Supplementary Materials

In situ synthesis of nanosized ZSM-12 zeolite isomorphously substituted by gallium for the *n*-hexadecane hydroisomerization

Hailong Lin, Chang Xu, Wei Wang^{*}, Wei Wu^{*}

National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, Heilongjiang, China.

*Correspondence to: Prof. Wei Wang, Prof. Wei Wu, National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, No. 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang, China. E-mail: wangw@hlju.edu.cn; wuwei@hlju.edu.cn

Supplementary Figure 1. N₂ adsorption-desorption isotherms of (A) Z12, [Ga,A1]Z12 and GaZ12 samples and (B) 0.3Pd/A-Z12, 0.3Pd/A-[Ga,A1]Z12, 0.3Pd/A-GaZ12 and 0.3Pd/Z12-A catalysts.

Supplementary Figure 2. FT-IR spectra of Z12, [Ga,A1]Z12 and GaZ12 samples.

Supplementary Figure 3. ²⁹Si MAS NMR spectra of (A) Z12, (B) [Ga,Al]Z12 and (C) GaZ12 samples.

Samples	ICP results (wt.%)				
	Si	Al	Ga		
Z12	98.47	1.53	-		
[Ga,Al]Z12	98.40	1.30	0.30		
GaZ12	97.17	-	2.83		

Supplementary Table 1. The ICP data of the Z12, [Ga,Al]Z12 and GaZ12 samples

Supplementary Figure 4. H₂-TPR profiles of Z12, [Ga,A1]Z12 and GaZ12 samples.

Supplementary Figure 5. NH₃-TPD profiles of Z12, [Ga,A1]Z12 and GaZ12 samples.

Supplementary Figure 6. Py-IR spectra of Z12, [Ga,A1]Z12 and GaZ12 samples at (A) 200 °C and (B) 350 °C.

Supplementary Figure 7. The XRD patterns of 0.3Pd/Z12-A, 0.3Pd/A-Z12, 0.3Pd/A-[Ga,A1]Z12 and 0.3Pd/A-GaZ12 catalysts.

Catalysts	Surface area (m ² /g)			Pore volume (cm ³ /g)		
	BET	Micropore ^a	External	Total ^b	Micropore ^a	Mesopore
0.3Pd/Z12-A	275	77	198	0.291	0.030	0.261
0.3Pd/A-Z12	264	82	182	0.280	0.031	0.249
0.3Pd/A-[Ga,A1]Z12	272	69	203	0.312	0.027	0.285
0.3Pd/A-GaZ12	270	59	211	0.307	0.023	0.284

Supplementary Table 2. The textural property of 0.3Pd/Z12-A, 0.3Pd/A-Z12, 0.3Pd/A-[Ga,Al]Z12 and 0.3Pd/A-GaZ12 catalysts

Obtained by ^a t-plot method, ^b Volume adsorbed at $p/p_0 = 0.99$.

	Metal	Synthesis method of		Yield of		
Catalysts	loading	synthesis method of	n-alkanes	iso-alkanes	Reference	
	(wt%)			(%)		
Dt/7SM 12	0.5	Hydrothermal synthesis				
		with rigid diquaternary	n havadacana	72.0	[3]	
102311-12		ammonium compounds	<i>n</i> -nexadecane	72.0	[3]	
		as template				
	0.5	One-pot synthesis with		77.4	[4]	
Pt/Z12-F		NaF added in the initial	<i>n</i> -dodecane			
		gel				
Pt/ZSM12-at	0.5	Post treatment by 0.2M	n havana	~53	[5]	
		NaOH aqueous solution	<i>n</i> -nexane	~55	[9]	
	0.5	One-pot synthesis with				
Pt/Z22-P		PHMB added in the	<i>n</i> -hexadecane	76.6	[6]	
		initial gel				
Pt/ZSM-22	0.5	Post treatment by NaOH		≈75.0	[7]	
		and HCl aqueous	n-octane			
		solution				
		One-pot synthesis with				
Pt/B-ZSM-22	0.5	boric acid added in the	n-dodecane	≈73.0	[8]	
		initial gel				
Pt/ZSM-22	0.5	Hydrothermal synthesis		52.1	[9]	
		with ethanol as	n-dodecane			
		co-solvent				
0.3Pd/A-GaZ12	0.3	One-pot synthesis with		80.6	This work	
		Ga ₂ O ₃ added in the	<i>n</i> -hexadecane			
		initial gel				

Supplementary Table 3. Comparison of catalytic performance for *n*-alkane hydroisomerization over bifunctional catalysts in reported works and this work

			Ľ		
Catalysts	Μ	В	С	Nc ^d	n _{as} e
0.3Pd/Z12-A	0.72 ^a	$0.08^{a} \times 2.5^{b} = 0.20$	0.20 ^a ×4.43 ^c =0.89	2.85	1.81
0.3Pd/A-Z12	0.76 ^a	$0.10^{a} \times 2.5^{b} = 0.25$	0.14 ^a ×4.39 ^c =0.61	2.78	1.62
0.3Pd/A-[Ga,A1]Z12	0.80^{a}	0.10 ^a ×2.5 ^b =0.25	0.10 ^a ×4.38 ^c =0.44	2.75	1.49
0.3Pd/A-GaZ12	0.84 ^a	0.08 ^a ×2.5 ^b =0.20	0.08 ^a ×4.21 ^c =0.34	2.41	1.38

Supplementary Table 4. N_{as} values of 0.3Pd/Z12-A, 0.3Pd/A-Z12, 0.3Pd/A-[Ga,Al]Z12 and 0.3Pd/A-GaZ12 bifunctional catalysts

^a Wt.% of mono-branched (M), multi-branched (B) *iso*-hexadecanes and cracked products (C).

^b Acid steps number involved in the transformation of one molecule of *n*-C₁₆ into B product.

^c Acid steps number involved in the transformation of one molecule of *n*-C₁₆ into C product.

^d Nc: The number of generated molecules per molecule of cracked n-C₁₆.

 $n_{as}=M\times1+B\times2.5+C\times[4+(Nc-2)/2]$

Supplementary Figure 8. Products distribution in the kinetic control region (at n-C₁₆ conversion of 9~14%) over 0.3Pd/A-Z12, 0.3Pd/A-[Ga,A1]Z12 and 0.3Pd/A-GaZ12 bifunctional catalysts.

REFERENCES

1. Kim K, Ryoo R, Jang HD, Choi M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. *J Catal* 2012;288,115-123. [DOI: 10.1016/j.jcat.2012.01.009]

2. Emeis CA. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. *J Catal*

1993;141:347-354. [DOI: 10.1006/jcat.1993.1145]

3. Li S, Mezari B, Wu H, Kosinov N, Hensen EJM. ZSM-12 nanocrystals with tunable acidity directed by rigid diquats: Synthesis and catalytic applications. *Fuel* 2023;333:126363. [DOI: 10.1016/j.fuel.2022.126363]

4. Wang S, Wang C, Liu H, et al. Acceleration effect of sodium halide on zeolite crystallization: ZSM-12 as a case study. *Micropor Mesopor Mat* 2022;331:111652.
[DOI: 10.1016/j.micromeso.2021.111652]

5. Lu X, Guo Y, Zhang Y, Ma R, Fu Y, Zhu W. Enhanced catalytic activity of

Pt/H-ZSM-12 via alkaline post-treatment for the hydroisomerization of n-hexane. *Micropor Mesopor Mat* 2020;306:110459. [DOI: 10.1016/j.micromeso.2020.110459]

6. Xiong S, Sun J, Li H, Wang W, Wu W. The synthesis of hierarchical ZSM-22 zeolite

with only the PHMB template for hydroisomerization of n-hexadecane. Micropor

Mesopor Mat 2024;365:112895. [DOI: 10.1016/j.micromeso.2023.112895]

7. Verboekend D, Thomas K, Milina M, Mitchell S, Perez-Ramirez J, Gilson JP.

Towards more efficient monodimensional zeolitecatalysts_n-alkane

hydro-isomerisation on hierarchical ZSM-22. *Catal Sci Technol* 2011;1:1331-1335. [DOI: 10.1039/c1cy00240f]

8. Niu P, Liu P, Xi H, et al. Design and synthesis of Pt-ZSM-22 catalysts for selective formation of iso-Dodecane with branched chain at more central positions from n-dodecane hydroisomerization. *Appl Catal A: Gen* 2018;562:310-320. [DOI: 10.1016/j.apcata.2018.06.025]

9. Chen Z, Liu S, Wang H, et al. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance. *J Catal* 2018;361:177-185. [DOI: 10.1016/j.jcat.2018.02.019]