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Abstract
We propose an algorithm for 𝑛-dimensional regression problems with continuous variables. Its main property is ex-
plainability, which we identify as the ability to understand the algorithm’s decisions from a human perspective. This
has been achieved thanks to the simplicity of the architecture, the lack of hidden layers (as opposed to deep neural
networks used for this same task), and the linguistic nature of its fuzzy inference system. First, the algorithm divides
the joint input-output space into clusters that are subsequently approximated using linear functions. Then, we fit a
Cauchy membership function to each cluster, therefore identifying them as fuzzy sets. The prediction of each linear
regression is merged using a Takagi-Sugeno-Kang approach to generate the prediction of the model. Finally, the pa-
rameters of the algorithm (those from the linear functions and Cauchy membership functions) are fine-tuned using
gradient descent optimization. In order to validate this algorithm, we considered three different scenarios: The first
two are simple one-input and two-input problems with artificial data, which allow visual inspection of the results. In
the third scenario, we use real data for the prediction of the power generated by a combined cycle power plant. The
results obtained in this last problem (3.513 RMSE and 2.649 MAE) outperform the state of the art (3.787 RMSE and
2.818 MAE).

Keywords: Clustering algorithms, explainable artificial intelligence, fuzzy logic, gradient methods, Takagi-Sugeno
model
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1. INTRODUCTION
Over the last few years, artificial ntelligence (AI) and Machine Learning (ML) have become ubiquitous in
human society. Riding primarily on the empirical success of the deep neural network (DNN), AI andML have
expanded to sectors where safety and accountability must be guaranteed (e.g., medicine and national security)
with an increasing emphasis on data privacy and protection. Decisions derived from AI-powered systems in
such sectors directly affect people’s lives, motivating a need for transparency: explainability and interpretability.
Models shouldmake sense to the human observer, and decisions must be justified and legitimate, with detailed
explanations that promote trust. Human observers should understand how these decisions are made (the
actions or procedures taken by the model) and why they work when they do (or fail when they don’t).

The excellent performance of DNNs, however, relies on opaque abstractions in the (often hundreds) of hidden
layers and millions of parameters that obscure their decision-making process, leading to the development of
black box models which lack a clear understanding of how the model works. This performance – transparency
trade-off was historically acceptable since AI-powered systems were deployed primarily for scientific and lim-
ited commercial work. The widespread expansion of AI and DNNs outside of academia thus motivates the
need for modifiedmachine learning techniques that learn explainable features while maintaining performance,
as well as more interpretable, structured causal models.

Measuring explainability is an additional concern. Montavon et al. [1], Vedaldi et al. [2], and Letham et al. [3] are
summaries of current techniques used by DNNs. There are seven major ways to achieve interpretability in a
model:

1. Globally: understanding the entire logic of a model. For example, using rule sets generated from Bayesian
models [4], similarly to how the fuzzy if-then rules behave, or through activation maximization [5,6], synthe-
sizing the preferred inputs for neurons in neural networks.

2. Locally: understanding each individual decision or prediction separately [7–12].
3. Through visualization: representing the weights of a neural unit, by means of surrogate models [13], partial

dependence plot (PDP) [14–16] and individual conditional expectation (ICE) [17].
4. Extracting rules: deriving comprehensive descriptions and approximations of the decision-making pro-

cess [18,19].
5. Distilling a model: transforming complex models (e.g., deep networks) into more transparent models (shal-

low networks) [20–22].
6. Analyzing Sensitivity: studying how the output of the model is affected by its input and/or weight pertur-

bations [23,24].
7. Analyzing feature importance: quantifying the contribution of each input variable [25].

The previous mechanisms could be understood as a top-down addition of mathematical tools to increase the
interpretability. A less explored approach is the bottom-up redefinition of model architectures such that the al-
gorithms are inherently transparent. In fact, most of the methods that seek to provide the desired transparency
in neural networks elaborate on top of the fundamentals and rarely provide a novel algorithmic architecture.
For example, Yang et al. [26] introduced an enhanced explainable neural network (ExNN) that decomposes a
complex relationship into additive components, where the explainability is obtained by the addition of orthog-
onality constraints and the sparsity of the generated subnetworks. Similarly, Tran et al. [27] used variational
autoencoders to generate interpretable features, and Wolf et al. [28] suggested the visualization of intermediate
models to improve the trustworthiness of the system. While these techniques provide more clarity on the
decision-making process, they are not easy to generalize and, in fact, are less explainable than a decision tree
or a linear regression.

Additionally, minor changes to a DNN’s input can negatively impact performance, causing misclassifications
or false predictions, leading to the use of fragile models easily fooled by noise. The expansion of AI to mission
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critical fields thus also motivates the need for robust solutions resilient to noise. Al-Mahasneh et al. [29] intro-
duced a novel evolutionary algorithm that leverages competitive learning strategies to obtain the most optimal
network that can handle noisy data. Autoencoders have been very successfully employed for denoising tasks,
especially in medical procession [30], and speech enhancement [31]. Nevertheless, all the aforementioned meth-
ods hinge on the use of uncorrupted data points in the learning process. Both the noisy and clean instances
are shown to the system until it learns to identify noisy patterns and develops its noise suppression strategy
– information that is unavailable in most real-world applications. “Truth” often refers to the output values in
the data, which in fact, may have a certain percentage of noise from the data acquisition process. Thus, the
ground truth remains unknown.

This paper proposes a novel noise-resilient, explainable learning algorithm for 𝑛-dimensional regression prob-
lems with continuous variables. The salient features of the algorithm include initialization by (1) clustering
the input data using a hierarchical approach which is (2) subsequently approximated using linear functions
and (3) fitted to a Cauchy membership function, identifying the clusters as fuzzy sets. A Takagi-Sugeno-Kang
(TSK) fuzzy system [32–36] merges the prediction of each linear regression to generate the prediction of the
model. Parameters are fined tuned using gradient descent (GD) optimization. We use a GD-based optimiza-
tion because it is computationally efficient; it produces a stable error gradient and a stable convergence. We
demonstrate that our approach yields superior performance while providing explainability and interpretabil-
ity as demonstrated for a meaningful industrial AI benchmark and comparing it with other state-of-the-art
techniques.

Section II is a description of the algorithm’s phases and the corresponding mathematical formulation. Section
III describes the data sets used for empirical evaluation, including both synthetic and real-world data. Section
IV discusses our empirical results. Section V concludes this paper and offers ideas for future work.

2. PROPOSED ALGORITHM
First, a clustering algorithmdivides the joint input-output space into𝐶 groups of data points (𝐶 is user-defined).
Despite referring to them as clusters, they do not necessarily represent isolated and well defined bulks of data,
but rather convex regions of a tessellated work-space with observations inside. Therefore, we use an agglomer-
ative MAX-linkage/complete-linkage hierarchical clustering algorithm [37–39] to get non-overlapping and non-
intersecting globular rounded clusters (with convex boundaries). Hierarchical clustering algorithms have been
widely used in combination with fuzzy logic [40–42].

Then, in each cluster, the dependence of the output 𝑦 on the input x is approximated by a linear function,
similar to how an ensemble of systems works [43], where each model is an expert in a certain region of the
space. We use the notation xi to denote the ith input, 𝑖 = 1, . . . , 𝑄. Each xi is a row vector of dimension N,
xi ( 𝑗) = 𝑥𝑖 𝑗 , 𝑗 = 1, . . . , 𝑁 . So, the data matrix can be expressed as

X =


x1
...

xQ

 . (1)

For a generic vector x, the linear function of cluster 𝑐 is,

𝑟𝑐 (x) = 𝑛𝑐 +mc · x, (2)

where mc denotes the row vector of the slopes of the function and 𝑛𝑐 denotes the intercept.
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The output of the model is generated by merging the linear functions of the clusters through a Takagi-Sugeno-
Kang approach,

𝑦̂(x) =

𝐶∑
𝑐=1

𝜇𝑐 (x) 𝑟𝑐 (x)

𝐶∑
𝑐=1

𝜇𝑐 (x)
, (3)

where 𝜇𝑐 (x) is the membership function of each cluster. Appendix A provides an overview of fuzzy learning
and the importance of the membership function’s choice. We decided to use Cauchy membership functions
for this algorithm and we provide three explanations for this choice. The first two are explained in Viaña et
al. [44,45]. The third is covered in Appendix B, where we proof that this membership function is the fastest to
compute. In the multidimensional space, the definition of the Cauchy membership function is defined as

𝜇𝑐 (x) =
[
1 +





 x − ac
bc





 ]−1
, (4)

where ac and bc are row vectors that determine the location of the center, and the amplitude, of the function,
respectively, in each of the dimensions of the input space, ac ( 𝑗) = 𝑎𝑐 𝑗 , ac ( 𝑗) = 𝑎𝑐 𝑗 , 𝑗 = 1, . . . , 𝑁 . As usual,
∥ac∥ is the Euclidean norm

√
|𝑎𝑐1 |2 + . . . + |𝑎𝑐𝑁 |2. Here for vectors xi, ac and bc, the operation (xi − ac)/bc

means component-wise division, i.e., (𝑥𝑖 𝑗 − 𝑎𝑐 𝑗 )/𝑏𝑐 𝑗 . The values of ac are initialized with the means of the
data points from the cluster 𝑐 in each of the 𝑁 dimensions. Similarly, the values of bc are initialized with the
standard deviations of the cluster.

Once the parameters of both the membership functions and the linear functions have been initialized, the
model is trained using GD learning. We define the loss function for the data vector as

𝐽 (xi) = [𝑦𝑖 − 𝑦̂(xi)]2 , (5)

and the loss over the whole the training set X as

𝐽 (X) = 1
2

𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂(xi)]2 , (6)

where the factor 1
2 is added to ease the differentiation of (6).

The matrix expression of the formulation for the update of the different parameters is
Δ𝑎𝑘 𝑗
Δ𝑏𝑘 𝑗
Δ𝑚𝑘 𝑗

Δ𝑛𝑘


= 𝜂

𝑚∑
𝑖=1


𝜇𝑘 (xi) [𝑦𝑖 − 𝑦̂(xi)]

𝐶∑
𝑐=1

𝜇𝑐 (xi)


𝛼𝑘𝑖 𝑗

𝛽𝑘𝑖 𝑗
𝑥𝑖 𝑗
1



, (7)

where 𝜂 denotes the learning rate in each epoch of the training, Δ denotes the increment required in each
parameter,

𝛼𝑘𝑖 𝑗 = 2 𝜇𝑘 (xi) [𝑟𝑘 (xi) − 𝑦̂(xi)]
(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
, (8)

and
𝛽𝑘𝑖 𝑗 = 𝛼𝑘𝑖 𝑗

(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
. (9)

Equation (7) has been developed minimizing (6), as shown in the Appendix C.

For the update of the parameters, one can think of twodifferent approaches, synchronously and asynchronously.
The synchronous approach requires visiting all the observations of the training sample before training the
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Figure 1. Synchronous and asynchronous approaches for the update of the system’s parameters. Each observation of the dataset has
a different set of matrices that together constitute the gradient of the loss function (transparent matrices of the back refer to different
clusters). The entries of the blue matrices represent the derivatives with respect to the different parameters of the system; the rows
determine the type of the parameter, 𝑎, 𝑏, 𝑚, or 𝑛, organized in a top-down fashion, and the columns identify the input feature (denoted
with letter f, and 1 for the independent term). The greenmatrices are obtained after weighting the derivatives with the learning rates, which
do not necessarily need to be identical for all the parameters. Finally, the resulting matrix could be added to those obtained for the other
observations, creating the purple matrices, or it can be used before moving to the next instance of the training sample. The first approach is
labeled as a synchronous update and considers a single update of the parameters in every epoch after all the observations have been visited.
We identify the second approach as an asynchronous update, which requires, within the same epoch, as many updates of the parameters
as observations are in the sample.

parameters. Thus, in this configuration, there is only one update performed at the end of each epoch. In the
asynchronous version, we update the parameters of every cluster after studying an instance of the sample. In
this case, wewould have asmany updates as observations per epoch. The latter requires a higher computational
cost, but the evolution of the parameters is more stable and smooth than the synchronous approach. In the
results section of this paper, we considered the asynchronous update. These two optimization versions can be
visualized in Figure 1.

3. RESULTS
We tested this algorithm in three different problems; 1 input 1 output, 2 inputs 1 output, and 4 inputs 1 output.
In the first two cases, we created the data artificially, and in the third application, we used real data obtained
from the University of California Irvine (UCI) Machine Learning repository [46]. In this section, we provide a
brief revision of the lessons learned from the first two, which were covered in Viaña et al. [47,48], and a detailed
explanation of the results obtained in the last scenario.

3.1. Single­input problem
We studied 20 different functions. In order to measure the noise resilience of the method, we injected random
noise in the output variable of the training dataset (from a uniform distribution), but the testing data had no
noise (the algorithm was never exposed to the ground truth). In each case, we used a ranging number of
clusters to evaluate the differences in the approximations obtained. As a benchmark, we utilized a selection
of neural networks of one-hidden layer with varying numbers of hidden neurons. The proposed algorithm
obtained significantly better results than all the neural network configurations studied [47]. In Figures 2-3, we
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Our algorithm’s predictions, noisy data, and truth

Figure 2. Single input function approximation with the algorithm presented in this paper considering 4, 5, 6, 7 and 8 clusters. The noisy
data and the ground truth is also visible. All the systems were trained till the achievement of convergence in the training error.

NN’s predictions, noisy data, and truth

Figure 3. Single input function approximation benchmark with neural networks of architectures ranging from 20 to 260 hidden neurons in
steps of 40. The noisy data and the ground truth are also visible. All the systems were trained till the achievement of convergence in the
training error.

show the results obtained with both approaches for the function 𝑦𝑖 =
|sin(𝑥𝑖1) |

1+𝑥2
𝑖1

.

For the training data, we considered the same 100 noisy observations for both approaches. All the systems
were trained using a learning rate of 0.01, and the learning stopped when the loss converged. In all the cases
studied, our algorithm converged in 1,000 epochs, whereas the neural networks required 10,000.

3.2. Double­input problem
The purpose of this second problem was to prove the applicability of the algorithm to 𝑛-dimensional inputs.
Similarly to what it was done for the previous section, we trained the systemwith noisy data (artificially created
from different functions and noise injected randomly from uniform distributions), but we tested it with the
ground truth (non-noisy). InViaña et al. [48], we discussed the results obtained for a variety of functions. Figure
4 shows the comparison for the function 𝑦𝑖 = sin(𝑥𝑖1) ·sin(𝑥𝑖2) ·

(
𝑥2
𝑖1 + 𝑥2

𝑖2
)
when a system of 7 clusters is trained

for 400 epochs, with 0.01 learning rate in all the parameters, and with 160 training points.

http://dx.doi.org/10.20517/ces.2022.14
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Figure 4. Double input function approximation with the algorithm presented in this paper considering 7 clusters. Both the ground truth and
the approximation are visible. Three views are displayed for clarity. The system was trained till we achieved convergence in the training
error.
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Figure 5. Schematic representation of the Combined Cycle Power Plant layout.

3.3. Four­input problem
In order to prove the applicability of the algorithm with real multidimensional problems, we considered the
regression data of a combined cycle power plant (CCPP) [49] from the UCI machine learning repository. A
CCPP consists of two types of turbines that generate electricity (gas and steam turbines). Gas turbines take the
air and natural gas fuel inlets for the production of electricity at the cost of generating an outlet of exhaust gases
at a high temperature. The heat of these gases is recycled with a secondary circuit of water that is evaporated
for further extraction of energy in the water turbine. Figure 5 shows the schematic layout of a typical CCPP
system, simplified for clarity purposes.

The popularity of such power plants has increased over the last years, particularly in areas with natural gas
resources [50]. The CCPP considered for this study has a nominal generating capacity of 480MW, two 160MW
ABB 13E2 Gas Turbines, two dual pressure Heat Recovery Steam Generators, and one 160 MW ABB Steam
Turbine.

http://dx.doi.org/10.20517/ces.2022.14
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Table 1. Variables of the Combined Cycle Power Plant problem (publicly available dataset) [49]

Variable Min Max Mean

Ambient Temperature 1.8°C 37.1°C 19.6°C

Atmospheric Pressure 99289 Pa 103330 Pa 101326 Pa

Relative Humidity 25.5% 100% 73.3%

Exhaust Steam Pressure 3381 Pa 10874 Pa 7241 Pa

Full Load Power Output 420.26 MW 495.76 MW 454.37 MW

Figure 6. Evolution over epochs of the Root Mean Squared Error’s for the training sample, the entire training set, and the test set for the
CCPP problem.

The task chosen focuses on the prediction of the electric power produced by the plant when it operates at full
load. The ambient temperature, atmospheric pressure, and relative humidity have an impact on the efficiency
of the gas turbine, and so does the exhaust steam pressure affect the steam turbine performance. These four
variables are considered inputs of the problem, and the power output of the plant, the value we want to predict,
is the target. All the observations in the data correspond to the average hourly measurements of the sensors
installed in the plant. Table 1 contains some basic statistics of these measures for the dataset selected.

The dataset consists of 10,000 observations. We considered 1,600 randomly chosen instances for training and
800 for testing (0.8 split). We chose a model of 6 clusters, and we trained for 4,000 epochs with a 0.0001
learning rate (for all the parameters). In order to avoid overtraining, we selected a random sample of 960
training instances randomly chosen from the training set in every epoch (samples of 60% from the training
points). We used the root mean squared error (RMSE) and the mean absolute error (MAE) as figures of merit
to evaluate the performance of our algorithm. Once the learning process finished, the final RMSE and MAE
values of the training set were 3.200 and 2.450, respectively. Similarly, the RMSE andMAE values obtained for
the testing set were 3.513 and 2.649. Figures 6-7 show the evolution of the RMSE and MAE over the epochs of
the training process while using the GD optimization in our algorithm.

In Tufekci [50], a variety of different methods were studied for this particular CCPP problem. We provide a
sum up of the RMSE values obtained in all those approaches together with our results in Table 2.

Table 3 shows the figures of merit for the top four methods studied by Tufekci [50] and the proposed algorithm.

http://dx.doi.org/10.20517/ces.2022.14
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Figure 7. Evolution over epochs of the Mean Absolute Error for the training sample, the entire training set, and the test set for the CCPP
problem.

Table 2. Comparison of test set RMSE for the different regression algorithms

Category Regression Algorithm Acronym Reference RMSE

Functions This Paper’s Algorithm - - 3.513
Simple Linear Regression SLR [51] 5.426
Linear Regression LR [52] 4.561
Least Median Square LMS [53] 4.572
Multilayer Perceptron MLP [54] 5.399
Radial Basis Function NN RBF [55] 8.487
Pace Regression PR [51] 4.561
Support Vector Poly Kernel SVR [55] 4.563

Lazy-learning IBk Linear NN Search IBk [56] 4.656
KStar K* [57] 3.861
Locally Weighted Learning LWL [56] 8.221

Meta-learning Additive Regression AR [58] 5.556
Bagging REP Tree BREP [59] 3.787

Rule-based Model Trees Rules M5R [51] 4.128

Tree-based Model Trees Regression M5P [60] 4.087
REP Trees REP [61] 4.211

Table 3. Sorted list of the best regression algorithms using the test set performances

Category Regression Algorithm Performance

RMSE MAE

Functions This Paper’s Algorithm 3.513 2.649

Meta-learning Bagging REP Tree 3.787 2.818

Lazy-learning KStar 3.861 2.882

Tree-based Model Trees Regression 4.087 3.140

Rule-based Model Trees Rules 4.128 3.172

4. DISCUSSION
Using the GD optimization provides a significant advantage in computational efficiency when it is compared
to other classical bio-inspired evolutionary algorithms. The latter has been widely used to fine-tune fuzzy
inference systems in a variety of applications. In the aerospace sector, for example, genetic fuzzy systems have
a demonstrated success. We can see their usage in aerial vehicle controls for combat missions [62], multi-agent
UAV routing [63,64], or autonomous collaborative operations [65–67]. On the contrary, GD has not been used

http://dx.doi.org/10.20517/ces.2022.14
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with fuzzy logic as much as nature-inspired meta-heuristics. In part because GD requires a tailored learning
formulation for the parameters of the model, although it provides faster learning.

In terms of performance, the results obtained for the scenarios we tested are excellent. For the case of the single-
input problem, it can be seen in Figure 2 that all the output curves are smooth and very similar despite the
noise of the data. Conversely, the curves of the neural network benchmark shown in Figure 3 are significantly
different and sharp, with abrupt changes that do not capture the essence of the ground truth. The smoothness
property of our method is obtained thanks to the information merging of every cluster. Indeed, the joint
contribution and weighting of each linear regression provide robustness and resilience to noise. We perceive
that same smoothness in the double-input problem of Figure 4. As it occurred in the single-input case, our
model is able to learn the pattern and not the noisy data, capturing the essence of the ground truth.

The parameters of the model we have introduced have a displayable mathematical meaning which eases their
visualization. Each cluster can be plotted as linear regression and its associatedmembership function. Actually,
a membership function identifies the region where the influence of each regression is greater, similarly to how
an ensemble of expert systems would perform. This allows for easier interpretability and comprehension of
the predictions made, which ultimately grants an explainable nature to our algorithm. On the other hand, the
neurons of the neural network architecture considered cannot be uniquely associated with a certain region of
the joint input-output space. Thus, it makes it harder to understand the meaning of each weight, which results
in greater opacity and misunderstanding.

For the CCPP dataset, the evolution of both the RMSE and MAE of Figure 6-7 have a significant drop in
the first 200 epochs. This initial phase of the learning process is crucial for an accurate reorganization of the
membership functions and the model’s parameters. Although from epoch 2,000 on, there is no significant
improvement in the figures of merit of the test set, we decided to continue the training to proof the robustness
to overtraining of our algorithm. This can be perceived from the fact that we do not see any increasing trends
in the curves for the test set, despite the prolonged training.

Compared to other meta-heuristic approaches, such as evolutionary algorithms which are often combined
with fuzzy systems [66,67], the proposed algorithm is significantly faster, and so it provides a big advantage in
the training stages.

The superiority of the proposed algorithm is clearly demonstrated in Table 3, where we show its performance
in comparison to the mentioned state-of-the-art techniques.

5. CONCLUSIONS
We have introduced a cluster-based algorithm for regression tasks with three key components:

1. A hierarchical clustering for initialization of its parameters.
2. A Takagi-Sugeno-Kang fuzzy inference system with Cauchy membership functions for prediction.
3. A gradient descent optimization for learning and fine-tuning.

We provide a theoretical development of the formulation for the parameter update by deriving the total loss
of the training set. We also tested the algorithm in three different scenarios, two of them with synthetic data
and a third with real data from a CCPP. The results we obtained outperformed the benchmarks. In the case of
the CCPP, we were able to reduce the value of the RMSE from 3.787 (best score obtained from a wide variety
of methods, [50]) to 3.513, and the MAE from 2.818 to 2.649. Additionally, this algorithm did not only show
performance but also:
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• Robustness to overtraining and noise resilience due to the merged contribution of the clusters.
• Transparency as a direct consequence of the interpretable nature of its parameters, the dominance of a
cluster in every region of the input-output space, the lack of complexity, and the linguistic nature of its
fuzzy if-then rules.
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APPENDIX
A. Formulation of the problem
One of the main reasons why Lotfi Zadeh invented fuzzy techniques was to translate expert rules that use
imprecise (“fuzzy”) natural-language properties like “small”, “medium”, etc., into a precise control strategy. For
this purpose, to each such property 𝑃, Zadeh proposed to assign a function 𝜇𝑃 (𝑥) (known as membership
function) that describes, for each possible value 𝑥 of the corresponding quantity, the degree to which, according
to the expert, an object with this value satisfies the property 𝑃 – e.g., to what extent the amount 𝑥 is small. This
degree is usually assumed to be from the interval [0, 1].

This is how the first applications of fuzzy techniques emerged: researchers elicited rules and membership
functions from the experts, and used fuzzy methodology to design a control strategy. The resulting control
was often reasonably good, but not perfect. So, a natural idea was proposed: to use the original fuzzy control
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as a first approximation, and then tune its parameters based on the practical behavior of the resulting system.

This “fuzzy learning” idea was first used in situations when we have expert rules that provide a reasonable first
approximation. However, it turned out that this learning algorithm leads to a reasonable control even when
we do not have any expert rules, i.e., when we only have data.

When we start with expert knowledge, we elicit membership functions from the experts. But when we use
fuzzy learning in situations where there is no expert knowledge, a natural question is: which membership
functions should we use?

B. How to select membership functions: analysis and conclusion
To speed up the learning process, a natural idea is to select a membership function that would be the easiest
to compute.

The main goal of any learning is to optimize the corresponding objective function – a function that describes
which outputs are better and which are worse. For example, if we have examples of desired outputs, then the
objective is to minimize the discrepancy between the values produced by the system and the values that we
want to obtain.

Since the invention of calculus, the most efficient optimization techniques are based on computing the deriva-
tives: one of the main uses of calculus is to identify points where a function attains its maximum or minimum
as points where its derivative is 0, and the fastest ways to reach these points is to use the derivatives of the objec-
tive function. There are many optimization techniques, from the simplest gradient descent to more complex
methods; all these techniques use differentiation.

From this viewpoint, it is desirable to have a differentiable (smooth) membership function. So, we are looking
for easiest-to-compute smooth functions.

In a computer, the only hardware supported operations with numbers are arithmetic operations: addition,
subtraction (which, for the computer, is, in effect, the same as addition), multiplication, and taking an inverse
(division is implemented as 𝑎/𝑏 = 𝑎 · (1/𝑏)). There are also operations min, max, and absolute value, but they
are not everywhere differentiable, so we will not consider them.

We need the inverse operation in order to obtain a bounded function. If we do not use the inverse, then we
get functions which are compositions of additions, subtractions, and multiplications – and thus, polynomials,
since a polynomial can be defined as any function that can be obtained from variables and constants by using
addition, subtraction, and multiplication. But a polynomial is not bounded – unless it is a constant. So, we
need to use the inverse.

The inverse 1/𝑥 is not bounded – and for 𝑥 = 0 it is not even defined, so we need at least one other operation.

We can have the additional operation before the inversion or after the inversion. If we perform the additional
operation before the inverse, we have the following options: 1/(𝑥 + 𝑐) for some constant 𝑐, 1/(𝑥 + 𝑥), 1/(𝑐 · 𝑥),
1/(𝑥 · 𝑥), and 1/(1/𝑥). The last option just gives 𝑥, and the other ones lead to unbounded functions which are
not even everywhere defined.

If we have an additional operation after the inversion, we get 𝑐 + 1/𝑥, 𝑥 + 1/𝑥, 𝑐 · 1/𝑥, and 𝑥 · (1/𝑥). The last
option is simply a constant 1, and the others lead to unbounded functions. So, one additional operation is not
sufficient, and we need at least two additional arithmetic operations.
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One can show that if we have an additional operation after the inversion, we will still not get a bounded
everywhere defined function. So, the only remaining option is to have two operations followed by inversion.
These operations can be addition or multiplication, and they can operate on the variable 𝑥 and some constant
𝑐.

If both operations are additions, then we get 1/(𝑥 + 𝑐1 + 𝑐2), 1/(𝑥 + 𝑥 + 𝑐), and 1/(𝑥 + 𝑥 + 𝑥) – all unbounded.
If both are multiplications, we get 1/(𝑥 · 𝑐1 · 𝑐2), 1/(𝑥 · 𝑥 · 𝑐), and 1/(𝑥 · 𝑥 · 𝑥) – all unbounded too.

So, one of the two operations must be addition, and another one must be multiplication. We can have two
subcases: when addition is performed first, and when multiplication is performed first. Let us consider them
one by one.

• When addition is performed first: As a result of addition, we can have 𝑐1 + 𝑐2 – which is the same as a
single constant (so it was already covered before), 𝑥 + 𝑐1, and 𝑥 + 𝑥. We can multiply this result either by a
constant 𝑐2, or by 𝑥. So, we get the following options: 1/(𝑐2 · (𝑥 + 𝑐1)), 1/(𝑐2 · (𝑥 + 𝑥)), 1/(𝑥 · (𝑥 + 𝑐1)), and
1/(𝑥 · (𝑥 + 𝑥)). In all these cases, we have unbounded functions.

• When multiplication is performed first: As a result of multiplication, we can have 𝑐1 · 𝑥 or 𝑥 · 𝑥. We can
add to each such result either a constant 𝑐2 or a variable 𝑥. So, we get the following options: 1/(𝑐1 · 𝑥 + 𝑐2),
1/(𝑐1 ·𝑥+𝑥), 1/(𝑥 ·𝑥+𝑐2), and 1/(𝑥 ·𝑥+𝑥). In the first, second, and fourth cases, the function is unbounded
and not everywhere defined. The only case when the function is bounded and everywhere defined is the
third case 1/(𝑥2 + const), which is exactly what we called a Cauchy membership function.

Let us obtain the resulting membership functions. A membership function is usually defined in such a way
that its largest value is 1. For the function 1/(𝑥2 + 𝑐), the largest possible value is 1/𝑐, so we should take 𝑐 = 1
and consider the membership function

𝜇(𝑥) = 1
1 + 𝑥2 . (10)

We also need to take into account that the numerical value of a physical quantity depends on the choice of the
measuring unit and the choice of the starting point. If we change a measuring unit and/or a starting point,
then we get new numerical values 𝑋 which can be obtained from previous values 𝑥 by a linear transformation
𝑋 = 𝑘 · 𝑥 + 𝑎, where 𝑘 is the ratio of the measuring units and 𝑎 is the difference in starting points. A classical
example is the relation between temperature 𝑡𝐶 in Celsius and temperature 𝑡𝐹 in Fahrenheit: 𝑡𝐹 = 1.8 · 𝑡𝐶 + 32.

When the original values 𝑥 are described by the membership function (10), then, to get the membership func-

tion for the new numerical values 𝑋 , we need to substitute, into the formula (10), the expression 𝑥 =
𝑋 − 𝑎

𝑘
that

describes 𝑥 (the old value) in terms of 𝑋 (the new value). As a result, for the new values, we get the following
membership function

𝜇𝑋 (𝑋) =
1

1 + (𝑋 − 𝑎)2

𝑘2

. (11)

Thus, the membership functions for which the computation is the simplest are Cauchy membership functions
(11).

C. Proof of the learning formulas
Let us consider a generic cluster 𝑘 , such that ak is a row vector of dimension N, ak ( 𝑗) = 𝑎𝑘 𝑗 , 𝑗 = 1, . . ., 𝑁 .
The same applies to bk and mk, but not to the independent term 𝑛𝑘 . We can build the following matrix that
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considers the gradient of the loss function for each of the different parameters, of this cluster.

Rk(xi) =



𝜕𝐽 (xi)
𝜕𝑎𝑘1

· · · 𝜕𝐽 (xi)
𝜕𝑎𝑘 𝑗

· · · 𝜕𝐽 (xi)
𝜕𝑎𝑘𝑁

0
𝜕𝐽 (xi)
𝜕𝑏𝑘1

· · · 𝜕𝐽 (xi)
𝜕𝑏𝑘 𝑗

· · · 𝜕𝐽 (xi)
𝜕𝑏𝑘𝑁

0
𝜕𝐽 (xi)
𝜕𝑚𝑘1

· · · 𝜕𝐽 (xi)
𝜕𝑚𝑘 𝑗

· · · 𝜕𝐽 (xi)
𝜕𝑚𝑘 𝑗

0
0 · · · 0 · · · 0 𝜕𝐽 (xi)

𝜕𝑛𝑘


. (12)

Then, the gradient of J is
∇J(xi) = {R1(xi), . . . ,Rk(xi), . . . ,RC(xi)} . (13)

Let us calculate each of the derivatives of Rk, to do so, we use 𝑝𝑘 𝑗 as one of the four possible parameters,

𝑝𝑘 𝑗 ∈
{
𝑎𝑘 𝑗 , 𝑏𝑘 𝑗 , 𝑚𝑘 𝑗 , 𝑛𝑘

}
. (14)

Then,
𝜕𝐽 (xi)
𝜕𝑝𝑘 𝑗

=
1
2

𝑄∑
𝑖=1

𝜕 [𝑦𝑖 − 𝑦̂ (xi)]2

𝜕𝑝𝑘 𝑗
==

𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂ (xi)]
𝜕 [𝑦𝑖 − 𝑦̂ (xi)]

𝜕𝑝𝑘 𝑗
. (15)

We study the last derivative expression separately, and substitute the definition of 𝑦̂(xi),

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

=
𝜕𝑦𝑖
𝜕𝑝𝑘 𝑗

−

𝜕
𝜕𝑝𝑘 𝑗

[
𝐶∑
𝑐=1

𝜇𝑐 (xi) 𝑟𝑐 (xi)
]

𝐶∑
𝑐=1

𝜇𝑐 (xi)
−
[

𝐶∑
𝑐=1

𝜇𝑐 (xi) 𝑟𝑐 (xi)
] 𝜕

[
𝐶∑
𝑐=1

𝜇𝑐 (xi)
]−1

𝜕𝑝𝑘 𝑗
. (16)

The term 𝜕𝑦𝑖
𝜕𝑝𝑘 𝑗

is null because no parameter has an influence over the observation. Thus,

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

= −

𝜕
𝜕𝑝𝑘 𝑗

[
𝐶∑
𝑐=1

𝜇𝑐 (xi) 𝑟𝑐 (xi)
]

𝐶∑
𝑐=1

𝜇𝑐 (xi)
+
[

𝐶∑
𝑐=1

𝜇𝑐 (xi) 𝑟𝑐 (xi)
] 𝜕

𝜕𝑝𝑘 𝑗

[
𝐶∑
𝑐=1

𝜇𝑐 (xi)
]

[
𝐶∑
𝑐=1

𝜇𝑐 (xi)
]2 . (17)

Again, we resort to the definition of 𝑦̂(xi), to simplify the second term,

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

= −

𝜕
𝜕𝑝𝑘 𝑗

[
𝐶∑
𝑐=1

𝜇𝑐 (xi) 𝑟𝑐 (xi)
]

𝐶∑
𝑐=1

𝜇𝑐 (xi)
+
𝑦̂ (xi) 𝜕

𝜕𝑝𝑘 𝑗

[
𝐶∑
𝑐=1

𝜇𝑐 (xi)
]

𝐶∑
𝑐=1

𝜇𝑐 (xi)
. (18)

The parameter 𝑝𝑘 𝑗 has only influence over 𝜇𝑐 (xi) or 𝑟𝑐 (xi) when 𝑘 = 𝑐. Thus,

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

=
− 𝜕

𝜕𝑝𝑘 𝑗
[𝜇𝑘 (xi) 𝑟𝑘 (xi)] + 𝑦̂ (xi) 𝜕𝜇𝑘 (xi)

𝜕𝑝𝑘 𝑗

𝐶∑
𝑐=1

𝜇𝑐 (xi)
. (19)

Solving,

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

=
[ 𝑦̂ (xi) − 𝑟𝑘 (xi)] 𝜕𝜇𝑘 (xi)

𝜕𝑝𝑘 𝑗
− 𝜇𝑘 (xi) 𝜕𝑟𝑘 (xi)

𝜕𝑝𝑘 𝑗

𝐶∑
𝑐=1

𝜇𝑐 (xi)
. (20)
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What follows is replacing 𝑝𝑘 𝑗 for each one of the four parameters it represents. For the case of 𝑚𝑘 𝑗 , the term
𝜕𝜇𝑘 (xi)
𝜕𝑚𝑘 𝑗

is null, so
𝜕 [𝑦𝑖 − 𝑦̂(xi)]

𝜕𝑚𝑘 𝑗
=

−𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)

𝜕𝑟𝑘 (xi)
𝜕𝑚𝑘 𝑗

=
−𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)
𝑥𝑖 𝑗 . (21)

Similarly, the derivative with respect to 𝑛𝑘 is

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑛𝑘

=
−𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)

𝜕𝑟𝑘 (xi)
𝜕𝑛𝑘

=
−𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)
. (22)

For the case of 𝑎𝑘 𝑗 , the term 𝜕𝑟𝑘 (xi)
𝜕𝑎𝑘 𝑗

is null, so

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑎𝑘 𝑗

=
𝑦̂ (xi) − 𝑟𝑘 (xi)

𝐶∑
𝑐=1

𝜇𝑐 (xi)

𝜕𝜇𝑘 (xi)
𝜕𝑎𝑘 𝑗

(23)

Let us calculate 𝜕𝜇𝑘 (xi)
𝜕𝑎𝑘 𝑗

,

𝜕𝜇𝑘 (xi)
𝜕𝑎𝑘 𝑗

=
𝜕

𝜕𝑎𝑘 𝑗

[
1 +





 xi − ak
bk





2
]−1

= −
𝜕

𝜕 𝑗𝑎𝑘




 xi−ak
bk




2[
1 +




 xi−ak
bk




2
]2 =

2 [𝜇𝑘 (xi)]2 (𝑥𝑖 𝑗 − 𝑎𝑘 𝑗
)

𝑏𝑘 𝑗
2 . (24)

Thus,
𝜕 [𝑦𝑖 − 𝑦̂(xi)]

𝜕𝑎𝑘 𝑗
=

𝑦̂ (xi) − 𝑟𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)

2 [𝜇𝑘 (xi)]2 (𝑥𝑖 𝑗 − 𝑎𝑘 𝑗
)

𝑏𝑘 𝑗
2 . (25)

Similarly, the derivative with respect to 𝑏𝑘 𝑗 is

𝜕 [𝑦𝑖 − 𝑦̂(xi)]
𝜕𝑏𝑘 𝑗

=
𝑦̂ (xi) − 𝑟𝑘 (xi)

𝐶∑
𝑐=1

𝜇𝑐 (xi)

2 [𝜇𝑘 (xi)]2 (𝑥𝑖 𝑗 − 𝑎𝑘 𝑗
)2

𝑏𝑘 𝑗
3 . (26)

Substituting the expressions obtained of 𝜕 [𝑦𝑖−𝑦̂(xi)]
𝜕𝑝𝑘 𝑗

for each parameter in (15), we obtain the derivatives

𝜕𝐽 (xi)
𝜕𝑚𝑘 𝑗

= −
𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂ (xi)]
𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)
𝑥𝑖 𝑗 , (27)

𝜕𝐽 (xi)
𝜕𝑛𝑘

= −
𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂ (xi)]
𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)
, (28)

𝜕𝐽 (xi)
𝜕𝑎𝑘 𝑗

= −
𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂ (xi)]
𝜇𝑘 (xi)

𝐶∑
𝑐=1

𝜇𝑐 (xi)
×

2 𝜇𝑘 (xi) [𝑟𝑘 (xi) − 𝑦̂ (xi)]
(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
𝑏𝑘 𝑗

2 , (29)

http://dx.doi.org/10.20517/ces.2022.14


Page 16 of 18 Viaña et al. Complex Eng Syst 2022;2:8 I http://dx.doi.org/10.20517/ces.2022.14

𝜕𝐽 (xi)
𝜕𝑏𝑘 𝑗

= −
𝑄∑
𝑖=1

[𝑦𝑖 − 𝑦̂ (xi)]
𝜇𝑘 (xi)

𝐶∑
𝑐=1

𝜇𝑐 (xi)
×

2 𝜇𝑘 (xi) [𝑟𝑘 (xi) − 𝑦̂ (xi)]
(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)2
𝑏𝑘 𝑗

3 . (30)

We call

𝛾𝑘𝑖 𝑗 =
2 𝜇𝑘 (xi) [𝑟𝑘 (xi) − 𝑦̂ (xi)]

(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
𝑏𝑘 𝑗

2 , (31)

and
𝛿𝑘𝑖 𝑗 = 𝛾𝑘𝑖 𝑗

𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

𝑏𝑘 𝑗
. (32)

We have seen in the results that for small values of 𝑏𝑘 𝑗 the variables 𝛾𝑘𝑖 𝑗 and 𝛿𝑘𝑖 𝑗 become too big. Thus, we
advise either to normalize 𝑏𝑘 𝑗 for the given clusters, or to get rid of the denominator in the learning process.
Thus, if

𝛼𝑘𝑖 𝑗 = 2 𝜇𝑘 (xi) [𝑟𝑘 (xi) − 𝑦̂ (xi)]
(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
, (33)

and
𝛽𝑘𝑖 𝑗 = 𝛼𝑘𝑖 𝑗

(
𝑥𝑖 𝑗 − 𝑎𝑘 𝑗

)
, (34)

then, the resulting learning rules of the parameters are


Δ𝑎𝑘 𝑗
Δ𝑏𝑘 𝑗
Δ𝑚𝑘 𝑗

Δ𝑛𝑘


= −𝜂


𝜕𝐽
𝜕𝑎𝑘 𝑗
𝜕𝐽
𝜕𝑏𝑘 𝑗
𝜕𝐽

𝜕𝑚𝑘 𝑗
𝜕𝐽
𝜕𝑛𝑘


= 𝜂

𝑄∑
𝑖=1


[𝑦𝑖 − 𝑦̂ (xi)]

𝜇𝑘 (xi)
𝐶∑
𝑐=1

𝜇𝑐 (xi)


𝛼𝑘𝑖 𝑗

𝛽𝑘𝑖 𝑗
𝑥𝑖 𝑗
1




(35)

where 𝜂 is the learning rate.
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