








and GLP-1) and SCFAs that target receptors located on vagus fibers. Long chain fatty acids (LCFAs) also 
interact with vagus receptors through cholecystokinin-dependent mechanisms. 

Direct measurements of EEC activities have been challenging due to their location in the gut wall. Recently, 
the lab of Reimann et al.[55] has developed a method to directly investigate EEC activity by genetically tagging 
EECs with a fluorescent protein which expresses under the control of the promoter for a peptide hormone 
precursor proglucagon, GLP-1. Using this approach, they established the important role of G-protein 
coupled receptors (GPCRs) in chemosensing and their ability to activate EECs leading to the secretion of 
peptide hormones. GPCRs are critical for a variety of physiological functions, such as regulation of immune 
system, autonomic nervous system regulation, sensory (taste and smell) functions, and maintaining energy 
homeostasis. Recently, some GPCR chemoreceptors were found to be activated by bile acids, SCFAs, and 
LCFAs, which are also linked to EECs[56]. It was shown that the LCFA receptors GPR40 and GPR120 and the 
bile acid receptor GPR131 (TGR5) are all expressed on the surface of EECs[55]. In addition, Samuel et al.[57] found 
that isolated EECs express GPR41, a receptor for SCFAs. It has been shown that these chemosensors are 
located on the basolateral membrane of of EECs, which interact with the circulatory system[58]. In addition, 
it is likely that GPCRs co-store and co-release with gut-derived hormones, which indicate that GPCRs may 
be regulated by associated intestinal hormones. SCFAs and LCFAs, released from gut microbiota or derived 
nutritionally, can activate release of CKK hormone, which can bind to CCK-A and CCK-B receptors 
(CCK-r) on vagal afferents that signal the brain[59]. In response, the brain develops immune responses 
and triggers vagal efferent fibers to release acetylcholine (ACh), which is the principal parasympathetic 
neurotransmitter[60]. These observations suggest that gut dysbiosis can result in pathological changes in the 
levels of gut hormones and metabolites, thus influencing GPCR function and dysregulating the vagus nerve 
and subsequent CNS activities. 

The interactions between gamma-aminobutyric acid and vagus nerve
Gut microbiota also produce a number of neurotransmitters similar to mammalian physiological systems, 
including dopamine, norepinephrine, serotonin, and gamma-aminobutyric acid (GABA). GABA is the 
major inhibitory neurotransmitter in the CNS; however, GABA receptors are expressed throughout 
the body, including on the vagus nerve[61]. In human intestines, GABA is produced by the microbiota 
populations Lactobacillus brevis and Bifidobacterium dentium. GF animals were shown to have reduced 
levels of GABA, suggesting that the gut microbiota is able to influence GABA levels. Furthermore, altered 
GABA levels have also been associated with neurological conditions, such as depression, anxiety, autism, 
and schizophrenia[62,63]. For example, studies into rodents were found to have reduced depressive and 
anxiety-like behaviors after receiving chronic administration of the probiotic Lactobacillus rhamnosus, 
which was accompanied by decreases in GABA receptor subunit mRNA expression and corticosterone 
levels[64]. The GABA-related reductions in behavioral effects did not occur in vagotomized rats and 
mice[65]. Considering this effect existed only when the vagus nerve was intact, it suggests that intestinal 
microorganisms regulate GABA signaling through the vagus nerve. In support of this conclusion, animal 
studies by Takanaga et al.[66] demonstrated that GABA produced by intestinal bacteria are able to cross the 
blood-brain barrier and influence CNS activities. In addition, the impairment of GABA-mediated neuronal 
inhibition associated with epilepsy might contribute to the therapeutic efficacy of vagus nerve stimulation, 
as was demonstrated in patients with drug-resistant partial epilepsy[67]. 

Vagus nerve pathways in controlling inflammation
The microbiota-gut-brain interaction through the vagus nerve plays a major role in regulating 
inflammation. The anti-inflammatory properties of vagus nerve function is mediated through several 
debated pathways, such as the cholinergic anti-inflammatory pathway, the HPA axis and the splenic-
sympathetic nerve anti-inflammatory pathway. 

Previous studies demonstrated that the cholinergic anti-inflammatory pathway (CAP) plays a pivotal role 
in controlling neuroinflammation. The CAP modulates inflammation through vagal efferent fibers that 
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synapse onto enteric neurons surrounding the GI tract, which can release acetylcholine[68,69]. Acetylcholine 
binds to α-7-nicotinic acetylcholine receptors on macrophages, including microglia, and inhibit the release 
of the pro-inflammatory cytokine TNF-α[70]. Other studies also illustrate the ability of the vagal nerve to 
regulate neuroinflammation by sensing increased peripheral pro-inflammatory cytokines[71]. As a negative 
feedback loop, pro-inflammatory cytokine release is prevented if increased levels of inflammation are 
detected through the acetylcholine-mediated anti-inflammatory signaling system[71]. Wang et al.[72] observed 
that electrical stimulation of the vagus nerve can inhibit TNF synthesis in wild-type mice but not in α-7-
nicotinic acetylcholine receptor-deficient mice. Collectively, these results support the critical role of the 
vagus nerve in regulating microglia activity and neuroinflammation through CAP signaling. 

Studies of vagus nerve stimulation have provided additional evidence for vagus nerve afferent involvement 
in neuroimmune modulation. For example, non-invasive vagus nerve stimulation is widely used in the 
treatment of drug resistant depression and has been shown to increase levels of norepinephrine[73,74]. The 
locus coeruleus is an aminergic brain stem nucleus which represents the main source of norepinephrine in 
the brain and plays a critical role as a neurotransmitter and neuroimmune modulator, including regulation 
of microglial activity. By activating β-receptors on the cell surface, norepinephrine affects microglia cell 
dynamics, which then influence neuronal activity[75,76]. These observations indicate the potential of vagus 
nerve stimulation to regulate microglial activity. 

Recently, the inflammatory reflex was found to be located where vagus afferent fibers activate vagus efferent 
fibers. Borovikova et al.[77] reported that septic shock was prevented by vagus nerve stimulation of the 
distal end of the vagus nerve after injection of LPS. This effect is due to CAP activation and the binding of 
acetylcholine  to α-7-nicotinic acetylcholine receptors in order to inhibit macrophages from releasing pro-
inflammatory cytokines such as TNF-α[72]. However, the interaction between the vagus nerve and intestinal 
immune system is indirect because the vagus nerve does not directly interact with resident macrophages 
in the gut. Therefore, Rosas-Ballina et al.[78] suggested that the vagus nerve tends to activate the splenic 
sympathetic nerve through a vago-sympathetic co-activation of ventricular contractility and heart rate[78,79]. 
It is hypothesized that released norepinephrine from the distal end of the spleen can bind to the β2 
adrenergic receptor of splenic lymphocytes. Its binding leads to the release of acetylcholine, which in turn 
binds to α-7-nicotinic acetylcholine receptors on splenic macrophages and inhibits the release of TNF-α[80]. 
However, this hypothesis is still being debated due to the controversial interaction between the spleen and 
the vagus nerve[81]. Furthermore, some studies demonstrate the spleen receives not only sympathetic inputs 
but parasympathetic inputs as well. The sympathetic inputs relay information to the spleen via the arteries 
while the parasympathetic inputs transfer signals at the tips of the spleen. 

The vagus nerve also plays an important role within the neuroendocrine-immune axis, which can regulate 
coordinated neural, behavioral, and endocrine responses with the immune system in order to prevent 
chronic neuroinflammation. The vagus nerve recognizes peripheral pro-inflammatory cytokines released 
by macrophages, such as IL-1, IL-6, and TNF-α and conveys this information to the neurons within HPA 
pathway in order to decrease peripheral inflammation[82]. Overall, the vagus nerve has anti-inflammatory 
properties both through its afferent end (activation of HPA axis) and through its efferent end (activation of 
CAP).

THE GUT AND THE ENDOCRINE SYSTEM
In addition to the vagus nerve, intestinal microbiota are able to communicate with the CNS through 
hormones secreted by glands within the endocrine system. Steroid hormones take part in many critical 
physiological processes in our body, such as survival of stress, injury, metabolism, inflammation, salt 
and water balance, immune functions, and development of sexual characteristics. Studies show that gut 
microbiota are also able produce and regulate these hormones to affect brain activity, including the state of 
microglia and neuroinflammation. 

Page 6       Reyes et al. Neuroimmunol Neuroinflammation 2020;7:215-33  I  http://dx.doi.org/10.20517/2347-8659.2020.13



Glucocorticoids through HPA axis
The HPA axis is a complex set of direct pathways and feedback interactions which include the 
hypothalamus, the pituitary gland, and the adrenal glands. The hypothalamus produces and releases 
corticotropin-releasing hormone (CRH), which can induce the pituitary to release adrenocorticotropic 
hormone (ACTH). ACTH then stimulates the adrenal cortex, producing glucocorticoid hormones. 
Each of these hormones can in turn act back on the hypothalamus and pituitary in a negative feedback 
cycle. Glucocorticoids are corticosteroids which bind to glucocorticoid receptors present in almost 
every vertebrate animal cell. They can reduce certain aspects of immune activities through a feedback 
mechanism. Cortisol is the most important human glucocorticoid which has a variety of cardiovascular, 
metabolic, immunologic, and homeostatic functions. The influence of microbiota on the HPA axis depends 
on many factors including bacterial strain, host age and sex, and different mouse strains[83-89]. Individual 
strains of bacteria can regulate the HPA axis and the microbiota as a whole participate in developmentally 
programming stress responses[90]. Conversely, microglial activity can also affect hormone release through 
HPA axis. In response to cerebral insults, microglia secrete a variety of inflammatory molecules, such as 
cytokines, stimulating neuronal activity within the paraventricular nucleus of the hypothalamus to activate 
the HPA axis anti-inflammatory feedback loop to reduce prolonged neuroinflammation. 

Glucocorticoids released by the HPA axis bind to glucocorticoid receptors, which are highly expressed 
in neurons and microglia to affect cellular responses[85,90]. Glucocorticoids work to suppress both stress 
and immune responses by binding to specific glucocorticoid receptors and mineralocorticoid receptors 
in CNS and immune cells[91]. Studies have demonstrated that acute stress induced higher levels of ACTH 
and corticosterone in the serum of GF mice compared to conventionally-raised control mice[85-87]. 
Recent targeted microarray analysis found 23 upregulated glucocorticoid receptor pathway genes in the 
hippocampus of GF mice compared to controls, of which six genes (Slc22a5, Aqp1, Stat5a, Ampd3, Plekhf1, 
and Cyb561) were confirmed by PCR validation[87]. Among these six genes, two (Stat5a and Ampd3) 
were upregulated in E. coli-derived LPS-treated mice. The GF mice demonstrated reduced anxiety-like 
behaviors in response to acute stress, whereas LPS-treated control mice demonstrated anti-depressive 
but not anti-anxiety behavior and a decrease in the basal serum cortisol levels. LPS-induced abnormal 
behavior was consistent with previous findings that E. coli colonization in GF mice enhanced the HPA 
axis response to stress[86]. In another study, plasma ACTH and corticosterone hormones were decreased 
in mice monocolonized with Bifidobacterium infantis, but were increased in E. coli-monocolonized mice. 
In addition, after receiving fecal samples from patients diagnosed with severe depression (“depression 
microbiota”), control mice exhibited anxiety- and depressive-like behaviors with parallel downregulation 
of Stat5a gene in their hippocampus compared with “healthy microbiota” recipient mice[92]. Stat5a is 
a member of STAT family encoded transcription factors, mediating signals for a broad spectrum of 
cytokines. The JAK2-STAT5 signaling pathway plays a critical role in mediating IL-3-induced activation 
of microglia[93]. Furthermore, STAT5 may play a protective role in damaged nerve cells and has been 
implicated in cellular functions of proliferation, differentiation, and apoptosis with relevance to processes 
including hematopoiesis and immunoregulation[92]. Collectively, these observations suggest that microbiota 
related STAT5 levels may influence neuroinflammation and related disorders.

CRH and glucocorticoids from the HPA axis have been shown to directly affect microglia activity by 
binding to functional CRH-R1 receptors on microglia and initiate apoptosis of microglia[94]. In that study, 
Ock et al.[94] demonstrated that CRH-induced apoptosis did not induce nitric oxide production or increase 
expression of pro-inflammatory genes, which indicates that CRH does not affect inflammatory activation of 
microglia. This mechanism has been linked to the mitochondrial pathway and induction of reactive oxygen 
species (ROS) production, which can damage microglia cells and promote apoptosis[95]. In support, the 
antioxidant N-acetyl cysteine inhibited CRH-induced microglial cell death suggesting that ROS was a main 
cause of apoptosis. 
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Glucocorticoid levels are strongly related to the activation of the HPA axis, and distinctively affect 
macrophage function. Low levels of corticosterone enhanced pro-inflammatory factors, while high 
corticosterone concentrations suppressed macrophage activation[96]. Steroid hormones directly target 
mature microglia; glucocorticoids predominantly modulate expression of glucocorticoid receptors to 
regulate microglial inflammatory activity[97]. Anti-inflammatory effect of glucocorticoids on microglia can 
reverse the pro-inflammatory function of CRH by attenuating the production of TNF-α, IL-6, and nitric 
oxide from LPS + IFN-γ-activated murine microglia. Physical or emotional stress may induce microglial 
activation in the brain as determined by changes in morphology [98,99]. The stress-induced elevation of 
glucocorticoids can activate microglia in rats, and chronic stress can cause a marked transition from a 
resting to non-resting state[100]. Temporal treatment of glucocorticoids can exhibit the opposite results[101]. 
Stress and administration of glucocorticoids prior to peripheral immune stimuli exerted pro-inflammatory 
effects on microglia, while exposure to glucocorticoids after stimuli had anti-inflammatory effects in a 
rodent model[101]. Corticosteroids limit microglial activation that occurs during acute stress, serving as 
an important endogenous suppressive signal limiting neuroinflammation[98,99]. Moreover, glucocorticoid 
level increases and microglial morphological complexity decreases with aging[88]. Increasing glucocorticoid 
levels in young mice enhanced microglial ramifications, pointing to their increased neuroprotective 
function. The opposite, amoeboid state of microglia renders them to move freely in the brain tissue and is 
indicative of inflammatory activation. Amoeboid microglia occur more frequently with aging. The effects 
of glucocorticoids or corticosteroids on microglia morphology are dependent on treatment time and 
concentration of glucocorticoids. 

Estrogen through hypothalamic-pituitary-gonadal axis
The hypothalamic-pituitary-gonadal axis (HPG axis) plays an important role in the reproductive and 
immune systems, and controls development, reproduction, and aging in animal models. The hypothalamus 
secretes gonadotropin-releasing hormone, the pituitary gland produces luteinizing hormone and follicle-
stimulating hormone, and the gonads release estrogen and testosterone. Although the HPG axis has not 
been as deeply studied as the HPA axis, strong evidence suggests that estrogen has the capacity to inhibit 
neuroinflammatory processes and can impact immune cells, including microglial functions. 

Estradiol (E2) is an estrogen steroid hormone and the major female sex hormone. Studies show 
that 17β-estradiol (E2) inhibits microglia activation[102] and reduces the expression of inflammatory 
mediators[102]. For example, E2 was able to inhibit Aβ-induced expression of scavenger receptor-A in 
microglia cells from an animal model of Alzheimer’s disease[102]. Ovarian hormone deprivation can alter the 
expression of major components of estrogen and neuronal inhibitory signaling, participating in the control 
of microglia reactivity[103]. Moreover, aging is related to exaggerated responses to acute inflammatory 
stimuli, modulated by the duration of hormone deprivation. This deprivation is due to decreased estrogen 
receptor activity, which, despite the continuous synthesis of the receptors, induces neuroinflammation[89].

SHORT-CHAIN FATTY ACIDS IN THE GUT AND NEUROINFLAMMATION
Microbiota are able to influence brain functions through the production of metabolites such as SCFAs. In 
addition to being derived from dietary sources, SCFAs are also produced by the microflora in the distal 
small intestine and colon though the fermentation of dietary fibers. The most abundant SCFAs in the 
human gut are acetate, propionate, and butyrate. Acetate is used for host synthesis of lipids and cholesterol, 
and propionate is mostly absorbed by the liver and serves as a substrate during gluconeogenesis. Butyrate 
functions as the main energy source for colonic enterocytes[104]. SCFAs are mainly absorbed in both the 
small and large intestine through similar mechanisms, such as diffusion of the dissociated forms and 
through active transport by SCFA transporters[105].

High doses of systemic or locally injected butyrate has been found to exert neuroprotective effects, such 
as memory enhancement and cognitive function restoration[106,107]. Physiological levels of butyrate may 
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influence and improve neuroinflammation through different mechanisms. Butyrate is a known inhibitor 
of histone deacetylases (HDACs)[108,109], which control the innate inflammatory system by regulating the 
number of microglia cells and astrocytes[110]. Histone acetylation is a post-translational modification 
through epigenetic process and causes the chromatin structure to loosen by weakening electrostatic 
attraction between the histone proteins and DNA backbone. Activation of microglia are suppressed by this 
process. Therefore, increased HDACs have been shown to be involved in neurodegenerative disorders, such 
as Alzheimer’s and Parkinson’s diseases[110,111]. 

Butyrate is one of the most important microbial end-products of the human colon fermentation process 
which displays several physiological effects via different mechanisms. One function is mentioned 
above: butyrate is a well-established HDAC inhibitor. In addition to having a significant impact on the 
transcriptional system, butyrate also serves as the energy substrate. Butyrate is the primary source of 
energy in the colon and microbiome, which accounts for nearly 70% of ATP produced. It may appear that 
metabolic events in the colon are disconnected with that of the brain. However, it is impossible to ignore 
the immense energy demand of the brain. In this regard, energy imbalance in the brain has been noted at 
early stages of neurodegenerative disease such as Alzheimer’s disease[112]. Another function of butyrate is its 
ability to activate GPCRs, as described in detail above, within the vagus nerve system section[113]. Butyrate 
can signal through GPR109a, which is widely expressed in colonocytes, T cells and has also been found in 
microglia. Butyrate is sensed by FFA2 (previously GPR43) and FFA3 (previously GPR41), which modulate 
the relationship between SCFAs and gut, as well as the whole body energy use[114,115]. 

Many studies have shown that butyrate can serve as an anti-inflammatory agent, improving gut barrier 
function, protecting against colon cancer and neurodegenerative diseases, such as Alzheimer’s disease[116-118]. 
These studies demonstrate that treatment with butyrate inhibited pro-inflammatory cytokines (IFN-γ, 
TNF-α, IL-1β, IL-6, and IL-8) and upregulated anti-inflammatory cytokines (IL-10 and TGF-β). This effect 
may be partly due to the inhibition of transcription factor NF-κB that controls the transcription of DNA, 
cytokine production, and cell survival. Aguilar et al.[119] demonstrated that butyrate suppressed the NF-
κB signaling pathway by rescuing the redox machinery and controlling ROS, which also regulate NF-κB 
activation. In addition, butyrate is known to enhance and repair barrier function of intestinal epithelial 
cells. In vitro experiments have illustrated that butyrate plays an important role in the maintenance of gut- 
barrier integrity in order to block the translocation of LPS, which can cause immune activation[120]. For 
instance, butyrate leads to the upregulation of mucin 2, the most prominent mucin protein, and enhances 
the protection of the mucosal layer[121]. These effects of butyrate were demonstrated in Caco-2 cell cultures, 
which are human epithelial colorectal adenocarcinoma cells, and can form confluent monolayers in vitro that 
both structurally and functionally resemble the small intestinal epithelium. For instance, butyrate leads to 
the upregulation of mucin 2, the most prominent mucin protein, and enhances the protection of the mucosal 
layer[121]. 

Gut dysbiosis and reduced levels of SCFAs have been observed within neurological disease, including 
Pelizaeus–Merzbacher disease[122]. Unger et al.[123] found changes in gut microbiota and SCFAs in patients 
diagnosed with Parkinson’s disease. Fecal SCFA concentrations were significantly reduced in Parkinson’s 
patients compared to controls. This was associated with reduced microbiota populations of Bacteroidetes 
and Prevotellaceae[123]. Furthermore, some studies have demonstrated beneficial effects of SCFAs during 
neuronal pathologies, such as against formation of neurotoxic Aβ aggregation, which occurs during the 
pathogenesis of Alzheimer’s disease[124]. SCFAs have been reported to increase the expression level of 
retinotic acid in the GI tract, which inhibits Th17 cell differentiation and promotes Treg proliferation, 
limiting prolonged neuroinflammation[125]. SCFAs, especially butyrate, are able to modulate immune 
cells and influence cell proliferation and apoptosis. For example, high concentration of butyrate induces 
cell apoptosis while low concentration will enhance cell proliferation[126]. Collectively, these observations 
support the ability of SCFAs to have a therapeutic effect on many neurodegenerative disorders. 
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MICROBIOME-TARGETED THERAPEUTICS ADDRESSING NEUROLOGICAL DISEASES
The conclusion of the 10-year NIH Human Microbiome Project has been integral in providing resources, 
methods, and discoveries linking humans and their microbiomes to health and disease [127]. The study 
utilized a combination of shotgun metagenomics, untargeted metabolomics, and immunoprofiling to 
determine host-microbiota interactions manifest in largely diverse ways, and sampling large population 
sizes is critical for accurately determining potential mechanisms of microbiome-linked diseases[127]. They 
demonstrated that microbiome composition alone was not always an accurate representation of host 
phenotype, and necessitated the consideration of microbial functions of the microbiota ecosystem as 
they interacted with host immunity, metabolism, and other interconnected activities [128]. Through this 
accomplishment, microbiome-targeted strategies have begun to gain interest in both studying mechanistic 
relationships within animal models and in the treatment of pathologies, including those related to the gut-
brain axis. 

Antibiotics: non-absorbable “eubiotic” rifaximin
Beyond their bacteriostatic and bactericidal effects in treating GI infections, antibiotics have been shown 
to negatively affect the intestinal flora, a phenomenon considered “collateral damage”. Antibiotic treatment 
can have long-lasting negative effects on the GMB, which has been shown to decrease diversity and reduce 
beneficial bacteria, leading to increased susceptibility to pathogens, such as Salmonella and Clostridium 
difficile[129,130]. Alternatively, rifaximin, a broad-spectrum, non-absorbable antibiotic, prescribed to treat 
irritable bowel syndrome and traveler’s diarrhea caused by E. coli, has shown unique qualities related to the 
GMB and symptoms beyond the GI tract[131]. The mechanism of rifaximin action to reduce pathogens is 
through binding the β-subunit of microbial RNA polymerase and inhibition of bacterial RNA synthesis[132]. 
However, unlike other antibiotics which commonly reduce microbiota diversity and promote dysbiosis, 
rifaximin exerts anti-inflammatory properties and has the “eubiotic” ability to enrich beneficial microbiota 
populations[133]. For example, Maccaferri et al.[134] found that in vitro treatment with rifaximin increased 
levels of Bifidobacteria, Atopobium, and Faecalibacterium prausnitzii cultured from colonic samples 
of patients with Crohn’s disease. These changes were also accompanied by increases in SCFAs, microbial 
metabolites known to be important in host health, metabolism, and immune homeostasis[135]. In a rodent 
model of ankylosing spondylitis spinal joint inflammation, rifaximin treatment was able to inhibit TLR-4/
NF-κβ signaling and decrease levels of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-17A, and IL-
21[136]. Another important commensal GMB population and producer of the SCFA lactate, Lactobacillus, 
was increased in a rat model of visceral hyperalgesia with rifaximin treatment[137]. Furthermore, hepatic 
encephalopathy is a common complication of patients with acute or chronic liver disease that is detected 
through neuropsychological testing and presents as neurocognitive decline: forgetfulness, confusion, 
irritability, and coma at its most severe forms[138]. These symptoms are mainly a result of elevated levels 
of ammonia. Rifaximin was able to reduce levels of ammonia-producing intestinal bacteria without 
decreasing GMB diversity, while also significantly reducing hospital stay, mortality rate, and improving 
psychometric test performance in patients with mild and severe hepatic encephalopathy compared to other 
treatments[139]. These observations support alternate uses for rifaximin which may be related to beneficial 
changes in microbiota and SCFAs, including its indication for CNS-related disorders.

Microbial-derived metabolites: sodium butyrate
Beyond directly targeting and supplementing live bacteria in the GMB, the Human Microbiome Project 
stressed the importance of microbiota functions in influencing host immunity and pathologies. As a HDAC 
inhibitor, sodium butyrate can change the balance between two types of enzymes, histone acetylase and 
HDACs[140]. These two enzymes control acetylation, which is an important process in chromatin structure 
and gene expression associated with many diseases, such as diabetes, Alzheimer’s disease, and various 
cancers[141-143]. Physiological doses of sodium butyrate (0.25-4.00 mM) were observed to inhibit glioblastoma 
cell proliferation and induce cancer cell senescence in vitro[143]. Pharmacological treatment of sodium 
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butyrate was also shown to significantly increase survival rate and delay the neuropathological sequelae in the 
R6/2 transgenic mouse model of Huntington’s disease[106]. The findings of Arnoldussen et al.[144] demonstrated 
the beneficial effect of dietary butyrate intervention on the detrimental effects of high fat diet, including 
relieving high fat diet-induced cognitive impairment and dementia in humans. In addition to serving 
as a therapeutic agent in some specific diseases, sodium butyrate can have complementary effects when 
administered with other agents, such as metformin. Metformin is the most prescribed oral anti-diabetic 
agent, whose potential benefit in many diseases has been investigated. Recent research demonstrates that 
metformin is able to increase butyrate-producing populations within the gut microbiome[145,146]. Additional 
data indicate metformin and butyrate have anti-inflammatory effects in relation to physiological functions, 
including transcription, replication, and repair in the process of tumorigenesis[147]. Other SCFAs also have 
therapeutic effects. For example, glatiramer acetate serves as immunomodulator to reverse detrimental 
immune reactivity in two murine models of irritable bowel disorder. Collectively, these findings point to the 
therapeutic potential of sodium butyrate and other SCFAs in the treatment of various pathologies including 
neurological disorders.

Targeting the vagus nerve
Lewy body aggregates, constituted mainly by α-synuclein and ubiquitin, and GI dysfunctions are 
physiopathological characteristics of early development of Parkinson’s disease[148]. Braak et al.[149] 
hypothesized that these early biomarkers initiate within the gut and then progress to the CNS via the vagus 
nerve and spinal cord. In support, vagus nerve-mediated brain migration of α-synuclein injected into 
the intestinal wall has been found in a rodent model[150]. Sander and his colleagues further indicated the 
correlation between the vagus nerve and cognitive fatigue in multiple sclerosis patients[151]. It is thought 
to be the result of the vagus nerve stimulation due to the pro-inflammatory cytokines causing changes 
in neural activity in brainstem and hypothalamus[152]. Furthermore, the stimulation of the vagus nerve is 
used in the treatment of drug resistant depression, which is the major factor for developing Alzheimer’s 
disease. Experiments in APP/PS1 (a murine model of Alzheimer’s disease) animals were performed to 
induce morphological changes in microglia towards a neuroprotective phenotype, which was mediated 
by vagus nerve activation[153]. Therefore, due to its important role in regulating the gut-brain axis through 
transferring microbial metabolites and neurotransmitters, such as SCFAs and GABA, manipulation of vagus 
nerve signaling may play a key role in modulation of some neurological conditions, including Parkinson’s 
disease, Alzheimer’s disease, and multiple sclerosis.

LIFE-STYLE INTERVENTIONS
Lifestyle interventions can affect gut microbiome composition, which influence brain activity and immune 
responses. Since neuroinflammation is strongly linked to neurodegenerative diseases, lifestyle alterations, 
such as dietary supplement and exercise, are able to play an important role in improving disease states.

Pre-/probiotic supplementation
Probiotics are living beneficial microorganisms (bacteria and yeasts), and prebiotics are the indigestible 
fibers which feed them[154]. Probiotics have been widely marketed and consumed as dietary supplements or 
as functional foods, such as “live” yogurts[154]. Probiotic treatments with Lactobacillus acidophilus, L. casei, 
and L. rhamnosus were able to affect transcription of host genes related to mucosal immunity in healthy 
human volunteers, supporting the ability of live bacterial cultures to affect host activities[155]. D’Mello et al.[26] 
demonstrated a probiotic mixture, VSL#3, was able to reduce “sickness behavior” by increasing novel social 
investigation in a liver inflammation rodent model, which was related to an increase in circulating G-CSF, 
reduction in TNF-α, and a decrease in activated microglia. In an in vitro study, peripheral blood mononuclear 
cells isolated from patients with Parkinson’s disease were co-cultured with probiotic bacteria, Lactobacillus 
and Bifidobacterium, to investigate changes in innate immune cell release of inflammatory signaling markers. 
Probiotic strains were able to significantly reduce pro-inflammatory (TNF-α, IL-6, and IL-17A) and increase 
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anti-inflammatory cytokines (IL-4 and IL-10)[156]. In another study of a randomized, double-blind trial, patients 
diagnosed with Alzheimer’s disease given a probiotic mixture for 12 weeks, exhibited a significant score 
improvement on the mini-mental state examination compared to controls[157].  

High fiber prebiotic with or without probiotic supplementation can be a non-invasive strategy to treat 
neurological conditions. High fiber diets can affect gut microbiota abundance. For example, inulin is a 
prebiotic fiber and inulin-type fructan supplementation on the fecal microbiota is able to selectively change 
abundance of specific colon bacteria strains, such as Anaerostipes, Bilophila, and Bifidobacterium[158]. As 
such, high fiber supplementation has been shown to counter age-related microbiota dysbiosis[159]. Feeding 
mice with inulin has been shown to beneficially alter gut microbiome resulting in improved neurological 
outcomes through affecting gut microbiota-produced SCFAs. In support, high fiber diets, in which SCFAs 
can be derived, have numerous reported health benefits in reducing risk of type 2 diabetes, obesity, stroke, 
and cardiovascular disease. High fiber diets have been shown to increase circulating levels of butyrate, 
which may affect CNS function directly[160]. Collectively, these studies provide exciting evidence and 
demonstrate the need for further investigations into the ability of live bacteria with or without prebiotic 
supplementation to treat inflammation and neurological pathologies. 

Diet 
The microbiota composition and diversity are sensitive to host dietary habits[23,161]. Dietary factors may have 
pro-inflammatory or anti-inflammatory effects[162], which can indirectly affect gut microbiota by providing 
multiple nutrients and specific compounds. For example, data suggest that the modified Mediterranean-
ketogenic diet can modulate the gut microbiome and metabolites in association with improved Alzheimer’s 
disease biomarkers in cerebrospinal fluid[163]. The abundance of Enterobacteriaceae, Akkermansia, Slackia, 
Christensenellaceae, and Erysipelotriaceae increases while that of Bifidobacterium and Lachnobacterium 
reduces after modified Mediterranean-ketogenic diet treatment in subjects. A bad dietary habit, such as 
chronic alcohol intake, can induce neuroinflammation and neurodegeneration. Reduction of intestinal 
bacterial load was able to attenuate alcohol-associated CNS and gut inflammation[164]. Alcohol activated 
microglia and modified its cell morphology, taking on an amoeboid shape with enlarged soma and 
shortened peripheral processes[164].

Exercise
Exercise is considered as a protective treatment for neurodegenerative diseases[165]. Both voluntary and 
controlled exercise can alter the gut microbiota[166]. The microbiota composition of exercised rats was 
notably different from the sedentary rats with a significantly higher butyrate concentration[167]. Voluntary 
running has neuroprotective effects in an α-synuclein rat model of Parkinson’s disease[168]. It can protect 
rats against neuronal loss, increase enteric glial expression, and modify gut microbiome composition in 
the Parkinson’s disease model[169]. Exercise is also considered to enhance immune system. The vagus nerve 
regulates gastrointestinal inflammatory tone. Parasympathetic neuroimmune reflex depends on vagal 
afferent neurons for the local release of intestinal inflammatory mediators in response to pathogenic gut 
bacteria. For this reason, elevated vagal tone and parasympathetic influence in the resting state of athletes 
foster a preferential anti-inflammatory milieu through conditionally influencing microbial composition[170].

CONCLUSION AND FUTURE DIRECTIONS
Recent discoveries link the GBM and neurological disorders through the microbiota-gut-brain axis. It 
is also increasingly recognized that disruptions in the GBM ecosystem and its function may directly or 
indirectly impact CNS disease states, implicating the involvement of microglial-induced neuroinflammation 
and neurodegeneration. In this respect, there is bidirectional communication between the GBM and the 
brain, which is achieved through several pathways [Figure 1]. This communication involves the immune 
system, which not only supports the tolerance towards the microbiome ecosystem residing in the GI 
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tract but also can react to dysbiosis and “leaky” gut, thus relaying this information to the CNS. On the 
other hand, there is the involvement of the vagus nerve in the microbiota-gut-brain interactions, which 
have several afferent and efferent pathways involving a variety of factors such as gut endocrine cells, 
neurotransmitters, and receptors. Importantly, the vagus nerve plays an important function in controlling 
inflammation through cholinergic and splenic-sympathetic anti-inflammatory pathways and the HPA 
axis. The role of hormones in the microbiota-brain bidirectional communication is also deemed important 
through regulation of the HPA and HPG axes. In addition, microbiota-derived metabolites, such as SCFAs 
and LCFAs, are integral in maintaining intestinal health and have been shown to also impact neurological 
health.

The GMB’s critical influence on host development, immune homeostasis, and metabolism as well as 
involvement in the development of the CNS disorders, makes it an ideal candidate for novel preventative 
therapies and treatments. These strategies include the use of beneficial “eubiotic” antibiotics or other means 
such as lifestyle interventions (diet and exercise) aimed at reversing microbiota “dysbiosis” by targeting 
microbiota and their metabolites. Although in its infancy, studies into the efficacy of the microbiome-
targeted manipulation and FMT to treat diseases, including those beyond the GI tract, promise interesting 
insights into the importance and impact of the vast and diverse microcosm residing within us every day of 
our lives from birth to old age and death.

Certainly, we are still in the beginning of the research trying to reveal the causative links between the GMB 
and brain function as it relates to neurological disorders. There is a huge untapped potential in this area of 
microbiome in human health and disease, which will be more appreciated with the improvement of new 
technologies and methods of GMB research.
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