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Abstract
Endothelial cell-derived extracellular vesicles are produced by both activated and apoptotic endothelial cells, and 
play a pivotal role in various physiological conditions such as inflammation, repair, programmed cell death, and 
immune responses. There is a large body of evidence on the dysregulation of synthesis and secretion of several 
types of endothelial cell-derived extracellular vesicles, which can then trigger microvascular inflammation, 
atherosclerotic plaque formation, plaque rupture, thrombosis and endothelial dysfunction. The development of 
atherosclerosis and cardiovascular events is associated with an increased number of apoptotic, endothelial cell-
derived vesicles and a decrease in activated, endothelial cell-derived vesicles. This review depicts the role of 
endothelial cell-derived extracellular vesicles in the manifestation and progression of atherosclerosis. We also 
discuss the clinical use and benefits of altering the immune phenotypes of extracellular vesicles originating from 
endothelial cells, to function as predictive biomarkers in both asymptomatic and subclinical atherosclerosis.
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INTRODUCTION
Atherosclerosis remains a leading cause of major cardiovascular events (MACEs) and cardiovascular (CV) 
diseases worldwide. It represents a serious economic burden on the healthcare system and is associated 
with high rates of mortality and morbidity[1]. While there has been a steady trend towards decreasing CV 
mortality from conditions associated with atherosclerosis such as stroke and myocardial infarction in 
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developed countries over the last decade, mortality trends from coronary artery disease (CAD) have been 
more varied[2,3]. The decline in risk of potentially fatal complications from atherosclerosis in high-income 
countries has been reported to be closely connected with improved control of conventional CV risk factors 
such as hypertension, obesity and smoking, after implementation of current clinical guidelines[4,5]. Overall, 
the impact of atherosclerosis on MACEs, CV disease manifestation and disability in both developed and 
developing countries continues to be under investigation because full control of traditional CV risk factors 
(i.e., dyslipidemia, and diabetes mellitus) did not achieve disease reversal.

Non-adaptive remodeling in atherosclerosis leads to plaque formation, which is a consequence of events 
including endothelial dysfunction, impaired vascular repair, systemic and microvascular inflammation, 
and the migration, proliferation and phenotypic switch of smooth muscle cells[6]. There are numerous 
cellular and molecular mechanisms that contribute to the initiation and progression of vascular lesions 
in atherosclerosis including the infiltration of oxidized lipids into the sub-intima, transformation of 
macrophages from an anti-inflammatory into a pro-inflammatory phenotype, modification of the 
extracellular matrix due to imbalance between activities of matrix metalloproteinases and their inhibitors, 
the development of foam cells, over-production of inflammatory cytokines in the atherosclerotic plaque and 
within the sub-intima layer, expansion of the lipid core in the plaque and vascular tone dysregulation[7-9]. In 
turn, endothelial and vascular integrity are ensured by interaction of genetic and epigenetic programs that 
play a pivotal role in the maintenance of vascular homeostasis[10,11]. 

Previous pre-clinical and clinical studies have shown that extracellular vesicles (EVs) originate from 
progenitor and mature endothelial cells. EVs may act both locally and remotely as powerful regulators 
of vascular function and integrity through the transfer of biological information[12-14]. EVs are also 
involved in several pathological processes underlying progression of atherosclerosis such as systemic and 
microvascular inflammation, immunity, signal transduction, cell proliferation, differentiation, survival and 
apoptosis, as well as neovascularization, angiogenesis, thrombosis, and autophagy[14-16]. The purpose of this 
review is to summarize current knowledge on the role of endothelial cell-derived EVs in the manifestation 
and progression of atherosclerosis, and to discuss the clinical use and benefits of using altered immune 
phenotypes of these endothelial-cell derived EVs as predictive biomarkers in both asymptomatic and 
subclinical atherosclerosis.

DEFINITION AND NOMENCLATURE OF EVS
EVs are a heterogenic population of secreted, membrane-enclosed particles. This includes exosomes, 
ectosomes, microvesicles, smal size microvesicles, micro particles, nano particles, apoptotic bodies 
and other subsets. Some (ectosomes and micro particles) are not distinct from each other, and several 
classification approaches (sedimentation speed-derived criteria, immune phenotype, origin, mechanism of 
release, and size) were applied to EV subsets to qualify them in some categories. 

According to the last update of the Executive Committee of the International Society for EVs, EVs are 
defined as a mixture of particles ranging from 30-2000 nm in diameter, released by various types of viable 
cells through several mechanisms (blebbing and budding of endosomal or plasma membranes) and include 
exosomes, microvesicles and apoptotic bodies[17]. EV subtypes are defined according to numerous physical 
characteristics however, such as size (small, medium and large EVs with diameters < 100 nm, 100-200 nm 
and > 200 nm), density (low, middle, and high, with each range defined), biochemical composition (CD63+/
CD81+, Annexin A5-stained), and descriptions of conditions or cell of origin (e.g., podocyte EVs, hypoxic 
EVs, large oncosomes, apoptotic bodies). Although the terms “exosome” and “microvesicle” are historically 
burdened by both manifold and inaccurate definitions, Table 1 reports both under the nomenclatures of 
EVs to easily understand the basic characterictics of several subtypes of EVs.
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BASIC CHARACTERISTICS OF EV SUBSETS
Small EVs
Small EVs are also known as exosomes. They are a derivate of the endocytic membrane with an average 
diameter of 40-100 nm and are released from several types of cells as a result of exocitosis and production 
of multi vesicular bodies[18,19]. Multi vesicular bodies move along intracellular tubules, fuse with the plasma 
membrane and release exosomes into the extracellular space. Small EVs have various cellular components 
including cytoplasmic and membrane molecules, proteins, hormones (aldosterone), growth factors 
(vascular endothelial growth factor, transforming growth factor), cytokines [interleukin (IL)-1β, IL-6, IL-8] 
and lipids, as well as fragments of chromatin, such as non-coding RNAs and several inactive forms of 
micro RNAs[18,19]. There is also a common set of membrane and cytosolic proteins, which are embedded 
into exosomes that have originated from distinct cell types[20]. The specific surface markers that ensure 
recognition of the exosomes are tetraspanins (CD9, CD63, CD81), ESCRT (endosomal sorting complexes 
required for transport) machinery proteins (Alix, tumor susceptibility gene 10), and flotillin-1[21]. 

Medium/large EVs
Medium/large EVs (also known as microvesicles, micro particles, ectosomes) range in diameter from 100 
to 1000 nm and result from budding of the cell membrane[22]. Medium/large EVs are heavily enriched in 
phospholipids, such as phosphatidylserine and phosphatidylcholine, and numerous membrane-dependent 
structures (receptors, CD markers) that originated from the parent cells[23]. Proteomics and lipidomics 

Table 1. Nomenclature and basic characteristics of several subtypes of EVs

Characteristics of EVs
Subpopulations of EVs

Ref.
Exosomes (small EVs) Microvesicles (ectosomes, 

medium/large EVs) Apoptotic bodies

Diameter, nm 40-100 100-1000 50-2000 [17]
Origin Endocytic membrane Cell membrane Apoptotic cells [18]
Mechanism of delivery Ceramide-dependent, 

tetraspanin-dependent, and 
ESCRT-dependent exocytosis 
of multi vesicular bodies

Ca2+ depending phospholipid 
redistribution and Rho-kinase-
mediated myosin light chain 
phosphorylation, facilitating 
budding and blebbing

thin membrane protrusion and 
blebbing of the apoptotic cells’ 
surface

[20,21]

Phosphatidylserine 
composition

Low High High [22]

Complexity/granularity High High Low [26,27]
Components Cytoplasmic and membrane 

molecules, proteins and lipids, 
tetraspanin’s receptors

Adhesive molecules (ICAMs, 
PECAM-1, MCAM), membrane 
regulatory proteins (Rab), 
lipids (SpL, PL, LPS, LPS) 
and receptors (tetraspanin’s 
receptors, LAIR-1, EGFR), 
enzymes (Rab GTPase, ERK, 
MLCK, TPI-1, HMGCL), 
immune system proteins 
(CD14, CD276, MiC-
11), apoAII, SOD, β-actin, 
α-actin-4, HSP90AB1, 
cytochrome complex, SCP-2

Mitochondria, MHC 
II molecules, ICAM-3, 
phosphatidylserine, sialylated 
and glycosylated ligands

[28,29,31,35]

Nuclear fractions mRNA and microRNA, other 
non-coding RNAs 

non-coding RNAs non-coding RNAs

Specific surface markers Tetraspanins (CD9, CD63, CD 
81), ESCRT machinery proteins 
(Alix, tumor susceptibility gene 
10), flotillin-1

CD40, Phosphatidylserine, 
integrins, selectins, ESCRT 
machinery proteins (Alix, 
Vps4)

Annexin A5, 
phosphatidylserine, caspase 3, 
histones

Key functional role Cell-to-cell communication, 
cargo

Cell-to-cell communication, 
cargo

Cell-to-cell communication, 
cell clearance

SOD: superoxide dismutase; HSP: heat shock protein; SCP-2: sterol carrier protein 2; TPI-1: triosephosphate isomerase 1; HMGCL: 
3-hydroxy-3-methylglutaryl-CoA lyase; ESCRT: endosomal sorting complexes required for transport; ERK: a prototypic mitogen-activated 
protein kinase; EVs: extracellular vesicles



structure of microvesicles is extremely variable and includes membrane regulatory (Rab, Sterol Carrier 
Protein 2) and structure (β-actin, α-actin-4) proteins, heat shock proteins HSP90AB1, adhesive molecules 
(ICAMs, PECAM-1, MCAM), lipids (SpL, PL, LPS, LPS) and receptors (tetraspanin’s receptors, LAIR-1, 
EGFR), enzymes (superoxide dismutase, Rab GTPase, cytochrome complex, Akt/ERK, triosephosphate 
isomerase -1, 3-Hydroxy-3-Methylglutaryl-CoA Lyase), immune system proteins (CD14, CD276, MiC-11), 
and apo-lipoproteins (apo-A-II)[24-26]. Therefore, microvesicles may yield several non-coding RNAs and 
chromatin fragments coupled with the complexity of other components[27].

Apoptotic cell-derived EVs
Apoptotic cell-derived EVs include two types of apoptotic bodies: large membrane-bound vesicles [large 
apoptotic bodies (ABs) with diameter ≥ 1000 nm] and small apoptotic microvesicles (small ABs with 
diameter < 1000 nm)[28]. ABs are particles that are generally larger in size in comparison to both exosomes 
and microvesicles but have a variable diameter that fluctuates around 1000 nm (from 1000 nm to 2000 nm)[29]. 
Both types of ABs result from blebbing of the surface of apoptotic cells and contain proteins, numerous cell 
organelles and chromatin fractions, such as non-coding RNAs from the nucleus or nucleoli[30]. The process 
of AB generation is controlled by several distinct morphological steps (i.e., membrane permeability and 
blebs, membrane protrusion, and cell fragmentation), which are, in turn, regulated by several molecular 
factors including the Rho-associated protein kinase and the plasma membrane channel pannexin-1.

ABs contain mitochondria, MHC II molecules, ICAM-3, phosphatidylserine, sialylated and glycosylated 
ligands, fragments of chromatin, DNAs, and non-coding RNAs. It has been noted that the packaging of 
chromatin content (DNAs and non-coding RNAs) into the structure of ABs is regulated by apoptosis 
and there are indeed, ABs with no fragments of chromatin or very low amounts of DNAs[31]. ABs are also 
classified depending on their origin from the mother cells including antigen-presenting cells, mononuclear 
cells, endothelial cells, fibroblasts, cardiac myocytes, and epithelial cells[32]. The clearance of ABs has been 
ensured by phagocytes[33]. To accurately differentiate ABs from other particles including cells and debris, 
there are several specific surface markers such as Annexin A5/phosphatidylserine[34].

Biological role of EVs
The key biological functions of EVs that originate from various cells are cell-to-cell communication 
and the transfer of materials called the secretome. Acting as cargo for numerous molecules [heat shock 
proteins (HSP-90, HSP-70), ILs, tumor necrosis factor-alpha, active molecules, enzymes, peptides, growth 
factors], EVs are recognized by target cells through specific antigens, bind and fuse with them to supply 
the packaged materials within to the cells. Therefore, small and medium/large EVs have wide range of 
biological functions including immune response, antigen presentation, and the transfer of RNA and 
DNA[29,35]. The full spectrum of pleiotropic effects of circulating EVs is shown in Figure 1.

Recent studies have revealed that EVs may contain inactive forms of non-coding RNAs, which can be 
transferred to another cell and become functional in that new microenvironment[36,37]. Indeed, there 
is strong evidence that hypoxia and ischemia are triggers for monocyte-dependent production of pro-
inflammatory cytokines including IL-2 and TNF-alpha, and the supply of these cytokines to target cells 
are mediated through package as cargo into EVs[38]. On the other hand, HSPs, growth factors, non-coding 
RNAs, and active molecules, which are all transferred by EVs, are involved in the regulation of reparative 
response, immune reactions and cytoprotection[39,40]. The wide spectrum of biologically active molecules 
that are transported by EVs from the mother cells to target cells are able to regulate the endogenous repair 
system activity including proliferation, differentiation and migration of endothelial progenitor cells and 
angiogenesis[41,42]. Through appropriate receptor-ligand (integrin αvβ3, CD40 ligand, neuregulin-1, VE-
cadherin and beta-catenin) interactions and the cargo content of EVs, the intracellular signaling pathways 
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can be regulated to ensure activation of endothelial cells as well as the attraction and internalization of 
various types of circulating blood cells (platelets, mononuclear cells, macrophages, lymphocytes) by the 
endothelial cell surface[42]. Moreover, vascular growth, restoration of vascular integrity and function, as 
well as the recruitment of inflammatory cells, may all be directly related to up-regulated expression of 
neuregulin-1 in endothelial cells as a result of EV-dependent stimulation, because circulating EVs can be 
a source of a variety of pro-angiogenic mRNAs including neuregulin-1 mRNA[43]. Additionally, EVs may 
induce a cytoskeleton-junction response from endothelial cells that is characterized by myosin light chain 
phosphorylation, contractile fiber reorganization, VE-cadherin phosphorylation and adherent junction 
dissociation. This process is a key mechanism of increasing permeability of the vascular wall, releasing 
neutrophil extracellular traps containing citrullinated histones and myeloperoxidase, and in developing 
senescence and acceleration of atherosclerosis[44-46]. The proteome of EVs consists of pro-coagulant 
components such as tissue factor and phospholipids, which play a pivotal role in coagulation and the 
triggering of vasoocclusion in CAD[47,48].

EVS IN VARIOUS STAGES OF ATHEROSCLEROSIS DEVELOPMENT
Modification of macrophages’ phenotype and function
Macrophages are the primary antigen-presenting cells in atherosclerotic lesions and provide the 
fundamental link between microvascular inflammation and atherosclerotic plaque development and 
progression. It has been suggested that endothelial cell-derived EVs export microRNA-92a from mother 
cells to macrophages in response to atheroprone stimuli to change macrophage phenotype, regulate their 
functions and enhance atherosclerotic plaque shaping[49]. Indeed, over-expression of microRNA-92a in 
endothelial cells in atherosclerosis enhances the pro-inflammatory response in the vasculature, supports 
low-density lipoprotein (LDL) uptake, and impairs the migration of macrophages through changes in 
their phenotype from atheroprotected to atheroprone[50]. Interestingly, the expression of microRNA-92a 
in mature endothelial cells is up-regulated by the combination of several factors such as low shear stress, 
atherogenic oxidized LDL, IL-6, atheroprotective Kruppel-like factor (KLF)-2 and KLF-4, and suppressor 
of cytokine signaling 5[51,52]. The expression of pro-inflammatory cytokine-induced markers such as 

Figure 1. Pleiotropic effects of extracellular vesicles
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monocyte chemotactic protein 1, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, VE-cadherin, 
and endothelial nitric oxide synthase, as well as KLF-2 and KLF-4, all strongly correspond to down-
regulated microRNA-92a in the endothelium in animals[53]. Therefore, atherosclerosis induces oxidized 
LDL, and KLF-2 regulates the expression of inflammation-associated microRNA-155 in endothelial 
cells[53]. Moreover, it has been found that endothelial cell-derived EVs enriched in oxidized LDL and 
microRNA-155 influenced monocyte activation by shifting the monocytes/macrophages balance in the 
vasculature from the anti-inflammatory M2 phenotype of macrophages to the pro-inflammatory M1 
phenotype of macrophages[52,53]. Accumulation of macrophages with the M1 phenotype in the vascular 
wall also ensured a link between microvascular inflammation and impaired vasodilatory responses to flow 
via the regulation of microRNA-92-dependent presentation of KLF-2 and oxidative stress stimulation[54,55]. 
Additionally, endothelial cell-derived EVs that were packaged with pyruvate kinase muscle isozyme 2 
triggered re-programming of B cells and the activation of T cells via its cargo of interferon-gamma[56]. This 
mechanism was found to be an important element for the suppression of mononuclear transformation 
into macrophages with the inflammatory phenotype. The total number of endothelial cell-derived EVs 
was significantly and positively correlated with oxidative stress and systemic inflammation in healthy 
younger individuals. While the ability of activated endothelial cells to release EVs packed with pro-
angiogenic molecules progressively decreases in patients with established CAD, apoptotic endothelial 
cell-derived EVs appear to be detected in higher concentrations[57,58]. This phenomenon probably reflects 
maladaptive responses of the endothelium in advanced atherosclerosis and decreased control of local 
vascular inflammation is associated with an altered, intra-plaque immune phenotype of the cells including 
macrophages and endothelial cells [Figure 2]. It is not clear whether local vascular injury appears first or 
the alteration in gene regulation of pro-inflammatory genes emerges initially as a microvascular response, 
thereby triggering acceleration of atherosclerosis.

Figure 2. The controversial roles of apoptotic endothelial cell-derived EVs and activated endothelial cell-derived EVs in vascular 
homeostasis. EVs: extracellular vesicles; LDL: low-density lipoproteins; ROS: reactive oxide species; TGF: transforming growth factor; 
GDF-15: growth-differential factor-15; sST2: soluble suppressor tumorigenisity-2
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Mediating angiogenesis and neovascularization 
Endothelial cell-derived EVs are involved in the regulation of vascular function, integrity and angiogenesis 
through transportation of a wide spectrum of micro-RNA (microRNA-126-3p, microRNA-222-3p, 
microRNA-let-7d-5p, microRNA-21-5p, microRNA-26a-5p, microRNA-92a-3p, microRNA-139-5p, 
microRNA-30b-5p, microRNA-150 and microRNA-199a-5p) that have been implicated in MAPK/ERK1/2, 
c-Jun N-terminal kinases/stress-activated kinases signaling cascade, and nuclear factor-κB signaling 
pathway to target cells [progenitor and mature endothelial cells, macrophages, smooth muscle cells (SMC), 
fibroblasts] in arterial endothelium[51,52,59,60]. There is evidence that the expression of thrombospondin 1 
(THBS1), an inhibitor of angiogenesis and a target for microRNA-92a-3p, was significantly up-regulated 
in the endothelial cells in atherosclerosis and that endothelial cell-derived EV transferred microRNA-
92a-3p to reduce THBS1 expression[52]. Interestingly, the number of activated endothelial cell-derived 
EVs decreased, whereas the number of apoptotic endothelial cell-derived EVs increased in patients 
with atherosclerosis when compared with healthy individuals. This discrepancy was found to be closely 
associated with impaired repair in atherosclerotic injury of the vasculature[61].

Plaque formation and vascular calcification
Endothelial cell-derived EVs contain a wide spectrum of intercellular signaling molecules, enzymes, 
regulatory proteins, and growth factors, all of which are involved in the regulation of plaque formation and 
vascular calcification[61,62]. Transforming growth factor-beta (TGF-β), which induces the expression of von 
Willebrand Factor, proliferation of SMCs and progenitor endothelial cells, and recruitment of monocytes/
macrophages, is transferred by activated endothelial cell-derived EVs[63,64]. There is a wide range of 
evidence that pro-inflammatory cytokines including tumor necrosis factor-alpha and some adipocytokines 
(adiponectin) induce VCAM-1 production in mature endothelial cells, which is then accompanied by 
enhanced circulating leukocyte attachment and a weakened ability to release EVs after activation[65,66]. 
Therefore, the cellularity of the plaque can be modified by signaling molecules transferred by EVs. Indeed, 
deficiencies in endothelial microRNA-126 and microRNA-92a transmitted as cargo with endothelial cell-
derived EVs has demonstrated acceleration of neointimal lesion formation of carotid arteries, increased 
smooth muscle cell turnover, and its release was reduced by atheroprotective laminar shear stress[67-69]. It 
has been established that autophagy of endothelial cells, fibroblasts, and CD45+ hematopoietic cells that 
accumulates into an atheroma plays a certain role in shaping vulnerable plaques and act as a trigger for 
plaque rupture[70]. There were intriguing findings that clarify a role of down-regulated microRNA-92a-
3p in endothelial cell autophagy through de-repressed autophagy-related gene 4a and increasing activity 
of luciferase in autophagy-related gene 4a containing 3’UTR[71,72]. Moreover, EV-derived microRNA-
92a-3p upregulates the expression of cell cycle and mitosis-related genes including claudin-11, and 
downregulates the adhesion-related gene expression in endothelial and foam cells[73]. Thus, the packaging 
and transfer of microRNA-92a-3p by endothelial cell-derived EVs ensures both a protective effect and 
induces repair of the endothelium, thereby preventing plaque rupture and intravascular thrombosis[74].

The mediation of osteogenic trans-differentiation of vascular SMCs by inflammation, endothelial 
dysfunction and reactive oxygen species by EVs may be considered as the key regulators of vascular 
and plaque calcification. EVs also participate in the formation of microvascular calcifications that are 
implicated in atherosclerotic plaque formation and rupture[75,76]. Interestingly, the release of exosomes by 
EVs may promote microvascular calcification in response to environmental calcium stress[75]. Sortilin, 
which is a key regulator of SMC calcification through its recruitment to EVs[76], has been found to regulate 
loading of the calcification protein - tissue nonspecific alkaline phosphatase - into EVs and thereby confer 
calcification potency. SMC calcification also requires Rab11-dependent trafficking and FAM20C/casein 
kinase 2-dependent C-terminal phosphorylation of sortilin; the deficiency of sortilin was thus found to 
suppress ectopic vascular calcification[75,76]. Although it is not clear how EVs influence vascular calcification, 
previous clinical studies have shown that cell plaque composition, volume of the plaque, a lipid core and 
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the Agatston coronary calcium score were all inversely correlated with the number of endothelial cell-
derived EVs[77]. However, a recent clinical study based on positron emission tomography/computed 
tomography imaging has shown that early microvascular calcifications can be identified frequently, even 
in high-risk patients with plaques[78]. Early microvascular calcification was found to be associated with 
atherosclerotic plaque instability and rupture, whereas advanced macrovascular calcification can potentially 
contribute to plaque stability[79,80]. There is a suggestion that M1 macrophages that have accumulated in 
a plaque may release EVs enriched in S100A9 and annexin A5 as a result of weakly activated endothelial 
cell-derived EVs’ stimulation. This contributes to accelerated trans-differentiation of SMCs into osteogenic 
cells, and the potentiation of microvascular calcification[79]. Notably, endothelial cell-derived EVs contain 
bone-related matricellular proteins (osteopontin, osteonectin, osteoprotegerin) and the deficiency of 
these EVs in the circulation may impair the migration of and cell fusion required for osteoclast formation 
in the vasculature[81,82]. Moreover, the immune phenotype and the number of cells accumulating into an 
atheroma, as well as the extracellular environment are all under the control of endothelial cell-derived 
EVs[83]. In fact, EVs originating from progenitor and mature endothelial cells have the unique ability of 
regulating the osteogenic transformation of SMCs and the activation of fibroblasts in the vasculature. 
The endothelial cell-derived EVs support microvascular calcification in the collagen-poor fibrous cap, 
and promote plaque rupture by acting through the TGF-β/SMAD signaling and platelet-derived growth 
factor-BB pathway[84]. Interestingly, endothelial cell senescence may increase the release of EVs as carriers 
of molecular information, which then contributes to the development and calcification of atherosclerotic 
plaques. The role of senescent EVs in microvascular calcification is not certain however, and requires 
further investigation[85]. Whether the altered balance between EVs produced by activated and apoptotic EVs 
is a cause of microvascular calcification, or if the adaptive reaction prevents inflammatory-related injury of 
the vasculature and thereby reduce the risk of calcification, is not fully understood. 

Endothelial dysfunction and EVs
Endothelial cell-derived EVs are established biomarkers of endothelial dysfunction[86]. The interplays 
between cell components that are embedded into the pathogenesis of vascular tone impairment and 
vascular remodeling in atherosclerosis are mutually activated and sophisticated. There is a wide range 
of evidence that foam cells and both progenitor and mature endothelial cells may work with each other 
by releasing exosomes and ABs. Foam cells may secrete exosomes that suppress endogenous activity of 
endothelial cells and their precursors to modulate endothelial-dependent vasodilatation and prevent 
intravascular blood cell adhesion and thrombosis[87]. Moreover, the foam cell-derived EVs promote 
migration and proliferation of SMCs by regulating the actin cytoskeleton and focal adhesion via ERK and 
Akt pathways, thereby acting as a trigger of atherosclerosis[87].

There are findings that demonstrate a causative impact of EV-packaged microRNA-145, microRNA-150 
and microRNA-126 on the progression of endothelial dysfunction and atherosclerosis in vivo[88]. These 
microRNAs appear to respect tissue specificity and are both expressed in and released from endothelial cells 
due to several stimuli including shear stress, inflammatory cytokines, cell adhesion and thrombosis. Down-
regulated microRNA-145, which plays a key role in the control of SMC differentiation, promotes lesion 
formation. The endothelial cell-specific microRNA-126 is a powerful signal transducer, which is essential 
for endothelial repair through its transfer from apoptotic endothelial cells derived EVs. Interestingly, 
splicing of the X-box binding protein 1 (XBP1) in vascular SMCs may control endothelial cell migration via 
EVs-mediated transfer of microRNA-150 and microRNA-150-driven vascular endothelial growth factor-
dependent PI3K/Akt pathway activation, thereby supporting homeostasis of the vasculature[89]. In fact, 
XBP1 deficiency in vascular SMCs and endothelial progenitor cells significantly attenuate angiogenesis 
and neovascularization, as well as maintain endothelial integrity and resistance to apoptosis[90,91]. Foam 
cell shaping driven by CD36 mediated internalization of oxidized LDL activates mononuclear cells and 
endothelial cells, and the subsequent release of EVs embedded with pro-inflammatory leukotriene B4, 
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which promotes endothelial dysfunction and accelerates atherosclerosis through the high-affinity receptor 
BLTR1[92]. In fact, the presence of dysregulated inflammatory molecules on the surface of the endothelial 
cell layer was associated with increased coagulation due to over-expression of the glycoprotein (GP) IIb/
IIIa (integrin αIIbβ3) receptor, anomalous clot formation or shaping amyloid fibrin[93,94]. Importantly, 
the GPIIb/IIIa receptors were additionally shed into EVs and transferred as cargo to the target cells for 
translation of activation signals remotely. Another finding has demonstrated that heat shock protein 
27 (HSP27) packaged into EVs via activating TLR-4/NF-κB in the target cells can attenuate endothelial 
function, reduce vascular and plaque inflammation, lower cholesterol levels and suppress atherogenesis 
in animal models[95]. However, the angiopoetic role of activated endothelial cell-derived EVs is not always 
considered as having a positive impact on the endothelium. For instance, neovascularization of the 
shoulder region of the plaque’s cap was associated with instability of the atheroma due to the increased 
risk of rupture[94,96]. There are several excellent reviews that are dedicated the role of EVs in vascular 
homeostasis and its relation to CV disease development[97,98]. Thus, EVs promote the function of target cells 
through the transfer of surface integrins and receptors, cellular fusion and the delivery of various active 
molecules.

EVs as diagnostic and predictive biomarkers of atherosclerosis
The diagnostic and predictive roles of endothelial cell-derived EVs in atherosclerosis and MACEs are 
uncertain[99]. However, there has been progress in the diagnosis, prognostication and treatment of CV 
diseases with EVs[100]. For instance, HSP27 packaged in endothelial cell-derived EVs was found to be a 
predictor of a lower CV risk among patients having a heart attack, stroke, or death from CV disease[95]. The 
imbalance between activated and apoptotic endothelial cell-derived EVs has provided additional prognostic 
information for patients with established CV disease, including acute myocardial infarction, acute coronary 
syndrome, ischemic heart failure, MACEs, and arrhythmias, as well as individuals with metabolic diseases 
having a higher risk of CV events and disease[101-104].

Future directions toward the role of EVs in atherosclerosis
EVs have demonstrated a pivotal role in transferring numerous bioactive molecules, supporting cell-to-cell 
cooperation, and regulate gene expression in target cells. EVs-based therapeutic regenerative strategies may 
thus be used to attenuate tissue injury and promote vascular regeneration and repair[105,106]. Accumulating 
evidence implicates EVs in the development and progression of atherosclerosis, and creates the possibility 
of using EVs for personalized therapeutic strategies. Therefore, single-EV analysis may identify signatures 
of exosome-derived DNA/non-coding RNAs including microRNA, regulator proteins, and other 
components both as diagnostic and predictive biomarkers in atherosclerosis[107]. Large clinical studies are 
required for further elucidation of whether EVs can be excellent options for point-of-care diagnosis and 
individual treatment.

CONCLUSION
EVs could be promising biomarkers with both diagnostic and predictive values, while their number, 
content, immune phenotype and origin may provide more useful information about the pathophysiology of 
atherosclerosis and help stratify patients at risk of MACEs. T﻿he emergence of endothelial cell-derived EVs 
provide favorable and promising strategies, not only for CV risk stratification in vulnerable populations but 
for individualized treatment of atherosclerosis and other CV diseases.
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