Electronic Supplementary Information

High-throughput screening of B/N-doped graphene supported single atom catalysts for nitrogen reduction reaction

Ning Cao¹, Nan Zhang², Ke Wang¹, Keping Yan^{1, 3}, Pengfei Xie^{*1,3}

¹ College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

² State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China

³ Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China

Corresponding Email:

pfxie@zju.edu.cn

		$E_{\rm b}({\rm eV})$			$E_{\rm b}$ - $E_{\rm c}$ (eV)	
	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$
	G-1	G-2	G-3	G-1	G-2	G-3
Sc	-5.06	-7.82	-4.25	-0.15	-2.91	0.66
Ti	-5.71	-7.92	-5.29	-0.89	-1.32	1.31
V	-5.17	-7.07	-4.77	-1.46	-0.45	1.85
Cr	-5.04	-6.78	-4.44	-0.01	-1.75	0.59
Μ						
n	-3.97	-5.40	-3.93	-0.19	-1.62	-0.15
Fe	-4.79	-6.25	-5.01	0.09	-1.37	-0.13
С						
0	-5.13	-6.40	-5.22	-0.02	-1.29	-0.11
Ni	-5.40	-6.69	-5.57	-0.30	-1.59	-0.47
С						
u	-3.96	-5.36	-2.88	-0.46	-1.86	0.62
Ζ						
n	-1.38	-3.56	-0.71	-1.16	-3.33	-0.48

Table 1. Calculated binding energies (E_b) for all TM₁-B₂N₂/G catalysts. And the difference between binding energies and cohesive energies (E_c) for all TM₁-B₂N₂/G catalysts.

Table 2. Summary of adsorption energies of $N_2(E_{ad})$ for all TM₁-B₂N₂/G catalysts.

	End-on (eV)			Side-on (eV)			
	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_{1}-B_{2}N_{2}/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	
	G-1	G-2	G-3	G-1	G-2	G-3	
Sc	-0.49	-0.72	-0.62	-0.30	-0.59	-0.47	
Ti	-0.85	-1.06	-0.82	-0.46	-1.12	-0.63	
V	-0.85	-1.03	-0.89	-0.63	-0.86	-0.54	
Cr	-0.95	-0.97	-0.94	-0.40	-0.65	-0.46	
Μ							
n	-1.03	-0.76	-0.55	-0.75	-0.43	-0.09	
Fe	-1.39	-0.92	-0.50	-0.63	-0.47	-0.20	
С							
0	-1.47	-0.91	-0.71	-0.83	-0.33	-0.45	
Ni	-0.88	-0.63	-0.41	-0.32	-0.22	-0.08	
С							
u	-0.36	-0.26	-0.14	-0.34	-0.08	-0.11	
Ζ							
n	-0.43	-0.18	-0.08	-0.40	-0.16	-0.07	

	End-on (eV)			Side-on (eV)			
	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	
	G-1	G-2	G-3	G-1	G-2	G-3	
Sc	-0.04	-0.29	-0.20	0.13	-0.19	-0.09	
Ti	-0.38	-0.62	-0.39	-0.04	-0.66	-0.18	
V	-0.39	-0.57	-0.43	-0.19	-0.40	-0.10	
Cr	-0.48	-0.49	-0.48	-0.06	-0.18	-0.04	
Μ							
n	-0.54	-0.31	-0.12	-0.23	0.00	0.27	
Fe	-0.89	-0.46	-0.06	-0.15	0.00	0.25	
С							
0	-0.95	-0.44	-0.24	-0.36	0.08	0.02	
Ni	-0.40	-0.17	0.03	0.06	0.20	0.34	
С							
u	0.00	0.19	0.25	0.12	0.27	0.27	
Ζ							
n	-0.09	0.22	0.32	0.02	0.22	0.33	

Table 3. Summary of adsorption free energies of N_2 (G_{ad}) for all TM₁-B₂N₂/G catalysts.

Table 4. The N \equiv N bond lengths during N₂ activation for all catalysts.

	End-on (Å)			Side-on (Å)			
	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	
	G-1	G-2	G-3	G-1	G-2	G-3	
Sc	1.128	1.128	1.128	1.153	1.150	1.149	
Ti	1.134	1.133	1.127	1.159	1.173	1.163	
V	1.138	1.136	1.134	1.180	1.173	1.163	
Cr	1.137	1.134	1.132	1.205	1.167	1.148	
Μ							
n	1.138	1.133	1.126	1.236	1.163	1.143	
Fe	1.140	1.133	1.128	1.177	1.156	1.163	
С							
0	1.138	1.132	1.132	1.177	1.149	1.165	
Ni	1.131	1.130	1.124	1.136	1.148	1.140	
С							
u	1.114	1.123	1.114	1.114	1.114	1.114	
Ζ							
n	1.114	1.114	1.114	1.114	1.114	1.114	

Figure 1. The reaction mechanism of NRR.

	*N2(End-on) *NNH			*N2(Side-on) *N-NH		
	$TM_1-B_2N_2/$	$TM_{1}-B_{2}N_{2}/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$
	G-1	G-2	G-3	G-1	G-2	G-3
Sc	1.54	1.10	1.14	0.85	0.51	0.64
Ti	1.07	0.94	1.12	0.28	0.58	0.56
V	0.49	0.75	0.70	0.06	0.58	0.48
Cr	0.55	0.74	0.82	0.41	0.54	0.47
Μ						
n	0.64	0.74	1.04	1.26	0.90	0.79
Fe	0.71	0.87	1.10	0.97	1.21	0.74
С						
0	1.04	0.88	1.28	1.19	0.84	1.18
Ni	0.81	0.90	1.53	0.92	1.10	1.78

Table 5. Free energy changes for the first PCET (eV) throughout the NRR process.

Figure 2. Optimal NRR mechanism of TM_1 -B₂N₂G-1 catalysts and their

corresponding values of free energy change.

Figure 3. Optimal NRR mechanism of TM_1 -B₂N₂G-2 catalysts and their

corresponding values of free energy change.

Figure 4. Optimal NRR mechanism of TM_1 - B_2N_2G -3 catalysts and their corresponding values of free energy change.

	Distal	Alternating	Enzymatic
$Sc_1-B_2N_2/G-1$	-1.54	-1.54	-0.85
$Ti_1-B_2N_2/G-1$	-1.07	-1.07	-1.34
$V_1-B_2N_2/G-1$	-0.59	-0.61	-0.77
$Cr_1-B_2N_2/G-1$	-0.55	-0.55	-0.43
$Mn_1-B_2N_2/G-1$	-0.64	-0.64	-1.26
$Fe_1-B_2N_2/G-1$	-0.71	-0.71	-0.97
Co_1 - B_2N_2/G -1	-1.04	-1.04	-1.19
$Ni_1-B_2N_2/G-1$	-0.94	-1.27	-0.91
$Sc_1-B_2N_2/G-2$	-1.10	-1.10	-0.62
$Ti_1-B_2N_2/G-2$	-0.94	-0.94	-0.67
$V_1-B_2N_2/G-2$	-0.75	-0.75	-0.58
$Cr_1-B_2N_2/G-2$	-0.74	-0.74	-0.54
$Mn_1-B_2N_2/G-2$	-0.74	-0.74	-0.90
Fe_1 - B_2N_2/G -2	-0.87	-0.87	-1.21
$Co_1-B_2N_2/G-2$	-1.69	-0.88	-0.84
$Ni_1-B_2N_2/G-2$	-1.69	-0.90	-1.10
$Sc_1-B_2N_2/G-3$	-1.14	-1.14	-0.64
Ti_1 - B_2N_2/G -3	-1.12	-1.12	-0.56
$V_1-B_2N_2/G-3$	-0.70	-0.70	-0.48
$Cr_1-B_2N_2/G-3$	-0.82	-0.82	-0.47
$Mn_1-B_2N_2/G-3$	-1.04	-1.04	-0.79
$Fe_1-B_2N_2/G-3$	-1.10	-1.10	-0.74
Co_1 - B_2N_2/G -3	-1.28	-1.28	-1.18
$Ni_1-B_2N_2/G-3$	-1.53	-1.53	-1.78

Table 6. Limiting potentials (U_L) for all reaction mechanisms throughout the NRR

process.

Figure 5. Potential-determining steps in the optimal NRR mechanism for all TM_1 -B₂N₂/G catalysts.

U _L (V)	$TM_1-B_2N_2/G-1$	$TM_1-B_2N_2/G-2$	$TM_1-B_2N_2/G-3$
Sc	-0.85	-0.62	-0.64
Ti	-1.07	-0.67	-0.56
V	-0.59	-0.58	-0.48
Cr	-0.43	-0.54	-0.47
Mn	-0.64	-0.74	-0.79
Fe	-0.71	-0.87	-0.74
Co	-1.04	-0.84	-1.18
Ni	-0.92	-0.90	-1.53

 Table 7. Optimal limiting potentials for all catalysts.

Figure S. Optimal NRR mechanism of Cr₁-B₂N₂G-2 and Cr₁-B₂N₂G-3 catalysts and

their corresponding values of free energy change.

Figure 7. Values of free energy change for the second NH₃ desorption.

Figure 8. The charge density difference of Cr anchored to the different B_2N_2/G supports. The yellow and cyan isosurfaces represent charge accumulation and depletion in the space. The isosurface value was set to be 0.002 e·Å⁻³.

Figure 9. The charge density of different Cr₁-B₂N₂/G catalysts

	$TM_1-B_2N_2/G-1$	$TM_1-B_2N_2/G-2$	$TM_{1}-B_{2}N_{2}/G-3$
Cr-B	0.387	0.308	0.645
Cr-N	0.794	0.734	0.778
B-N	0.094	0.028	0.095/0.037
B-B	0.037	0.814	
N-N	0.020	0.035	

Table 8. Electron localization function (ELF) values between Cr-N-B for all catalysts.

Table 9. Bader charge transferred from the supports to the transition metal during the

	$TM_{1}-B_{2}N_{2}/G-1$	$TM_{1}-B_{2}N_{2}/G-2$	$TM_1-B_2N_2/G-3$
Sc	1.666	1.469	1.540
Ti	1.551	1.379	1.393
V	1.277	1.119	1.160
Cr	1.156	0.862	0.943
Mn	1.099	0.801	0.815
Fe	0.723	0.581	0.468
Co	0.624	0.344	0.308
Ni	0.496	0.303	0.179
Cu	0.326	0.496	0.249
Zn	0.702	0.366	0.559

metal-support interaction (e^{-}).

Table 10. Bader charge transferred from the catalyst to N_2 during the N_2 activation

(e⁻).

		End-on			Side-on	
	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$	$TM_1-B_2N_2/$
	G-1	G-2	G-3	G-1	G-2	G-3
Sc	0.221	0.224	0.202	0.383	0.355	0.347
Ti	0.287	0.289	0.188	0.392	0.500	0.405
V	0.329	0.313	0.267	0.498	0.479	0.384
Cr	0.315	0.286	0.247	0.568	0.413	0.458
Μ						
n	0.311	0.273	0.155	0.501	0.396	0.236
Fe	0.328	0.262	0.186	0.423	0.323	0.345
С						
0	0.283	0.235	0.224	0.396	0.251	0.340
Ni	0.218	0.238	0.133	0.362	0.242	0.166
С						
u	0.018	0.151	0.014	0.010	0.013	0.015
Ζ						
n	0.016	0.010	0.021	0.014	0.011	0.021

Figure 10. The partial Crystal Orbital Hamiltonian Population (pCOHP) of $N \equiv N$ bonds in TM₁-B₂N₂/G-1 catalysts adsorbed with N₂ in Side-on mode.

Figure 11. The pCOHP of $N \equiv N$ bonds in TM₁-B₂N₂/G-2 catalysts adsorbed with N₂

in Side-on mode.

Figure 12. The pCOHP of $N \equiv N$ bonds in TM₁-B₂N₂/G-3 catalysts adsorbed with N₂

in Side-on mode.

Figure 13. The pCOHP of $N \equiv N$ bonds in TM₁-B₂N₂/G-1 catalysts adsorbed with N₂

in End-on mode.

Figure 14. The pCOHP of $N\!\equiv\!N$ bonds in $TM_1\text{-}B_2N_2/G\text{-}2$ catalysts adsorbed with N_2

in End-on mode.

Figure 15. The pCOHP of $N \equiv N$ bonds in TM₁-B₂N₂/G-3 catalysts adsorbed with N₂

in End-on mode.

Figure 16. The volcano plot of $N \equiv N$ Bader charge versus the valence electron

number (δ) of transition metal single atom.