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Abstract
With the fullness of time, metallic lithium (Li) as an anode could become highly promising for high-energy-density 
batteries. Theoretically, using Li metal as the negative electrode can result in higher theoretical capacity and lower 
oxidation voltage and density than in current commercially available batteries. During the charge/discharge 
process, however, metallic Li shows unavoidable drawbacks, such as dendritic growth, causing capacity 
degradation and a solid electrolyte interphase (SEI) layer derived from the side reactions between the Li metal 
anode and the electrolyte, resulting in depletion of the electrolyte. The formation of a suitable SEI is crucial to avoid 
the side reactions at the interface by circumventing direct contact. Unavoidable dendritic growth at the Li metal 
anode can be controlled by its ionic conductivity. Furthermore, the SEI is also required as a mechanical 
reinforcement for withstanding the volume change and suppressing dendritic growth in the Li metal anode. A 
limiting factor due to complex SEI formation must be considered from the perspectives of chemical and mechanical 
properties. To further enhance the cycling performance of Li metal batteries, an in-depth understanding of the SEI 
needs to be achieved to clarify these issues. In this mini review, we focus on the SEI, which consists of various 
deposited components, and discuss its ionic conductivity and mechanical strength for applications in electric 
vehicles.
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INTRODUCTION

Lithium (Li)-ion batteries play an important role in applications for extending the operating hours of small 
information technology devices and the driving mileages of electric vehicles[1-3]. In particular, although high-
energy-density batteries are desirable, commercial lithium-ion batteries based on a graphite anode cannot 
provide sufficient energy density. Even if a newly developed structure or material is applied in the 
electrodes, it is not easy to achieve a gravimetric energy density as high as 300 Wh kg-1. One method to 
overcome this challenge is to replace the existing graphite or silicon additive anode[4]. Li metal is an ideal 
anode material for achieving high energy density, owing to its high theoretical capacity (3860 mAh g-1), low 
redox potential (-3.04 V vs. a standard hydrogen electrode) and low density (0.534 g cm-3)[5]. Moreover, it is 
known that the performance of Li metal batteries can be further enhanced by adapting high-voltage lithium 
nickel cobalt manganese oxide cathodes[6]. During Li plating and stripping, however, inherent dendritic 
growth, uneven solid electrolyte interphase (SEI) formation and Li volume expansion are unavoidable issues 
that trigger internal short-circuiting in Li metal batteries[7].

The electrolyte has a profound impact on the electrochemical cycling of the Li metal anode. On the surface 
of Li metal, an SEI layer is formed by accumulating various decomposition products created by a chemical 
reaction with the organic electrolyte[8-10]. This SEI layer provides passivation to prevent Li metal corrosion by 
preventing contact between the electrolyte and the Li metal[11]. However, it is difficult to predict the 
electrical properties of SEI layers because their heterogeneous phases vary depending on the type of organic 
electrolyte[12-14]. The primary issue is that Li electrodeposition is locally concentrated along any cracks in the 
SEI layer, leading to various side reactions inside the electrode[15,16]. During repeated plating and stripping, 
particles of inactive dead Li are gradually accumulated, resulting in performance degradation. Given these 
difficulties, the utilization of metallic Li anodes still faces many challenges for commercial viability, 
especially dendritic Li growth[17].

So far, various approaches have been developed to suppress dendritic Li growth. For example, electrolyte 
additives have been used to achieve high ionic conductivity, separator design has been proposed to improve 
dendritic blockage, interlayer coatings have been utilized to stabilize the Li metal surface and host 
architectures that can store Li metal have been developed. Li is a highly active material that reacts with all 
organic electrolytes, leading to SEI layer formation[18-23]. In particular, the thickness of the SEI layer shows 
unlimited growth until both the organic electrolyte and the metallic Li are entirely consumed. SEI growth 
mechanisms are difficult to understand due to the variety of organic electrolytes utilized[24]. We know that 
the high ionic conductivity (σSEI) of an SEI effectively suppresses the dendritic Li growth during Li plating 
and stripping. Nevertheless, there remains doubt regarding which component entirely governs the σSEI

[22]. In 
this mini review, we summarize the σSEI of each SEI phase and provide insights to understand and predict 
the phenomenon of dendritic Li growth.

Solid electrolyte interphase
The SEI model was first suggested by Dey and further developed by Peled[25,26]. The SEI as a passivation layer 
is known to be a unique feature with simultaneous ionic conductivity and insulating properties. It consists 
of different heterogeneous components, such as semi-carbonates, polyolefins, lithium oxide (Li2O), lithium 
carbonate (Li2CO3) and lithium fluoride (LiF), as shown in Figure 1[12,27]. Significant effort has been devoted 
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Figure 1. Schematic illustration of a Li dendrite with various SEI components. Owing to the cracks generated during the 
charge/discharge process, Li metal is exposed to the electrolyte and a localized Li-ion flux occurs.

to further understanding the formation of the heterogeneous components. Spotte-Smith and co-workers 
reported the formation mechanism of the key components of the SEI and gaseous byproducts through 
computational reaction networks containing over million reactions and kinetic Monte Carlo simulations[28].

Interestingly, the mechanisms of the formation of SEI components are affected by the potential of the Li 
metal anode. Sun and co-workers verified that a bilayer SEI was formed when the potential of the Li metal 
anode was below 0.1 V (vs. Li/Li+)[29]. The inner layer was composed of more inorganic compounds, such as 
Li2O, lithium nitride (Li3N), LiF, lithium hydroxide (LiOH) and Li2CO3 (4.4% for SEI of Li metal anode at 
0 V), whereas the outer layer was composed of more organic compounds, such as ROCO2Li, ROLi and 
RCOO2Li (16.8% for SEI of Li metal anode at 0 V). Furthermore, when the potential of the Li metal anode 
was below 0 V (vs. Li/Li+), inorganic components were primarily generated on the Li metal anode[29]. Ideally, 
the SEI requires high Li-ion conductivity, low electronic conductivity and high thermal and mechanical 
stability for fast Li-ion kinetics, reduced electrolyte depletion and minimal volume expansion. As the 
thickness of the SEI layer gradually increases during Li plating and stripping, its weak mechanical properties 
are insufficient to accommodate the significant volume expansion of up to 300%[10,30,31]. If tiny cracks, known 
as “hot spots”, exist on the SEI layer, they are directly exposed to the organic electrolytes, such as carbonate 
and ether bases[15,16]. The uneven Li-ion flux then has a tendency towards local penetration and subsequently 
accumulates at these spots, leading to inactive or dead Li and then to capacity and cyclability losses. In 
addition to dead Li, dendritic Li growth is an unavoidable feature, which must be suppressed, because the 
introduction of dendritic growth consumes both the Li anode and the electrolyte until cell failure[32].

In addition, the ionic conductivity of the SEI (σSEI) determines the morphology of the Li metal anode by 
affecting the pathways of Li ions in the SEI layer, owing to the potential field caused by its low 
conductivity[33]. Ma and co-workers reported the Li-ion transport mechanism in inorganic SEI components 
such as LiF, Li3N, Li2O, LiOH and Li2CO3. Interestingly, the bulk ionic conductivity of inorganic SEI 
components is extremely low. However, relatively high ionic conductivities were found at the interface of 
different types of inorganic SEI components. In particular, at the interface between LiF and Li2O, the ionic 
conductivity (1.96 × 10-4 S cm-1) is extremely improved compared to the bulk materials (5.2 × 10-10 and 
10-9 S cm-1, respectively). This indicates that the Li ions migrate through grain boundaries to increase the 
ionic conductivity of the SEI[34-36].

Figure 2A shows the process of Li deposition with a conventional electrolyte-deposited SEI with poor ionic 
conductivity (< 10-6 S cm-1). Initially, the SEI layer is formed owing to an unintended and unavoidable side 
reaction between the electrolyte and the Li metal anode. Due to the formation of the SEI layer with low 
ionic conductivity, Li ions intensively penetrate specific areas. Once Li ions are deposited on the Li metal 
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Figure 2. Schematic illustration of Li metal dendrite growth process in conventional electrolyte (A) without and (B) with additives.

electrode, they form branch-shaped structures known as dendrites, more localized and non-uniform Li-ion 
flux occurs, and as a result, dendrite formation is accelerated. To avoid dendrite growth by localized Li-ion 
flux, intensive research has been undertaken to introduce additives into the electrolyte to improve the ionic 
conductivity. Figure 2B shows the process of Li deposition with an artificial SEI, which has a high ionic 
conductivity (> 10-5 S cm-1). The localized Li-ion flux caused by the low ionic conductivity of the SEI layer is 
diminished, and as a result, the Li metal grows uniformly, because Li ions are evenly deposited in all 
areas[37-42].

Ionic conductivity measurements
Uneven Li deposition is well known to occur due to the heterogeneous ionic conductivity of the native SEI 
on a Li metal surface. The ionic conductivity (σSEI) can be calculated by alternating current impedance 
spectroscopy[27,43]. Experimentally, in this method, a sinusoidal potential is applied over a wide frequency 
range to an electrochemical cell with blocking electrodes as ideal capacitors and its response is recorded. As 
shown in Figure 3, a typical equivalent circuit for Li metal with an SEI can be classified into six components: 
(i) bulk resistance of the cell (RBulk); (ii) SEI resistance of the interfacial layer (RSEI); (iii) charge transfer 
resistance (RCT); (iv) capacitance of the interfacial layer (CPESEI); (v) double-layer capacitance (CPEElectrode); 
and (vi) Warburg component, reflecting the diffusional effects of Li on the host materials. The ionic 
conductivity (σSEI) is calculated by

where ρSEI is the specific ionic resistivity, RSEI is the specific ionic resistance, d is the thickness and Aact is the 
active cross-sectional area. It should be noted that ρSEI and RSEI are the only material properties that are 
independent of geometry. Han and co-workers calculated the ionic conductivity of a lithium-rich 
antiperovskites (LiRAP) film (10-4 S cm-1), which was considered as an artificial SEI. A LiRAP-ASEI with a 
thickness of 1 μm on copper (Cu, 1.6 cm in diameter) disks was used for EIS measurements and RSEI was 
estimated to be 13 Ω[44]. Such values are not easy to evaluate from direct experiments[45,46] and many 
researchers have therefore suggested alternative approaches, i.e., theoretical calculations.

Notably, the σSEI is governed by the accumulated components of the SEI. The σSEI is estimated to vary from 
10-4 to 10-12 S cm-1[47-49]. A relatively low value is known to cause dendritic Li growth in Li metal anodes. 
Among the components, LiF, Li2CO3, Li2O and Li3N are representative and correspond to ionic 
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Figure 3. Schematic illustration of battery components, equivalent circuit model and Nyquist plot of the internal resistance of a Li-ion 
battery. The diameters of the green and blue circles indicate RSEI and RCT, respectively. The yellow line indicates the Warburg 
impedance in the low-frequency region.

conductivities of 6.0 × 10-6-5.2 × 10-10, 6.7 × 10-8, 10-9-10-12 and 1.2 × 10-4 S cm-1, respectively. The nature of the 
SEI can provide clues to achieving insights into dendritic Li growth. Table 1 summarizes the experimental 
and theoretical values of the Li-ion conductivity of the SEI layer derived from various additives. The organic 
phases of the SEI can accommodate part of the electrolyte, thereby enhancing the Li-ion conductivity.

STRATEGIES FOR MINIMIZING DENDRITIC LITHIUM GROWTH
Electrolyte additives
During Li plating and stripping, an organic electrolyte is decomposed into Li2O, Li2CO3, LiF, LiOH and so 
on. These components have poor Li-ion conductivity at the interface with Li metal. These components 
affect cell performance due to their low ionic conductivity. Instead of the natural SEI, a new strategic, 
artificial SEI with high ionic conductivity is required to suppress dendritic Li growth. In addition, it is also 
capable of inhibiting dendritic Li growth with high mechanical strength[12].

Interestingly, high ionic conductivity at the Li metal interface decreases the overpotential during Li plating 
and stripping, thereby stabilizing the SEI. For this purpose, stable SEI components, such as Li3N, lithium 
sulfide (Li2S), lithium aluminate (LiAl5O8), lithium phosphide (Li3P) and ternary lithium aluminum fluoride 
(Li3AlF6), have been developed using various combinations of Li additives. In particular, Li salts, including 
lithium nitrate (LiNO3) and LixSy, are widely used to improve the interfacial stability of Li metal anodes in 
ether-based electrolytes[67]. In detail, LiNO3 decomposes into Li3N and Li2O, and Li3N is the key component 
due to its high ionic conductivity (1.2 × 10-4 S cm-1) for this purpose. Lithium bis(fluorosulfonyl)imide 
(LiFSI)-LiNO3 in a dimethyl ether electrolyte was found to minimize the dendritic Li growth. This is 
strongly related to the high ionic conductivity of the LiF- and Li3N-rich SEI layers. Moon and co-workers 
reported a correlation between SEI thickness and ionic conductivity, as shown in Figure 4A. Regardless of 
the thickness of the SEI, the Li3N-rich SEI layer introduced a small potential change, resulting in uniform Li 
growth[37]. In addition, a thicker Li3N SEI layer causes higher ionic conductivity, although the LiNO3 
additive has the feature of low solubility in carbonate-based electrolytes[68]. Moreover, carbonate-based 
electrolytes have stronger reactivity than ether-based ones toward Li metal.

Recently, significant efforts to use LiNO3 additives in carbonate-based electrolytes have been made to enable 
the adoption of high-voltage batteries. Even if LiNO3 is incompletely dissolved in a carbonate-based 
electrolyte, the highly concentrated LiNO3 additive in ethylene carbonate and diethyl carbonate yielded a 
stable SEI and outstanding cell performance during Li plating and stripping. Figure 4B summarizes the 
solubility of the LiNO3 additive in different carbonate-based electrolytes[69]. The maximum concentration of 
NO3

- was investigated in different carbonate-based electrolytes through colorimetry by cadmium reduction 
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Table 1. Ionic conductivity of natural SEI and artificial SEI components

SEI components Ionic conductivity (S cm-1) Ref.

LiF 6.0 × 10-6-5.2 × 10-10 [50,51]

LiF-Li2CO3 3.0 × 10-6-3.0 × 10-7 [52]

Li2O 10-9-10-12 [50,53]

Li2CO3 6.7 × 10-8 [52]

Li2EDC 4.5 × 10-9 [54]

Li3N 1.2 × 10-4 [55]

PEOm-5%Li21Si5 3.9 × 10-5 [56]

LiZrO(NO3)2 2.3 × 10-6 [57]

LiAl5O8 3.2 × 10-6 [58]

SPVA 1.59 × 10-6 [59]

Li3P 10-4 [60]

LiRAP film 10-4 [44]

LiF/Li3Sb-5 layer 1.01 × 10-5 [61]

[LiNBH]n 6.6 × 10-6 [62]

Li2S 10-5 [63]

Li3AlF6 10-5 [64]

FE-Li/Na 1.1 × 10-5 [65]

FE-Li 4.57 × 10-6 [65]

LIPON 1.1 × 10-6-1.4 × 10-6 [46,66]

Li2EDC: Dilithium ethylene decarbonate; PEO: poly(ethylene oxide); SPVA: sulfonated poly(vinyl alcohol); LiRAP: lithium-rich anti-perovskite; 
FE: fluorinated etching; LIPON: lithium phosphorus oxynitride.

Figure 4. (A) Contour plot of deposition factor as a function of ionic conductivity and thickness of SEI layer. Reproduced from Ref.[37] 
with permission from the Royal Society of Chemistry. (B) Solubility of LiNO3 in different carbonate-based electrolytes. Reproduced from 
Ref.[69] with permission from Nature.

using a discrete analyzer. The solubility of the LiNO3 additive in carbonate-based electrolyte is one order of 
magnitude smaller than that in an ether-based one. On decreasing the concentration of LiPF6, the solubility 
of NO3

- noticeably increases, which is known as the “common-ion effect”. Brown and co-workers found 
that using phosphate solvents increases the solubility of additives in carbonate-based electrolytes. 
Specifically, triethyl phosphate significantly increases the solubility of LiNO3, resulting in an improvement 
in the capacity retention and Coulombic efficiency[70].
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In addition to LiNO3, LixSy is a potential additive candidate that forms Li2S and Li2S2. The ionic conductivity 
of bulk Li2S is extremely low (~10-26 S cm-1). However, when Li2S exists as a thin layer at the interface, owing 
to the grain boundaries, dislocations, interfaces and amorphous content, its ionic conductivity (10-5 S cm-1) 
is higher than other common SEI components, such as Li2CO3 (10-8 S cm-1) and LiF (3 × 10-9 S cm-1)[71-73]. The 
LixSy additive also results in a mechanically dense and thick SEI layer on the surface of Li metal, because Li 
metal reacts with LixSy to form an insoluble component[74]. Note that the passivation layer derived from the 
LiNO3 additive is less solid. Some synergistic effects can be expected from using dual LiNO3-LixSy. This 
approach causes flat Li plating without dendritic Li growth in ether-based electrolytes. This feature cannot 
be achieved using only LiNO3

[75]. In a similar manner, dendritic Li growth can be inhibited by using a dual-
layer composed of an organic layer and an inorganic layer. Zhang and co-workers reported a uniform and 
compact dual-layer SEI with organic components (e.g., ROLi and ROCO2Li) on the top layer and inorganic 
components (e.g., LiF and Li2CO3) on the bottom layer. This organic amorphous polymer layer increases the 
Li-ion diffusivity and avoids damage based on its flexibility and the inorganic LiF-Li2CO3 layer contributes 
to forming the ordered Li nucleation and prevents side reactions by preventing contact between the 
electrolyte and Li metal[76,77].

SEI mechanical properties
When some mechanical damage or breakage occurs at the weak natural SEI of Li metal electrodes, the Li 
metal suffers severe loss of its passivation layer, resulting in the degradation of cell performance. In some 
cases, thermal runaway can arise at some local points on the electrode. In considering cell design, in 
addition to its ionic conductivity, the mechanical properties of the SEI are some of the primary factors. 
Recently, Xia and co-workers characterized the SEI layers in carbonate- and ether-based electrolytes with 
the aid of a cryogenic electron microscope[78]. Each organic component was determined during Li plating 
and stripping. From density functional theory calculations, a single SEI component derived from different 
electrolytes was predicted. The authors found correlations between the SEI components and mechanical 
properties and argued that carbonate-based electrolytes are preferable.

Recently, detailed electro-chemo-mechanical modelling was implemented using the finite element method 
to provide beneficial information for the SEI. The aim was to determine the correlation between the 
mechanical properties of an artificial SEI and Li deposition. The results showed that the mechanical 
properties of the SEI are governed by uneven Li deposition, such as in whiskers, tresses, globules and 
dendrites[79]. If the ionic conductivity of the SEI is improved, reaching a certain level, mechanical stress 
cannot be concentrated, resulting in even Li deposition. However, Figure 5 shows that, except for 
polyvinylidene difluoride, a critical value (σSEI/σElectrode) of > 0.1 was not found. According to their 
calculations, a Young’s modulus (ESEI) of 4 GPa as a threshold value is a critical point for the deposition of 
uniform Li growth. Therefore, the ionic conductivity of an artificial SEI needs to be improved without 
degradation of its mechanical strength. We need to find an artificial SEI to meet the conditions of the 
threshold values of σSEI/σElectrode > 0.1 and ESEI > 4 GPa. This is a new strategic method of testing artificial SEIs 
on other metallic anodes[80].

Solid electrolytes 
In spite of the various attempts to suppress dendritic Li growth in liquid electrolytes, unexpected growth 
still constantly occurs. As a principal solution to replacing liquid electrolytes, many studies are underway to 
suppress dendritic growth by utilizing solid electrolytes. As shown in Figure 6A, when a liquid electrolyte is 
used in a Li metal battery, an SEI is formed due to side reactions, and subsequently, the low ionic 
conductivity of the SEI leads to dendritic Li growth. In contrast, using solid electrolytes with adequate 
mechanical properties minimizes dendritic growth[81]. Note that the electrochemical performance of the 
battery is inferior to that of the liquid electrolyte due to the lack of ionic conductivity, as shown 
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Figure 5. Design guidelines for artificial SEIs to inhibit dendritic Li growth. The yellow and green regions inhibit dendritic Li growth. The 
threshold values of Γthreshold = 0.1 and Ethreshold = 4 GPa are marked by green and blue dotted lines, respectively. Reproduced from Ref.[80] 
with permission from Wiley.

Figure 6. (A) Schematic illustration of dendritic Li growth in solid and liquid electrolytes. (B) Li-ion conductivity in various types of solid 
electrolytes. Reproduced from Ref.[82] with permission from Elsevier.

in Figure 6B. To further improve the ionic conductivity in the solid electrolyte, various structures have been 
tested. It is well known that solid electrolytes can be classified as sodium superionic conductors 
(NASICONs), garnets, perovskites, lithium superionic conductors (LiSICONs), lithium phosphorus 
oxynitride (LIPON), Li3N, sulfides, argyrodites and anti-perovskite structures.

The argyrodite type with the formula Li6PS5X (X = Cl, Br or I) has attracted significant attention among the 
solid electrolyte candidates because of its high ionic conductivity and stability at the Li metal interface. The 
argyrodite-type solid electrolyte spontaneously reacts with moisture, however, and generates toxic H2S 
gas[82]. To reduce the generation of H2S, Cho and co-workers proposed a natural zeolite as a functional 
additive[83]. To investigate the effect of zeolite nanoparticles, pristine Li6PS5Cl and zeolite embedded Li6PS5Cl 
were exposed to humid air (relative humidity (RH) = 50%). The initial ionic conductivity values were 
estimated to be 1.31 × 10-3 and 1.27 × 10-3 S cm-1, respectively. After exposure for 1 h in humid air conditions 
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Figure 7. Schematic summary of the Li metal battery focusing on its advantages, dendritic Li growth, artificial SEI layers and solid 
electrolytes.

(RH = 50%), the Li-ion conductivity of the pristine Li6PS5Cl was 0.23 × 10-3 S cm-1, while the zeolite 
embedded Li6PS5Cl was 0.39 × 10-3 S cm-1. The decrease in ionic conductivity was reduced in the zeolite-
embedded Li6PS5Cl because the continuous contact between H2O and Li6PS5Cl was significantly reduced, 
since porous zeolite nanoparticles adsorb H2S and H2O effectively in their porous structure.

PERSPECTIVE AND OUTLOOK
Enormous research and development efforts have been focused on batteries since they are the energy 
storage devices of many electronic devices and have become ubiquitous in our daily lives. Ultimately, 
consumers are demanding electronic devices with high-capacity and lightweight batteries. To meet these 
requirements, it is necessary to construct batteries using Li metal as the anode, which has advantages such as 
high theoretical capacity and energy density and low oxidation potential. To commercialize these attractive 
Li metal batteries, however, it is necessary to suppress the inevitable growth of Li dendrites. Dendritic Li 
growth is intensified by localized Li-ion flux through cracks in the SEI. This repeated Li growth creates 
isolated "dead Li", which dramatically reduces the capacity of the battery. In this mini review, we have 
summarized the SEI layer, which affects the dendritic Li growth, and focused on electrolyte additives in 
terms of ionic conductivity, mechanical strength and solid electrolytes as a solution to suppress dendritic Li 
growth, as summarized in Figure 7. To suppress the growth of Li dendrites, the primary key points are 
achieving increased ionic conductivity of the SEI layer and improved mechanical stability, which is an 
inherent property of the SEI. In particular, to utilize Li metal as an anode, it is essential to research additives, 
which generate SEI components, such as Li3N and Li2S. These obtain higher ionic conductivity than other 
SEI components. In addition to these SEI components, an accurate understanding of bilayers and new 
research insights into additives compatible with each layer are required.

From the mechanical perspective, the use of solid electrolytes is an essential technique to overcome these 
technical issues. Solid electrolytes can inhibit dendritic Li growth with their robust mechanical strength. 
However, they have crucial drawbacks, such as low ionic conductivity, compared to liquid electrolytes and 
contact loss problems with active materials. Argyrodite-type solid electrolytes are emerging as a solution 
with high ionic conductivity. Note that argyrodite solid electrolytes spontaneously react with moisture in 
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the air and generate toxic H2S gas, which is harmful to the human body. To apply them to actual 
commercial batteries, additives, such as a natural zeolite, that reduce the amount of H2S gas should be 
studied. To achieve a Li metal battery with perfect high capacity and stable operation, an in-depth 
understanding of the SEI is essential. In particular, various SEI components can be generated through 
chemical additives, so further research on additives with a focus on ionic conductivity and mechanical 
properties is crucial. As an alternative approach, solid electrolytes can also be a solution if the low ionic 
conductivity is overcome through atomic substitution and the interfacial problem is solved using coatings.
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