated on all 10,000 generated samples and the about 20% of

the Perov-5 dataset is randomly selected as the testing set, which are all consistent

with Jiao’s experimental settings. Table S7 lists the comparison of CGWGAN with

existing crystal structure prediction methods. The comparison indicates that

CGWGAN is comparable to these recently developed methods.

https://dandavies99.github.io/files/2019_joss.pdf
https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d
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Supplementary Table 7. The structural validity and coverage metrics of various

crystal structure prediction methods, where other baseline results are from Xie et al.

(2021)[4] and Jiao et al.

Method 0.5 Å

Validity

1.0 Å

Validity

COV-R COV-P �� ��

FTCP 0.24 - 0.00 0.00 10.27 156.0

Cond-DFC-VAE 73.60 - 73.92 10.13 2.268 4.111

G-SchNet 99.92 - 0.18 0.23 1.625 4.746

P-G-SchNet 79.63 - 0.37 0.25 0.2755 1.388

CDVAE 100.0 - 99.45 98.46 0.1258 0.0264

DiffCSP 100.0 - 99.74 98.27 0.1110 0.0263

DiffCSP++ 100.0 - 99.60 98.80 0.0661 0.0405

CGWGAN 100.0 100.0 99.50 93.90 0.0821 0.0271

ACase study of crystal embedding:

The embedding vector consists of three main components: the fractional coordinates

of the ASU, the space group number, and the lattice parameters a, b, c, α, β, and γ.

The initial embedding vector for a crystal with three ASU units is as follows:

��� = [0.5,0.5,0.5,0.75,0.75,0.75,0.75,0.75,0.25,216,6.53,6.53,6.53,90,90,90]

This vector includes the 3x3 fractional coordinates, one space group number, and six

lattice constants.

To enrich the crystal embedding, our model embeds three or four ASU structures

together. Therefore, the practical embedding contains 3x4 fractional coordinates. In

cases where only three ASUs are present, a placeholder is used for the fourth set of

coordinates, with the values (−2,−2,−2). The resulting embedding vector for three

ASU crystals is:

��� = [0.5,0.5,0.5,0.75,0.75,0.75,0.75,0.75,0.25, − 2, − 2,
− 2,216,6.53,6.53,6.53,90,90,90]

The INCAR in the standard version of VASP.6.4.3.

The pseudopotential is the official GGA and the K-point density has been specified in

INCAR via KSPACING:

https://arxiv.org/pdf/2110.06197
https://arxiv.org/pdf/2110.06197
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SYSTEM = CGWGAN

Algo = All

LWAVE = .FALSE.

LCHARG = .FALSE.

ISPIN = 1

ISMEAR = 1

SIGMA = 0.2

KSPACING=0.2

NSW = 300

IBRION = 2

ISIF = 3

POTIM = 0.1

EDIFF = 1e-7
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