Supplementary Materials

Achieving photocatalytic water reduction and oxidation over narrow bandgap FeVO₄

Shuo Wang^{1,#}, Chunjiang Liu^{1,#}, Can Li¹, Ningning Wang¹, Chen-Yang Li¹, Zhongxu Yuan¹, Shanshan Chen^{1,*}, Fuxiang Zhang^{2,*}

¹School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

²State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
[#]Authors contributed equally.

*Correspondence to: Prof. Fuxiang Zhang, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China. E-mail: fxzhang@dicp.ac.cn; Prof. Shanshan Chen, School of Materials Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China. E-mail: sschen@nankai.edu.cn

Supplementary Figure 1. X-Ray diffraction (XRD) pattern of FeVO₄.

Supplementary Figure 2. Scanning electron microscope (SEM) images of (A) FeVO₄·1.1H₂O and (B) FeVO₄.

Supplementary Figure 3. Mott-Schottky plots of FeVO₄.

Supplementary Figure 4. Tauc plot of FeVO₄ (obtained from Figure 1A).

Sample	The molar ratio of Cr/(Cr+Fe) (%)			
	Theoretical value	Measured value		
FeVO ₄ :Cr(2.5%)	2.5	1.4		
FeVO ₄ :Cr(3.0%)	3.0	1.8		

Supplementary Table 1. The molar ratio of Cr/(Cr+Fe) measured by ICP-OES

Supplementary Figure 5. SEM images of (A) FeVO₄:Cr·1.1H₂O and (B) FeVO₄:Cr samples. (C) Energy dispersive X-ray spectroscopy (EDS) mapping images of FeVO₄:Cr sample.

Supplementary Figure 6. Transmission electron microscopy (TEM) images of (A) FeVO₄ and (B) FeVO₄:Cr samples. (C) High-resolution TEM (HRTEM) images of (C) FeVO₄ and (D) FeVO₄:Cr samples.

Supplementary Figure 7. (A) XRD patterns and (B) enlarged XRD patterns of FeVO₄:Cr samples with different doping proportions. Herein, 1: FeVO₄:Cr(1.5%), 2: FeVO₄:Cr(2.0%), 3: FeVO₄:Cr(2.5%), 4: FeVO₄:Cr(3.0%), 5: FeVO₄:Cr(3.5%).

Supplementary Figure 8. Rietveld refined XRD patterns of (A) FeVO₄ and (B) FeVO₄:Cr samples.

Samples .	Lattice parameters							
	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)		
FeVO ₄	6.7824	8.0682	9.3358	96.678	106.226	101.842		
FeVO ₄ :Cr	6.7728	8.0601	9.3191	96.696	106.176	101.854		

Supplementary Table 2. Lattice parameters of FeVO₄ and FeVO₄:Cr samples obtained by XRD Rietveld refinement

Supplementary Figure 9. (A) Raman spectra and (B) enlarged Raman spectra of FeVO₄ and FeVO₄:Cr samples.

Supplementary Figure 10. (A) The ultraviolet-visible diffuse reflectance spectra obtained using Kubelka-Munk function and (B) Tauc plots of FeVO₄ and FeVO₄:Cr samples.

Supplementary Figure 11. X-ray photoelectron spectroscopy (XPS) (A) Cr 2p, (B) Fe 2p, (C) V 2p and (D) O 1s of FeVO₄ and FeVO₄:Cr samples.

Supplementary Figure 12. Effect of (A) the calcination temperature and (B) the loaded proportion of CoO_x on the initial O_2 evolution rate over $CoO_x/FeVO_4$:Cr sample (the molar ratio of Cr/(Cr+Fe) is 2.5%). Reaction conditions: 0.1 g of photocatalyst; 100 mL of AgNO₃ aqueous solution (50 mM); 0.1 g of La₂O₃; 300 W Xe lamp with a cutoff filter ($\lambda \ge 420$ nm).

Supplementary Figure 13. Effect of the loaded proportion of Pt on the initial H₂ evolution rate over Pt/FeVO₄:Cr sample (the molar ratio of Cr/(Cr+Fe) is 3%). Reaction conditions: 0.1 g of photocatalyst; 100 mL of ascorbic acid aqueous solution (10 mM); 300 W Xe lamp with a cutoff filter ($\lambda \ge 420$ nm).

Supplementary Figure 14. (A) The recycling test of H₂ generation over FeVO₄:Cr photocatalyst loaded with Pt cocatalyst. Reaction conditions: 0.1 g of photocatalyst (1.0 wt% Pt is loaded); 100 mL of ascorbic acid aqueous solution (10 mM); 300 W Xe lamp with a cutoff filter ($\lambda \ge 420$ nm). (B) XRD patterns of FeVO₄:Cr samples before and after the HER (hydrogen evolution reaction). The molar ratio of Cr/(Cr+Fe) in FeVO₄:Cr is 3%.

The recycling test with three cycles was conducted to evaluate the stability of the FeVO₄:Cr photocatalyst, and no obvious decrease was observed in the long-term test (Supplementary Figure 14A). XRD results also show that there is no obvious difference between the photocatalysts before and after the reaction (Supplementary Figure 14B).

Supplementary Figure 15. XPS Co 2*p* of CoO_x/FeVO₄ and CoO_x/FeVO₄:Cr samples.

Supplementary Figure 16. SEM images of (A) FeVO₄, (B) CoO_x/FeVO₄ and (C) CoO_x/FeVO₄:Cr samples. EDS mapping images of (D) CoO_x/FeVO₄ and (E) CoO_x/FeVO₄:Cr samples.

As shown in Supplementary Figures 16A-C, compared with FeVO₄, the surface of $CoO_x/FeVO_4$ and $CoO_x/FeVO_4$:Cr is deposited with numerous CoO_x nanoparticles in similar particle size. EDS mapping images (Supplementary Figure 16D and E) further confirm that the CoO_x species evenly distributes on the surface of $CoO_x/FeVO_4$ and $CoO_x/FeVO_4$:Cr samples.