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Abstract
The diagnosis of primary tumors of bone relies heavily on clinicopathological and radiological correlation and is 
often best performed in a multidisciplinary setting. Bone tumors comprise a heterogenous category of human 
lesions ranging from benign to malignant neoplasms. These tumors affect a wide age range and can become 
problematic for diagnosis when less common entities are encountered. Traditionally the pathological diagnosis 
of many bone tumors has been based primarily on the evaluation of hematoxylin and eosin-stained glass 
slides, sometimes combined with ancillary diagnostic techniques such as immunohistochemistry, conventional 
cytogenetics, fluorescence in situ hybridization, and polymerase chain reaction-based assays. More recently, the 
advent of massively parallel sequencing-based techniques has opened new avenues for diagnostic testing in bone 
tumors; however, these new testing modalities are sensitive to traditional decalcification procedures that are 
commonly used in the routine processing of bony specimens. Herein we provide a focused review concentrating on 
the molecular genetic features of bone tumors with specific, recurrent genetic alterations that make them appealing 
targets for directed ancillary testing by conventional or molecular techniques. In addition, specimen handling 
with regards to decalcification procedures are discussed and the different types of testing modalities available are 
reviewed.
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INTRODUCTION
Primary tumors of bone comprise a heterogeneous group of benign and malignant tumors that affect 
patients of a wide age range. While benign bone tumors are relatively common, malignant bone tumors 
are exceedingly rare, accounting for less than 1%-2% of all neoplastic disease[1-3]. While some of the more 
common bone lesions, such as osteochondroma, pose little problem for diagnosis, the less commonly 
occurring benign and malignant lesions can often lead to diagnostic difficulties. The histopathologic 
diagnosis of bone tumors is fraught with difficulty due to the histomorphologic overlap between many 
different types of tumors, including overlap between reactive, benign, and malignant lesions[4-5]. In addition, 
the diagnosis of bone lesions is heavily reliant on correlation with imaging characteristics to be able to 
localize lesions to specific locations within different bones and to sometimes assist in staging[6-8]. Thus, the 
diagnosis and treatment of patients with primary bone tumors is best accomplished with a multidisciplinary 
approach involving the coordination of surgeons, radiologists, pathologists, and oncologists to produce 
optimal patient care[9-10].

Given the inherent diagnostic difficulties associated with primary bone tumors, ancillary testing 
modalities that may assist in diagnosis are beneficial to patient care. Precision medicine for bone cancer 
has lagged behind soft tissue, epithelial, and hematologic neoplasms in part due to the special processing 
procedures required for bony tissues[11]. Traditionally, diagnosis has relied on histopathological assessment 
of tumor tissue combined with clinical and radiological correlation. This has been supplemented with 
cytogenetic analysis including karyotype analysis and fluorescence in situ hybridization (FISH)[12-16]. 
Immunohistochemical analysis has played little role in the diagnosis of bone tumors, although recent 
molecular advances have provided pathologists with specific targets amenable to antibody interrogation in 
some tumors such as giant cell tumor of bone and chondroblastoma[17]. Polymerase chain reaction (PCR)[18-20] 
and, more recently, massively parallel next generation sequencing (NGS) based assays have provided 
additional tools for assessing molecular alterations in bone tumors[21-23]. However, it is worth noting that 
many of these ancillary testing modalities are exquisitely sensitive to conventional processing techniques, 
particularly decalcification, and care must be taken when processing bony lesions with consideration for 
downstream testing that may take place after the histopathological examination. This review aims to discuss 
the molecular genetic landscape of many of the primary bone tumors, specimen handling, and the ancillary 
testing available for diagnosis.

SPECIMEN HANDLING
Processing and handling are critical components for the proper diagnosis of bony surgical pathology 
specimens. When sufficient material is available, receiving fresh tissue is preferred as it allows for a 
portion of the tissue to be preserved (often fresh in saline or snap frozen) for subsequent cytogenetic, 
molecular, and microbiological studies[24]. Priority however should be given to tissue that will be used 
for morphological analysis, as that remains the cornerstone of histopathologic diagnosis of bone lesions. 
Routine fixation using 10% formalin and paraffin embedding is acceptable for this purpose and generally 
does not interfere significantly with testing of antigen expression or genomic material[25,26]. It is also worth 
mentioning that numerous other pre-analytical variables can have large effects on nucleic acid retrieval 
including specimen collection techniques, storage practices, temperature, duration of processing, and 
dehydration protocols amongst others. However, an in-depth discussion of pre-analytical variables is 
beyond the scope of this review which will focus on decalcification as it pertains specifically to bone 
specimens. Bone specimens often require additional preparation in the form of decalcification to 
allow for proper processing of the bone sections and creation of glass slides that can then be reviewed 
microscopically; however, decalcification is known to have detrimental effects on subsequent molecular 
testing[27,28]. Decalcification is most often accomplished using strong (e.g., hydrochloric acid or nitric 
acid) or weak (e.g., acetic acid or formic acid) inorganic acidic solutions to aid in the demineralization of 
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bony specimens [Table 1]. Although generally adequate for preserving histomorphology, decalcification 
with acidic solutions may lead to the degradation of genomic material and cause interference when 
molecular testing is performed[29,30]. Acid decalcification with formic acid (a weak acid) has been reported 
to preserve genomic material for sequencing analysis although it can cause severe damage to DNA and 
RNA when longer decalcification times are used[31]. Picric acid may also not be optimal for nucleic acid 
retrieval[32]. Alternative methods or modifications to standard decalcification that exist include the use of 
ethylenediaminetetraacetic acid (EDTA), microwave, ultrasonography, and other types of acid. Acids or 
EDTA may be used in bone decalcification and combined with microwave or ultrasonography to reduce 
the time needed to decalcify, and EDTA decalcification alone appears to provide some measure of genomic 
material preservation compared to stronger acid solutions[33-37]. Decalcification times vary for both acidic 
solutions and EDTA and can be modified with additional factors such as temperature or mechanical 
agitation[38]. When handling bone specimens it is important to be familiar with the tissue processing 
procedures employed by the laboratory so that consideration can be given to the types of subsequent 
testing performed.

DIAGNOSTIC TESTING MODALTIES 
Karyotype, FISH, and chromosomal microarrays (CMA) such as array comparative genomic hybridization 
(aCGH)/single nucleotide polymorphism (SNP) arrays have all traditionally constituted the backbone of 
molecular diagnostics in bone and soft tissue tumors. In more recent decades, PCR based assays, first-
generation sequencing technologies and the development of massively parallel targeted sequencing have 
provided new options for molecular testing of bone tumors[22,39-41]. In general, there are certain advantages 
and disadvantages to each type of testing modality with some special considerations with regards to tissue 
processing. Karyotype and CMA, while less commonly used these days for bone tumors, require fresh 
tissue or perform better with fresh tissue and may still provide some valuable information when used. 
FISH, PCR, and NGS can be performed on formalin fixed paraffin embedded tissue; however, they suffer 
from degradation of genomic material during decalcification procedures particularly when strong acids are 
used.

The type of testing offered by different laboratories also varies widely making it important for pathologists 
and clinicians to understand the capabilities of each different type of assay and the information being 
returned. For example, FISH may be used to identify specific translocations or amplification of certain 
genes in a case where a particular diagnosis is suspected and can be done at a relatively low price with a 
rapid turnaround time; however, it is less sensitive than PCR or NGS and may lead to false negative results, 

Table 1. Common methods of bone decalcification

Agent Speed Mechanism of Action Effect on 
Histomorphology and 
Antigen Expression

Effect on Genomic Material (DNA/
RNA)

Strong Acids 
(Hydrochloric, Nitric, etc.)

Rapid decalcification 
(minutes to hours)

Calcium dissolution Preserved with short 
decalcifications

Cause degradation of genomic material

Weak Acids (Acetic, 
Formic, Picric, etc.)

Slow decalcification 
(2-3 days)

Calcium dissolution Preserved May cause less degradation of genomic 
material although long decalcification 
times can still cause damage and formic 
acid may cause severe damage

EDTA Slow decalcification 
(1-2 days)

Calcium chelation Preserved Generally better at preserving genomic 
material, although molecular tests may 
still fail

Microwave/
Ultrasonography/
Electricity^

Generally, increase 
rate of decalcification

Heat/bone 
cavitation/electrolytic 
removal of ions 

Can cause distortion 
of histomorphology

Can cause degradation of genomic 
material

^These methods are not commonly used in most pathology laboratories. They also are usually used in combination with acid 
dissolution or chelating agents and may increase damage to tissue and genomic material. EDTA: ethylenediaminetetraacetic acid; DNA: 
deoxyribose nucleic acid; RNA: ribonucleic acid
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particularly in bone tumors where neoplastic cells are present in the background of numerous benign 
cells[42]. PCR and NGS based sequencing assays may be better diagnostic options for tumors where there is 
a broad differential such as a primary malignant small round blue cell tumor of bone, however these assays 
are exquisitely sensitive to decalcification and require proper triaging of pre-analytical variables such as 
tissue fixation and decalcification. In addition, NGS is expensive compared to older techniques and may 
not be available outside of larger academic institutions or referral centers. Table 2 provides a summary of 
some of the more common testing modalities that are available for diagnostic testing of bone tumors.

GENERAL MOLECULAR GENETIC LANDSCAPE OF BONE NEOPLASIA 
Genetically bone tumors may be characterized in a similar fashion to soft tissue neoplasms, divided into 
lesions with simple genetics and lesions with complex genetics. These categories do not necessarily line 
up with the histological grade or clinical behavior of individual tumors; tumors with complex genetics 
are almost uniformly aggressive, although some tumors with simple genetics also behave in an aggressive 
fashion, and vice versa. Tumors that fall into the simple genetics category tend to have simple karyotypes 
and can generally be characterized by specific, recurrent molecular alterations that make them attractive 
targets for cytogenetic or molecular analysis. These alterations most commonly take the form of point 
mutations or chromosomal level abnormalities such as amplifications or translocations with various 
downstream effects such as the creation of oncogenic fusion proteins. Tumors from the complex category 
tend to display either multistep progression in their molecular profiles (such as high-grade chondrosarcoma 
and dedifferentiated chondrosarcoma) or are characterized by complex karyotypes with multiple molecular 
abnormalities present at the time of diagnosis (high-grade osteosarcoma and undifferentiated pleomorphic 
sarcoma). While the value of ancillary diagnostics is dependent on the aforementioned tissue processing 
protocols, when appropriate material is preserved, they can serve as a valuable tool in the diagnosis of 
difficult lesions that cannot be diagnosed on clinical, radiological, and histopathologic grounds alone.

Primary bone tumors represent a heterogenous group of tumors with a wide spectrum of differentiation. 
They include a variety of lesions from different categories including fibrogenic, osteogenic, chondrogenic, 
undifferentiated, and giant cell rich tumors. In addition, bone can be the site of various other tumors types 
including notochordal, vascular, myogenic and lipogenic tumors[3]. A summary of the molecular alterations 
found in primary bone tumors is provided in Tables 3 and 4[43-121]. While advances in molecular genetics 
have expanded our understanding of the molecular alterations present in many different types of tumors, 
the routine diagnosis of many primary bone tumors remains a clinicopathologic diagnosis rather than 
hinging on the identification of specific molecular alterations. As some of these lesions sometimes pose 
difficulty for diagnosis due to morphologic overlap with other lesions, they may benefit from ancillary 
molecular testing to identify specific alterations. In addition, a large variety of tumors that primarily occur 
within the soft tissues may rarely occur as primary osseous lesions. These tumors are mostly the subject 
of case reports or small series; however, they may cause problems for diagnosis when encountered as 
primaries outside of their usual site and many of them harbor specific genetic alterations that are helpful 
for diagnosis when encountered as a bone primary (see “Soft Tissue Tumors that Rarely Present as Primary 
Bone Tumors” section). Tables 3 and 4 provide a brief overview of selected lesions that exemplify the 
different categories of bone tumor genetics or in which molecular testing may be helpful.

MOLECULAR GENETICS OF SELECTED BONE TUMORS 
Giant cell tumor of bone
Giant cell tumor of bone (GCT) is a benign primary bone tumor characterized by a mononuclear cell 
population of neoplastic cells with an admixed population of multinucleated osteoclast-type giant cells. 
These lesions fall into the simple genetics category of bone tumors. GCT represents approximately 5% 
of all primary bone tumors and may behave in a locally aggressive fashion[3]. Recent molecular advances 
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Table 2. Cytogenetic and molecular diagnostic tests available for bone tumors

Test Use Effects of Processing Advantages Limitations
FISH Useful for any bone tumor 

displaying amplification 
or a specific chromosomal 
rearrangement

FFPE material works well 
for FISH, decalcification can 
cause interference with FISH 
probes if genomic material is 
sufficiently degraded

-Available in most academic 
centers
-Can be performed on FFPE 
samples
-Rapid turnaround time (48-
72 h)

-Technically difficult to 
interpret signals and requires 
trained personnel
-Requires a fluorescence 
microscope and imaging 
capability
-Intermediate resolution: 200 
kb
-Misses CN-LOH
-Provides no mutational 
information
-May provide false negatives 
on hypocellular tumor 
material

PCR PCR can provide rapid 
diagnosis of point mutations 
and gene fusions in bone 
tumors, although it is being 
replaced by other testing 
methods

Very sensitive to degradation 
of DNA and RNA due to 
decalcification procedures, 
some literature exists showing 
sequencing works with weak 
acid or EDTA decalcification 
however assays may still fail

-Easy assay to set up and 
perform
-Available at most academic 
centers
-Fast turnaround time (2-5 
days)
-Works well on FFPE samples
-Highly sensitive

-Can only interrogate specific 
suspected alterations†
-Primers must be designed to 
cover specific areas of interest
-RT-PCR assays require RNA 
which can be difficult to work 
with and degrade easily

Sequencing Can be used to analyze 
various types of bone 
tumors depending on type 
of sequencing panel used, 
including identifying point 
mutations, rearrangements, 
and copy number alterations

Very sensitive to degradation 
of DNA and RNA due to 
decalcification procedures, 
some literature exists showing 
sequencing works with weak 
acid or EDTA decalcification 
however assays may still fail 

-NGS can interrogate tumors 
for multiple different genetic 
abnormalities depending on 
the panel used
-Can easily be performed 
on FFPE samples (without 
decalcification)
-High resolution: down to 
single digit base pairs
-Highly sensitive
-Sanger sequencing has a 
lower limit of detection as 
compared to NGS; however 
it is useful for targeted 
mutational testing and for 
confirmation of molecular 
alterations identified by other 
sequencing methods 

-Longest turnaround time (1-4 
weeks)
-Analysis requires complex 
bioinformatics pipelines and 
trained personnel to interpret 
sequencing data
-Equipment and reagents 
currently expensive
-Not available everywhere

Karyotype Typically, no longer used 
in the routine diagnosis of 
primary bone tumors

Requires fresh tissue; 
karyotype cannot be 
performed on tissue that 
has undergone standard 
fixation and decalcification 
procedures

-Available in most academic 
centers
-Reasonable turnaround time 
(5-10 days)
-May serve as a whole 
genome screen for structural 
and numerical alterations 
and reveal unexpected 
information

-Requires fresh tissue
-Technically demanding assay 
to set up and perform
-Dependent on culture and 
growth of malignant cells
-Low resolution: ~10mb
-Provides no information on 
mutations

Array Not commonly used for the 
diagnosis of primary bone 
tumors, although array can be 
used to identify amplification 
events in certain tumors or 
lesions with complex genetics 
and numerous copy number 
variations

Degradation of genomic 
material from decalcification 
interferes with proper analysis 
of array data

-Array available at most 
academic centers
-SNP array can identify CN-
LOH
-Can identify specific areas of 
gains and losses
-Fast turnaround time (5-7 
days)

-Intermediate resolution: 10-
100 kb 
-Cannot detect balanced 
rearrangements
-Provides no information on 
mutations
-Fresh tissue is preferable, 
analysis of degraded (such as 
FFPE) samples is difficult

†Some PCR-based assays are capable of identifying unknown translocations, such as rapid amplification of cDNA ends (RACE) or long 
distance inverse PCR (LDI-PCR), however these assays are technically more complex than conventional PCR or quantitative PCR and 
are not available everywhere for routine clinical care. FISH: fluorescence in situ hybridization; SNP: single nucleotide polymorphism; RT-
PCR: reverence transcriptase-polymerase chain reaction; PCR: polymerase chain reaction, NGS: next generation sequencing; Mb: mega 
base pair; Kb: kilo base pair; bp: base pair; CN-LOH: copy neutral loss of heterozygosity; FFPE: formalin fixed paraffin embedded; EDTA: 
ethylenediaminetetraacetic acid; DNA: deoxyribose nucleic acid; RNA: ribonucleic acid
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Table 3. Molecular genetic alterations in primary bone tumors (simple genetics)

Tumor Type Mutations Translocations and Other 
Cytogenetic Aberrations Fusion Gene or Other Effects

Osteochondroma[43-46] EXT1 and EXT2 loss of function 
mutations/LOH in sporadic and 
hereditary osteochondromas

N/A Disruption of EXT1/2 complex

Enchondroma[4,47,48] IDH1 (R132C; R132H) or IDH2 
(R172S), PTHR1 mutations 

Various chromosomal level 
abnormalities

Altered 2-hydroxyglutarate 
levels, associated 
hypermethylation and 
downregulated expression of 
several other genes associated 
with IDH mutations 

Osteoid Osteoma[16,49-51] N/A FOS and FOSB rearrangements FOS/FOSB-various partners
Osteoblastoma[16,51-55] N/A FOS and FOSB rearrangements FOS/FOSB-various partners
Non-ossifying Fibroma[56] KRAS, FGFR1, and NF1 alterations N/A RAS-MAPK pathway activation
Desmoplastic Fibroma[3,57-60] Rare cases with point mutations 

described (CTNNB1, APC)
Trisomy 8, Trisomy 20, 11q13 
alterations reported 

Dysregulation of numerous 
genes

Giant Cell Tumor of Bone[3,61-63] H3-3A (H3F3A) p.Gly34Trp 
mutation, RANKL 
overexpression

N/A Dysregulation of Histone H3 
proteins

Chondroblastoma[4,61,64] H3-3B (H3F3B) p.Lys36Met 
mutation
Rare cases harbor H3-3A 
mutations

N/A Dysregulation of Histone H3 
proteins

Aneurysmal Bone Cyst[65-70]  N/A t(16;17)(q22;p13)
USP6-multiple partner genes

CDH11-USP6
Promoter swapping with 
multiple partner genes leads to 
upregulation of USP6

Langerhans Cell Histiocytosis[71-75] BRAF V600E mutations N/A Dysregulation of MAPK 
pathway

Fibrous Dysplasia[76-79] GNAS activating mutations N/A Constitutive cAMP elevations 
lead to alteration in expression 
levels of multiple targets

Low-Grade Central 
Chondrosarcoma[3,4,80-82]

Somatic mutations in IDH1 and 
IDH2

N/A Altered 2-hydroxyglutarate 
levels

Low-Grade Peripheral 
Chondrosarcoma[3,4]

Somatic mutations in EXT1 and 
EXT2 genes

N/A Deficiency of heparin sulfate 
glycotransferases

Low-Grade Central Osteosarcoma/
Parosteal Osteosarcoma[3,83-87] 

N/A Supernumerary ring and giant 
chromosome markers with 
amplification of 12q13-15, 
including MDM2, FRS2, and 
CDK4

Cell cycle dysregulation, 
overexpression of MDM2 and 
CDK4

Ewing Sarcoma[3,20,88-92] Mutations in STAG2, CDKN2A, 
and TP53 described

t(11;22)(q24;q12)
t(21;22)(q22;q12)
t(7;22)(q22;q12)
t(17;22)(q21;q12)
t(2;22)(q36;q12)
t(16;21)(p11;q22)

EWSR1-FLI1 
EWSR1-ERG 
EWSR1-ETV1 
EWSR1-ETV4 
EWSR1-FEV
FUS-ERG 

Phosphaturic Mesenchymal 
Tumor[93-96]

N/A Recurrent FGF gene 
rearrangements, some complex 
karyotypes have been described

FN1-FGF1 
FN1-FGFR1 
FGF23 overexpression

Mesenchymal Chondrosarcoma[97-99] N/A Del(8)(q13.3;q21.1)
t(1;5)(q24;q32)

HEY1-NCOA2 
IRF2BP2-CDX1

Lys: lysine; TRP: tryptophan; Met: methionine; Gly: glycine; cAMP: cyclic adenosine monophosphate; t: translocation; inv: inversion; Del: 
deletion; N/A: not available

have identified that nearly all of these tumors are characterized by somatic point mutations in the H3-
3A (H3F3A) gene leading to a specific amino acid substitution p.Gly34Trp that is detectable with 
immunohistochemistry (G34W IHC). This mutation leads to epigenetic modification and abnormal 
function of histone protein H3[61]. In addition, studies have shown that other alterations including 20q11.1 
amplification, IDH mutations (although this is disputed), and RANKL overexpression are present in GCT[62-64]. 
While the diagnosis of GCT is generally straight forward some cases may display morphologic overlap 
with other giant cell rich lesions including chondroblastoma. For this reason, immunohistochemistry or 
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molecular testing for the H3-3A mutation may be useful in clinching the diagnosis. Achieving a correct 
diagnosis for these lesions is particularly useful as the tumors are amenable to targeted therapy with 
denosumab[64].

Chondroblastoma
Chondroblastoma is a rare benign primary bone tumor of young adulthood that displays chondrogenic 
differentiation and is part of the simple genetics category of lesions. It is characterized by a monotonous 
population of what appear to be primitive chondroblastic cells [Figure 1][4]. These tumors are driven 
by mutations primarily in the H3-3B (H3F3B) gene, with an extremely small percentage harboring 
mutations in H3-3A[4,61]. The mutations result in an amino acid change; p.Lys36Met that is detectable by 
immunohistochemistry (K36M IHC) [Figure 2][3,4,64]. As in GCT, this mutation interferes with histone 
protein H3[61]. Some cytogenetic abnormalities have been described including some rearrangements, 
although they do not appear to be recurrent[3]. Chondroblastoma has also been shown to harbor RANKL 
overexpression similar to GCT and in rare cases has shown response to denosumab therapy in refractory 
tumors[64]. Chondroblastoma may in some cases display morphologic overlap with both giant cell rich 
lesions as well as chondrogenic lesions. In some cases, prominent secondary aneurysmal bone cyst-like 
changes may be present[3], making the identification of the K36M mutation particularly useful.

Osteoblastoma and osteoid osteoma
Osteoblastoma and osteoid osteoma are two related lesions that are both osteoid producing primary 
bone tumors composed of immature woven bone spicules, prominent stromal vessels, giant cells, and 
prominent osteoblasts [Figure 3][3]. Until recently molecular studies consisted of only a few cytogenetic 
studies that did not identify any recurrent alterations. More recently recurrent rearrangements of FOS 
and FOSB have been identified that in many cases can be identified with immunohistochemistry for FOS 
[Figure 4][16,50,51]. FOS is a tightly regulated transcription factor that has been known to be involved in the 
pathogenesis of bone tumors; FOS and FOSB rearrangements involve multiple partners and create a mutant 
fusion transcript lacking the normal regulatory elements[16]. A small subgroup of non-FOS-rearranged 
osteoblastomas have also been identified to be characterized by loss of NF2[54]. Osteoid osteoma in general 
i30s readily diagnosed on clinicopathologic grounds; however, osteoblastoma can present a problem 
for diagnosis as it may show overlap with some locally aggressive or outright malignant lesions such as 
osteosarcoma. While many osteoblastomas will show FOS immunoreactivity, up to 14% of osteosarcoma 
samples also showed immunoreactivity in one study[51]. This potential for non-specificity for osteoblastoma 

Table 4. Molecular genetic alterations in primary bone tumors (complex genetics)

Tumor Type Genetic Alteration Effect 

Chondromyxoid Fibroma[3,4,100] GRM1 upregulation through promoter swapping and gene 
fusions with various fusion partners including TBL1XR1, 
COL12A1, BCLAF1, FRMD6, MYO1E, and MEF2A, often caused by 
complex rearrangement processes

Upregulated GRM1 expression 
transcripts across entire GRM1 coding 
sequence

High-Grade 
Osteosarcoma[3,101-105]

Complex karyotypes (sometimes displaying chromothripsis 
and kataegis) with numerous structural changes reported 
and multiple types of mutations across many genes (> 100) 
including RB1 and TP53

Loss of multiple tumor suppressor 
genes

High-Grade[106-107] 

and Dedifferentiated 
Chondrosarcoma[108-111]

Aneuploidy and complex karyotypes, harbor IDH1 and IDH2 
mutations if primary or arising from enchondroma, additional 
mutations in TP53, RB1, CDKN2A/2B, TERT, SUZ12, EED, and p16 

Loss of tumor suppressor function, cell 
cycle dysregulation, and chromatin 
remodeling defects

Adamantinoma[3,112-116] Progressive complexity of cytogenetic alterations including 
increased copy number of chromosomes 7, 8, 12, 19, and 21, 
KMT2D alterations and rare gene fusions

Various downstream effects including 
altered chromatin remodeling

Chordoma[3,117-121] The primary alteration in conventional chordoma is copy 
number gains of TBXT. In addition, chordoma displays a 
complex karyotype with various copy number alterations. 
22q (SMARCB1) loss seen in poorly differentiated chordoma

Overexpression of brachyury secondary 
to copy number gain of TBXT as well 
as various other downstream effects 
including altered chromatin remodeling
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Figure 1. Chondroblastoma: high power magnification of chondroblastoma shows a monotonous appearing cell population with well-
defined cell borders and ample eosinophilic cytoplasm. Some admixed multinucleated giant cells are present (Hematoxylin and Eosin, 
200x magnification)

Figure 2. K36M immunohistochemistry: immunohistochemistry for the K36M antibody shows a nuclear staining pattern within the 
neoplastic cells of chondroblastoma consistent with H3F3B mutation (K36M immunohistochemistry, 20x magnification)

immunohistochemistry means that FISH or sequencing based assays are preferable as an ancillary 
molecular tool if fresh tissue is available; however, a positive FOS immunohistochemistry may help support 
a suspected diagnosis of osteoblastoma. 
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Aneurysmal bone cyst
Aneurysmal bone cyst (ABC) is a benign, yet destructive, primary bone lesion composed of multiple cystic 
blood-filled spaces that has a characteristic radiological impression with fluid-fluid levels[3]. Cytogenetic 
characterization of these lesions has shown recurrent aberrations of chromosome 17p[65]. These aberrations 
are now known to be recurrent rearrangements involving the USP6 gene[66]. A CDH11-USP6 rearrangement 

Figure 3. Osteoblastoma: low power magnification shows a highly vascular neoplasm with small spicules of immature woven production 
rimmed by osteoblastic cells (Hematoxylin and Eosin, 20x magnification)

Figure 4. FOS immunohistochemistry: immunohistochemistry for FOS shows nuclear positivity for the majority of the neoplastic tumor 
cells in osteoblastoma, this serves as a surrogate for the presence of FOS rearrangements, although it is not entirely specific (FOS 
immunohistochemistry, 20x magnification)
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was the first described, although numerous different translocation partners have now been identified with 
a common mechanism involving promoter swapping with upregulation of USP6[66-70]. The upregulation of 
USP6 leads to increased production of matrix metalloproteinases that lead to osteolysis, inflammation, and 
vascularization[66]. USP6 rearrangements are most easily identified using FISH break apart probes or next 
generation sequencing based fusion panels and are useful in the diagnosis of these lesions as there can be 
morphologic overlap between ABC and various benign and malignant lesions that can show secondary 
ABC-like areas.

Chondrosarcoma
Chondrosarcoma is defined as a malignant cartilage producing tumor and is comprised of a large family 
of tumors that includes multiple types such as conventional chondrosarcoma, periosteal chondrosarcoma, 
mesenchymal chondrosarcoma, and clear cell chondrosarcoma[3]. The most commonly encountered of 
these entities is conventional chondrosarcoma which can be further classified into peripheral (located in 
the appendicular skeleton), central (located within the axial skeleton), primary (arising in the absence 
of a precursor lesion), or secondary (arising from a pre-existing bone tumor, usually enchondroma or 
osteochondroma)[3,4]. Chondrosarcoma is graded based primarily on the degree of cytologic atypia and 
some other features including overall cellularity, cartilage matrix degeneration and mitotic activity. Low-
grade lesions occurring in the appendicular skeleton are termed atypical cartilaginous tumors. Genetically, 
primary peripheral and central chondrosarcomas are characterized by somatic point mutations in the 
isocitrate dehydrogenase genes, IDH1 (R132C/H/G) and IDH2 (R172S) leading to altered hydroxyglutarate 
levels[3,4]. Secondary chondrosarcomas arising from enchondromas, a finding that often occurs as part of 
the genetic syndromes: Ollier disease and Maffuci syndrome, are also characterized by IDH mutations. 
Secondary peripheral chondrosarcomas arising in association with osteochondromas are characterized by 
mutations in EXT1 and EXT2, the same genes mutated in patients with multiple hereditary exostosis[4,80-82]. 
High-grade chondrosarcoma shows progressive molecular alterations including aneuploidy and complex 
karyotypes, and mutations in RB1, TP53, and COL2A1[3]. Finally, periosteal chondrosarcoma has been 
reported to harbor IDH gene mutations while mesenchymal chondrosarcoma shows a characteristic 
HEY1-NCOA2 rearrangement[3,98]. Though some genetic abnormalities have been reported in clear cell 
chondrosarcoma its genetic profile has not been completely elucidated[3]. Despite the presence of various 
molecular alterations in the different subtypes of chondrosarcoma it is worth noting that the diagnosis of 
conventional chondrosarcoma in general does not require ancillary molecular genetic testing and is instead 
established based on clinical, radiological, and histological criteria in routine clinical practice. However, 
associated molecular alterations may be useful in some situations, particularly in secondary lesions that 
may be related to germline conditions, when dealing with mesenchymal chondrosarcoma presenting as 
predominantly poorly differentiated small round blue cells, and in some cases separating conventional 
chondrosarcoma from other cartilaginous lesions when limited tissue is available for examination.

Osteosarcoma
Osteosarcoma is a malignant bone forming tumor that is the prototypical example of a primary bone 
sarcoma with complex genetics, but also includes some subtypes that are characterized by well-defined 
recurrent genetic alterations. These tumors are categorized by neoplastic osteoid production and a 
population of atypical osteocytes that can display a wide spectrum of cytological appearances from 
low-grade, bland appearing spindle cell lesions to high grade lesions with bizarre, atypical forms[3]. The 
molecular genetics of high-grade osteosarcoma are complex; cytogenetic and large-scale sequencing 
studies have identified a number of somatic mutations as well as numerous, generally non-recurrent, 
copy number alterations at the chromosomal level[102-104]. Somatic mutations in tumor suppressor genes 
and proto-oncogenes include TP53, RB1, BRCA2, BAP1, RET, CDKN2A PTEN, WRN, ATRX, and many 
others. Many of these genes such as TP53, RB1, and WRN are associated with hereditary cancer syndromes 
including Li-Fraumeni, hereditary retinoblastoma, and Werner syndrome, that predispose patients to an 
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increased risk of osteosarcoma[102,103]. Reported mutations are numerous and number in the hundreds[102]. 
High-grade osteosarcoma is also characterized cytogenetically by chromothripsis (Greek origin, “thripsis” 
meaning shattering) and kataegis (Greek origin, “Kataegis” meaning thunderstorm) in which catastrophic 
chromosomal breakage occurs sometimes in combination with regional hypermutation that occurs through 
complex mechanisms [Figures 5 and 6][102,104].

Low-grade variants of osteosarcoma include parosteal osteosarcoma and low-grade central osteosarcoma[3]. 
The low-grade variants of osteosarcoma are characterized by a bland appearing spindle cell population of 
cells rather than the overtly malignant cells present in high-grade osteosarcoma [Figure 7]. Both of these 
subtypes display less complex genetics than their high-grade counterparts harboring known specific, 
recurrent genetic alterations in the form of supernumerary ring chromosomes containing amplified 
material from 12q13-15 similar to that seen in some liposarcomas [Figure 8][83-87]. In some cases, these 
changes have been identified in high-grade osteosarcoma as well, although it is unclear if this represents an 
isolated finding in a genetically complex lesion or a marker of transition from a previously low-grade lesion 
(dedifferentiation)[83]. Amplification of material from 12q13-15 leads to the amplification of multiple genes 
involved in tumorigenesis including MDM2, CDK4, and FRS2[83]. These amplifications can be detected 
by immunohistochemistry for MDM2 and CDK4, although testing by FISH or chromosomal microarray 
provides a more sensitive test[83]. These findings are quite helpful when dealing with a low-grade fibroblastic 
proliferation as these tumors can share morphologic overlap with other fibroblastic tumors of bone.

Ewing Sarcoma/Primitive Neuroectodermal Tumor
Ewing sarcoma is the prototypical example a small round blue cell sarcoma that may occur as primary 
bone tumor. Ewing sarcoma is characterized by a recurrent, specific t(11;22)(q24;q12) that leads to the 
production of an oncogenic fusion protein: EWSR1-FLI1[88]. Various other fusion partners exist for EWSR1 
[Table 3], although many of these tumors are considered to fall within the Ewing sarcoma family and are 
treated in a similar fashion[89-92].

Figure 5. Graphical schematic depicting chromothripsis: chromosomal shattering occurs with subsequent failure of genomic repair 
mechanisms resulting in inappropriate recombination of chromosomal fragments. During this process fragments of the chromosome 
may be lost or remain and reassembled erroneously
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Figure 6. Representative example of chromothripsis: CMA plot of chromosome 12 demonstrating 14 alternating CNAs involving the 
proximal region of the short (p) and long (q) arms of chromosome 12. This pattern of alternating CNAs is suggestive of “chromothripsis”. 
In addition, there is a deletion of the remaining distal portion of 12p. Sample was tested using the Agilent 180k aCGH+SNP oligo array, 
and data analysis was performed using the Agilent CytoGenomics software v4.0 (Image courtesy of Dr. Fady M. Mikhail, MD PHD, 
University of Alabama at Birmingham). CMA: chromosomal microarray; CNAs: copy number abnormalities
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Figure 7. Parosteal osteosarcoma: high power magnification shows a bland appearing spindle cell population infiltrating around 
small bony fragments. Lesions such as this are difficult to distinguish from reactive processes or other fibroblastic lesions based on 
histomorphology alone (Hematoxylin and Eosin, 20x magnification)

Figure 8. MDM2 amplification by FISH: representative example of supernumerary ring chromosome formation containing amplified 
material from 12q13-15. Increased copy numbers of MDM2 (red probe) signals (black arrow) are seen within ringed chromosomes 
(Image courtesy of Dr. Christine Bryke MD, Beth Israel Deaconess Medical Center). FISH: fluorescence in situ hybridization
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The differential of small round blue cell sarcomas within bone has expanded considerably in the past years 
and now includes various non-Ewing translocation associated sarcomas, mesenchymal chondrosarcoma, 
myoepithelial tumors, and other poorly differentiated malignancies including high-grade osteosarcoma[90]. 
The wide range of lesions that can share morphologic overlap makes molecular testing for EWSR1 essential 

Table 5. Molecular genetic alterations in soft tissue tumors that may also rarely occur as primary bone tumors (simple and complex 
genetics)

Tumor Type Genetic Abnormality Recurrent Fusion or Abnormality
Malignant Peripheral Nerve Sheath 
Tumor[122-125]

Various somatic alterations in CDKN2A, NF1, EED, 
SUZ12, SMARCB1 (epithelioid variant) 

Dysregulation of polycomb repressive 
complex 2 (PRC2)

Extraskeletal Myxoid 
Chondrosarcoma[126-128]

t(9;22)(q22;q12) 
t(9;17)(q22;q11) 
t(9;15)(q22;q21) 

EWSR1-NR4A3
TAF15-NR4A3
TCF12-NR4A3

Epithelioid Sarcoma[129,130] Loss of SMARCB1 (INI1) secondary to biallelic loss 
of function mutations or heterozygous mutations in 
subunits of the SWI/SNF (BAF) complex

Dysregulation of SWI/SNF (BAF) complex 
- involved in chromatin remodeling

Sclerosing Epithelioid Fibrosarcoma/
Low-Grade Fibromyxoid 
Sarcoma[131-133]

t(7;16)(q32-33;p11)
t(11;16)(p11;p11)

FUS-CREB3L2
FUS-CREB3L1

Liposarcoma[134-136] Supernumerary ring and giant chromosome 
markers with amplification of 12q13-15, including 
MDM2 and CDK4
Pleomorphic subtype: complex genetics with 
various CNV

Cell cycle dysregulation, overexpression of 
MDM2 and CDK4

Myxoid/Round Cell
Liposarcoma[137,138]

t(12;16)(q13;p11)
t(12;22)(q13;q12)

FUS-DDIT3
EWSR1-DDIT3

Alveolar Soft Part Sarcoma[139,140] t(X;17)(p11;q25) ASPCR1-TFE3
Undifferentiated Round Cell 
Sarcomas[4,18,91,141-144]

t(4;19)(q35;q13)
t(10;19)(q26;q13)
Paracentric inv(X)(p11.4p11.22)
t(20;22)(q13.2;q12.2)

CIC-DUX4
CIC-DUX4
BCOR-CCNB3
EWSR1-NFATc2^
FUS-NFATc2^

Alveolar Rhabdomyosarcoma[145-147] t(2;13)(q35;q14)
t(1;13)(p36;q14)
t(2;2)(q35;p23) 
t(2;8)(q35;q13)

PAX3-FOXO1
PAX7-FOXO1
PAX3-NCOA1
PAX3-NCOA2

Embryonal Rhabdomyosarcoma[145,148] Loss of heterozygosity on 11p15.5 Imprinting defects in IGF2, H19, and p57kip2

Leiomyosarcoma[149,150] Generally complex karyotypes with numerous gains 
and losses

Various

Solitary Fibrous Tumor[151-153] Intrachromosomal inversion of 12q13 region NAB2-STAT6
Synovial Sarcoma[154-157] t(X;18)(p11;q11)

t(X;20)(p11;q13)

SS18-SSX1
SS18-SSX2 
SS18-SSX4 
SS18L1-SSX1 

Myoepithelial Tumors[158-162] t(6;22)(p21;q12)
t(1;22)(q23;q12)
t(19;22)(q13;q12) 

EWSR1-POU5F1
EWSR1-PBX1 
EWSR1-ZNF444

Epithelioid Hemangioma[163-165] t(1;14)(q22;q24.3) FOS-LMNA 
Epithelioid 
Hemangioendothelioma[166,167]

t(1;3)(p36;q25)
t(X;11)(q22;p11)

WWTR1-CAMTA1 
YAP1-TFE3 

Pseudomyogenic 
Hemangioendothelioma[168,170]

t(7:19)(q22;13) SERPINE1-FOSB 

High-Grade Angiosarcoma[4,171-174] Gene alterations in CIC, KDR, PLCG1, FLT4, and
MYC overexpression seen in some cases

CIC fusions rare

Undifferentiated Pleomorphic 
Sarcoma[175-178]

Rare targetable fusions identified in some cases, 
complex karyotypes, mutations in TP53, ATRX, and 
RB1 and others 

Various

Rosai-Dorfman Disease[75,179-182] KRAS and MAP2K1 mutations MAPK pathway alteration
Erdheim Chester Disease&[71,75,183] BRAF V600E MAPK pathway alteration

^FUS/EWSR1-NFATC2 rearrangements have recently been described in a significant proportion of simple bone cysts indicating that 
these rearrangements are neither specific to NFATC2 sarcomas, nor do they necessarily indicate a malignant process. &Erdheim Chester 
shows bone involvement in nearly 95% of cases making it common to bone; however, it also commonly displays systemic involvement 
and is exceedingly rare overall, thus it is classified here under rare lesions rather than primary bone tumors. t: translocation



Suster et al. J Cancer Metastasis Treat 2021;7:8  I  http://dx.doi.org/10.20517/2394-4722.2020.119                       Page 15 of 22

in the diagnosis of these lesions. While FISH is helpful in identifying the involvement of EWSR1 in a 
rearrangement, more advanced molecular techniques such as PCR or NGS may be required in order to 
identify fusion partners and determine the exact nature of a small round blue cell sarcoma.

SOFT TISSUE TUMORS THAT RARELY PRESENT AS PRIMARY BONE TUMORS
Apart from tumors that occur commonly within bone or primarily within bone there is a large group 
of mesenchymal neoplasms that may also rarely occur in bone. This list includes, but is not limited to, 

Figure 9. Sclerosing epithelioid fibrosarcoma/low-grade fibromyxoid sarcoma: Scanning magnification of FUS/LGFMS showing an 
infiltrative, but bland appearing fibroblastic lesion showing both intramedullary and extramedullary growth (Hematoxylin and Eosin, 20x 
magnification)

Figure 10. FUS fluorescence in situ hybridization (FISH): FISH for FUS in sclerosing epithelioid fibrosarcoma/low-grade fibromyxoid 
sarcoma using break apart FISH probes identifies a rearrangement of FUS indicated by separate signals (white arrows, 5’ green probe 
and 3’ red probe). Testing for rearrangements through FISH does not provide information on partner genes or chromosomes involved in 
rearrangements
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neural tumors (e.g., malignant peripheral nerve sheath tumor), adipocytic tumors (e.g., liposarcoma), 
histiocytic tumors (e.g., Rosai-Dorfman disease), tumors of uncertain histogenesis (e.g., synovial sarcoma), 
vascular tumors (e.g., epithelioid hemangioma and angiosarcoma), and some undifferentiated sarcomas 
[Table 5][122-183]. These lesions tend to share similar genetic profiles to their soft tissue counterparts when 
occurring as a bone primary and include lesions that fall into the simple and complex genetic category. 
Molecular diagnostic testing is indicated in many of these tumors as several of them are characterized 
by specific, recurrent alterations. An example of this is sclerosing epithelioid fibrosarcoma/low-grade 
fibromyxoid sarcoma - a bland appearing fibroblastic lesion that can share morphologic overlap with 
reactive changes, low-grade variants of fibroblastic osteosarcoma, desmoplastic fibroma, solitary fibrous 
tumor, and others [Figure 9]. These tumors are characterized by FUS rearrangements, usually partnering 
with CREB3L2 or CREB3L1 and rarely occur within the bone; however, may pose problems for diagnosis 
when encountered[131-133]. Although immunohistochemistry for MUC4 is helpful for the diagnosis, ancillary 
molecular testing through FISH, PCR, or sequencing can help solidify the diagnosis [Figure 10]. While 
some of these lesions can be diagnosed based on clinicopathologic features and immunohistochemistry, 
oftentimes they require expanded diagnostic testing for specific molecular alterations. 

CONCLUSION
Bone tumors represent a heterogenous category of benign and malignant lesions with a varied genomic 
landscape. Advances in molecular technology have vastly increased our knowledge of the molecular 
features of many of these lesions although the diagnosis of many bone tumors is still based entirely on 
histopathologic, clinical, and radiological features. Ancillary molecular diagnostics are increasingly 
becoming necessary for the diagnosis of bone tumors, facilitated by the development of new technologies in 
the past few decades. Knowledge of the molecular alterations as well as specimen handling considerations 
that may affect molecular testing is of utmost important as our base of knowledge continues to grow.
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