
Huang et al. J Smart Environ Green Comput 2021;1:202­17
DOI: 10.20517/jsegc.2021.13

Journal of Smart
Environments and Green

Computing

Original Article Open Access

A large-scale task scheduling algorithmbased on clus-
tering and duplication
Wengang Huang1, Zhichen Shi1, Zheng Xiao1, Cen Chen1, Kenli Li1

1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China.

Correspondence to: Prof. Kenli Li, College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S),
Yuelu District, Changsha 410082, Hunan, China. E-mail: lkl@hnu.edu.cn

How to cite this article: Huang W, Shi Z, Xiao Z, Chen C, Li K. A large-scale task scheduling algorithm based on clustering and
duplication. J Smart Environ Green Comput 2021;1:202-17. http://dx.doi.org/10.20517/jsegc.2021.13

Received: 15 Jun 2021 First Decision: 11 Oct 2021 Revised: 15 Nov 2021 Accepted: 29 Nov 2021 Published: 25 Dec 2021

Academic Editor: Witold Pedrycz, Qing-Long Han Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang

Abstract
Aim: Our research aims to explore a fast and efficient scheduling algorithm. The purpose is to schedule large-scale
tasks on a limited number of processors reasonably while improving resource utilization.

Methods: This paper proposes a clustering and duplication-basedmethod for large-scale task scheduling on a limited
amount of processors. We cluster large-scale task to reduce the scale of the task in our method at first. Second,
duplication-based task scheduling is carried out. Third, we optimize the local effect more precisely by deduplication
in the last stage.

Results: We compare our algorithm with the state-of-the-art algorithms in the article. The results demonstrate that
our scheduling scheme obtains about 30% optimization compared to existing large-scale scheduling methods and
runs roughly ten times faster than existing duplication-based algorithms when scheduling large-scale tasks to a lim-
ited number of processors as compared to similar algorithms.

Conclusion: In this paper, we propose a task scheduling algorithm that can decrease the scheduling time of large-
scale tasks on a limited number of processors and speed up the global execution time of the task. Further, we will
study large-scale task scheduling on heterogeneous processor clusters.

Keywords: Clustering, deduplication, directed acyclic graphs, static scheduling, task duplication

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar­

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

https://oaepublish.com/index.php/jsegc

https://creativecommons.org/licenses/by/4.0/
https://oaepublish.com/index.php/jsegc

Page 203 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

INTRODUCTION
Task parallelization and distributed computing are growing in popularity as the speed of computer develop-
ment decreases and the demand for computing power increases. Applications such as Deep Learning and
graph analytics require multiple computational resources (e.g., CPU/GPU, network bandwidth, memory) [1].
Device placement requires proper scheduling of existing resources in edge computing [2,3]. Therefore, a sched-
uler that allocates resources reasonably and efficiently so that tasks can be completed as soon as possible and
maximizes resource utilization is needed.

Applications such as these are commonly modelled as large-scale Directed Acyclic graphs (DAG), in which
nodes denote tasks and edges denote inter-task dependencies. Usually, the nodes of these DAG range in the
tens of thousands, and we call such task scheduling large-scale task scheduling. Large-scale task scheduling is
a significant and challenging area of research in computer science. Task scheduling systems need to balance
the execution time of tasks and available computing resources to enable applications to be executed in the
shortest time and maximize resource utilization. The demands on computer resources while executing a task
vary significantly due to the different characteristics of the task. Some tasks demand a significant CPU for
computation, while others havemore requirements for IO operations. Meanwhile, there aremany criteria used
to evaluate the effectiveness of task scheduling - for example, fairness, low latency and high throughput. So
there is hardly a method that can balance so many factors at the same time. It is a dynamic scheduling problem
if task nodes come sequentially in time. If the tasks are specified, and all task-related information is known
before schedule, then that is a static scheduling problem. The scheduling problem is a widely acknowledged
NP-hard problem. Thus, researchers have proposed various solutions to the scheduling for different application
cases. In this paper, we focus on large-scale static task scheduling on limited processors.

DAG scheduling is known as the static task scheduling problem [4–9]. Scheduling can be done statically during
compilation since data such as task execution time, task dependencies, and communication costs are known
about the application. We model the application as a DAG, with nodes denoting a task and edges denoting
the dependencies between tasks. There are a certain number of processors available to schedule these tasks.
We also know the task’s execution time and its time to transmit between tasks (if they are assigned to different
processors). DAG scheduling aims to assign tasks to a reasonable number of processors so that the whole task
completion time (makespan) is minimized.

The existing algorithms can be divided into three categories: list scheduling [5,7,10–13], cluster-based schedul-
ing [5,14], and task duplication-based scheduling [4,6,15]. Some researchers also proposedmixed algorithms [5,16,17].
Through analysis, we find that the list-based scheduling algorithm is simple and easy to implement. However,
it leads to a waste of computational resources, which is not acceptable. The duplication-based task scheduling
algorithm performs well when scheduling small-scale tasks with a thousand nodes or less. Nevertheless, once
the scale of the graph grows large, e.g., tens of thousands of nodes, it will take a long time because it usually
has high algorithmic complexity. The clustering-based task scheduling algorithm is based on a bottom-up
clustering approach, in which atomic tasks form clusters. We argue that the decisions in this method are local
and cannot take into account the global structure of the graph. In addition, clustering-based tasks tend to
be better with an adequate number of processors, leading to a waste of computational resources. The mixed
algorithm [5,16,17] combines task clustering with list-based scheduling or duplication-based scheduling. For
duplication-based scheduling [4,6,15] are achieved by allowing the assignment of a single task to multiple clus-
ters to carry out task duplication, which can reduce the communication cost. Our approach can also be viewed
as a mix of clustering and task duplication scheduling, where the task duplication part of the decision is limited
by cluster scheduling.

In this paper, we propose a new large-scale Task Deduplication-based Partition Algorithm and Task Duplica-
tion (TDPATD) scheduling algorithm to reduce the complexity of task duplication-based (TDB) scheme [4,6,15]

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 204

and accelerate large-scale task scheduling on a limited number of processors. TDPATD applies a DAG par-
titioning algorithm to cluster tasks with complex dependencies and generates new tiny task clusters at first.
Subsequently, TDPATD applies an improved task duplication strategy to schedule the task clusters and ob-
tains a better scheduling scheme. Lastly, the scheduling scheme is applied to the large-scale task clusters.
Fine-grained task scheduling optimization is carried out to eliminate duplicate tasks to attain an ideal result.

The main contributions of our TDPATD are as follows:

• Enhanced task initialization assignment algorithm: Large-scale task scheduling indicates that the number of
tasks is much greater than the number of available processors. Existing duplication-based algorithms could
not properly tackle this case. We strengthened the existing algorithm to satisfy this scenario.

• Fine-grained optimization: We check the task on each processor and then remove the qualifying tasks to
improve the global completion time since DAG partition and task duplication may generate duplicate exe-
cution of tasks when the scheduling of tasks is completed.

• New parameters for algorithm: We define several parameters used in TDPATD to clarify better what we are
accomplishing.

We compared TDPATDwith state-of-the-art algorithms, including TDCA [4], which is a task duplication-based
algorithm, BL_EST and BL_ETF [5], a list-based scheduling algorithm, and BL_EST_PART and
BL_ETF_PART [5], which are mixed clustering and list-based scheduling algorithms. In addition, TDCA with
a small amount of improvement based on clustering is also compared. Moreover, a DAG generator is used
to cover different types of DAGs to evaluate our algorithms. We have investigated our algorithm on datasets
from different sources, and extensive experiments have demonstrated that TDPATD can achieve better results
when dealing with large-scale task scheduling. It can also achieve satisfactory results when dealing with small
and mid-scale scheduling tasks.

The organizational structure of this paper is as follows. In Section 2, we discussed the background of this
work. In Section 3, we introduced the details of TDPATD. We present the experimental results and analysis in
Section 4. The conclusion is stated in Section 5.

BACKGROUND
Model
We use the DAG graph to represent the task model. Let 𝐺 = ⟨𝑉, 𝐸⟩ be a directed acyclic graph, where 𝑉 is
a set of points denoted as 𝑉 = {𝑣𝑖 |𝑣𝑖 ∈ 𝑁}, and each element represents a task node. 𝑁 = |𝑉 | represents the
total number of tasks. 𝐸 is the set of edges denoted as 𝐸 = {⟨𝑣𝑖 , 𝑣 𝑗 ⟩|𝑣𝑖 ≠ 𝑣 𝑗 𝑎𝑛𝑑𝑣𝑖 , 𝑣 𝑗∈ 𝑉}. The set of
parent nodes of each vertex is denoted as 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖) = {𝑣 𝑗 |⟨𝑣 𝑗 , 𝑣𝑖⟩ ∈ 𝐸}, and the set of child nodes is
denoted as 𝐶ℎ𝑖𝑙𝑑 (𝑣𝑖) = {𝑣 𝑗 |⟨𝑣𝑖, 𝑣 𝑗 ⟩ ∈ 𝐸}. If 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑣𝑖) = ∅ is the empty set, then node 𝑣𝑖 is a root
node. Similarly, if 𝐶ℎ𝑖𝑙𝑑 (𝑣𝑖) = ∅ is empty, then node 𝑣𝑖 is a leaf node. The execution time of task 𝑣𝑖 on
the processor is denoted as 𝑤𝑖 ,𝑊 is the set of task execution times. The communication time of the task ⟨𝑣𝑖 ,
𝑣 𝑗 ⟩ is denoted as 𝑐(𝑖, 𝑗). When the partition is executed on a DAG, the partition result is denoted by 𝑃𝑇 .
We record the node correspondence between the new diagram and the original DAG by subscripts and
corresponding values. 𝑝𝑡(𝑖) indicates the partition number where the node 𝑣𝑖 is located in the original DAG.

The computing platform is a homogeneous cluster of identical processing units, called processors, denoted as
𝑃 communicating through a fully connected homogeneous network. We enforce the realistic duplex single-
port communication model, where at any point in time, each processor can, in parallel, execute a task, send
multiple data, and receive multiple data. Each task needs to be assigned to a processor according to a priority

http://dx.doi.org/10.20517/jsegc.2021.13

Page 205 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

constraint. In contrast, tasks are non-preemptive and atomic: processors execute only one task each time, and
the execution of a task cannot be interrupted. The mapping between tasks and assigned processors is denoted
as 𝑠𝑖 , where 𝑖 ∈ 𝑉 , and 𝑠𝑖 is the number of the task processor. The execution time of the task on the processor
is 𝑤𝑖 . In addition, any ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ ∈ 𝐸 , task 𝑣 𝑗 cannot be dealed before task 𝑣𝑖 finished. Then the time that task
𝑣 𝑗 needs to wait on processor 𝑠 𝑗 for the computation results of task 𝑣𝑖 to be transferred over is 𝑐(𝑖, 𝑗) if the
processors 𝑠𝑖 ≠ 𝑠 𝑗 . The communication between processors is a duplex multi-port model. Specifically, each
processor can process tasks, send data as well as receive data in parallel at any given time. Tasks, send data, and
receive data at any given time, and can send and receive data betweenmultiple processors simultaneously. Our
goal is tominimize the global execution time (makespan) of the whole task through proper resource utilization.
The formula for the makespan is available in Tables 1 and 2.

Related work
Task scheduling is classified into dynamic scheduling and static scheduling, and dag task scheduling belongs to
static task scheduling. Methods of static task scheduling can be roughly divided into three categories: (1) List-
based scheduling methods; (2) clustering-based scheduling methods; and (3) task duplication-based schedul-
ing methods.

A priority is allocated to each task initially for the list-based scheduling method [5,7,10–13,18,19]. The priority list
is formed in the order of descending priority, and then the task list is assigned to the processors in order. These
algorithms differ in terms of how the priority levels are defined or how the tasks are assigned to the processors.
Shin et al. [20] defined three task priority levels, namely, S-Level, T-Level, and B-Level. S-Level, also known
as static level, is the most extended path length from the current node to the exiting node regardless of the
communication cost between tasks. B-Level, also known as bottom or next level, calculates the longest path
from the current node to the exit node considering the communication cost. T-Level (top-level or top rank)
is the length of the longest path (including the communication cost) from the entry node to the current node.
Heuristic algorithms based on list scheduling are usually easy to implement and understand. Generally, list-
based scheduling algorithms also have lower complexity, but their solutions are not as effective as the other
two types of scheduling algorithms.

The tasks are partitioned into clusters at first, and the tasks from the same cluster are scheduled as a block
in the cluster-based scheduling method [5,21–24]. Clusters usually consist of tasks with strong correlation. The
nature of the method is that tasks are grouped together on the same processor which are strongly correlated
and the communication time between tasks on the same processor is quite negligible. Then the cluster will
be scheduled to an unlimited number of processors which eventually are put altogether into the number of
processors available. The cluster-based scheduling scheme works better when the actual number of available
processors does not fall short of the number of clusters.

The underlying logic behind the TDB [4,6,8,15] scheduling algorithm is to reduce communication costs by as-
signing some tasks to multiple processors redundantly. In duplication-based scheduling, different strategies
are available to select the ancestor nodes to be duplicated. Some algorithms clone the direct ancestors (e.g.,
TANH [6]) only, while others try to clone all possible ancestors (e.g., TDCA [4]).

The mixed algorithm [5,13,16,25–27] combines task clustering with list-based scheduling or duplication-based
scheduling. Existing list-based scheduling algorithms (e.g., LDCP [7], HEFD [13]) will duplicate the previous
tasks in order to reduce communication costs. For duplication-based scheduling [4,6] are achieved by allowing
assignment of a single task to multiple clusters to carry out task duplication, which can reduce the communi-
cation cost. Our approach is close to cluster-based scheduling, as we partition the tasks into 𝐾 ≥ 𝑝 clusters at
first, with 𝑝 being the number of processors available. In the next step, we will schedule the tasks based on the
task duplication method. Finally, we conduct more fine-grained task duplication checks. Thus, our approach

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 206

Figure 1. Global process diagram of Task Deduplication-based Partition Algorithm and Task Duplication (TDPATD). 𝐺1 and
𝐺2 denote origin Directed Acyclic graphs (DAG) and clustered DAG, respectively. 𝑃𝑇 indicates the partition result. Nodes with
the same color belong to the same partition. 𝑠𝑐ℎ denotes scheduling scheme based on DAG. The gray dots denote unnecessary
nodes in 𝑠𝑐ℎ for 𝐺1, which will delete later. From 𝑝1 to 𝑝𝑛 denotes the number of processors.

Table 1. Parameters and interpretations

i , j Number of task in the DAG, also known as nodes.
Parent(i) Set of parents of task 𝑣𝑖 .(i.e., all nodes that send data to node i).
Child(i) Set of children of task 𝑣𝑖 .(i.e., all nodes that i send data to).
W Set of weght fot all nodes.
𝑤𝑖 Weight of task 𝑣𝑖 . (Also represent the execution time on the processor.)
P Set of processor available.
𝛿 (𝑖, 𝑗 , 𝑝, 𝑞) Communication cost from 𝑣𝑖 to 𝑣𝑗 . 𝛿 = 0 when 𝑝 = 𝑞.
𝑒𝑠𝑡 (𝑖, 𝑝) When task 𝑖 is assigned to processor 𝑝, the earliest start time for task 𝑖.
𝑒𝑐𝑡 (𝑖, 𝑝) When task 𝑖 is assigned to processor 𝑝, the earliest complete time for task 𝑖.
𝑝𝑎𝑡 (𝑝, 𝑖) Based on the current schedule, processor 𝑝’s available time for task 𝑖.
𝑟𝑠𝑡 (𝑖, 𝑝) Based on the current schedule, the run-time start time for task 𝑖 on processor 𝑝.
𝑟𝑐𝑡 (𝑖, 𝑝) Based on the current schedule, the run-time complete time for task 𝑖 on processor 𝑝.

can also be viewed as a mix of clustering and task duplication scheduling, where the task duplication part of
the decision is limited by cluster scheduling.

METHOD
We describe the details of the TDPATD in this section. The proposed algorithm includes several vital parame-
ters and three phases. In the first phase, TDPATD generates a specific partition byDAGP [28]. Thenwe can get a
new graph by the partition information. The partition algorithm will ensure that the new graph is directed and
acyclic. In the second phase, we generate an original scheduling scheme based on an improved algorithm of
TDCA [4] since TDCA is better for the case when there are enough processors. Then the new graph is mapped
back to the original graph according to the partition information. This step can ensure that the execution time
will not increase, which will be proved later. Finally, the deduplication will occur based on the new schedule.
Figure 1 shows the global process diagram of our strategy. We will explain it in more detail later.

Partition and clustering
First, we will partition the original DAG graph by a partitioning algorithm and obtain the 𝑃𝑇 mentioned
in Section 2.1. This step is primarily a partitioning algorithm based on DAGP, which guarantees that the
partitioning results will be a directed acyclic graph. In this process, we can control the number of partitions

http://dx.doi.org/10.20517/jsegc.2021.13

Page 207 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

Table 2. List and interpretation of formulas

Eq.
No.

Formula for calculation of parameters

1
𝒆𝒔𝒕 (𝒊, 𝒑) = max

𝒋∈𝑷𝒂𝒓𝒆𝒏𝒕 (𝒊)
{min
𝒒∈𝑷

{𝒆𝒄𝒕 (𝒋 , 𝒒) + 𝜹 (𝒋 , 𝒊, 𝒒, 𝒑) }}

Earliest start time of task 𝑣𝑖 on processor 𝑝.

2 𝒆𝒄𝒕 (𝒊, 𝒑) = 𝒆𝒔𝒕 (𝒊, 𝒑) + 𝒘𝒊

Earliest completion time of task 𝑣𝑖 on processor 𝑝.

3 𝒑𝒂𝒕 (𝒑, 𝒊) = 0
Processor avaliable time for the first task 𝑣𝑖 on schedule array 𝑠𝑐ℎ.

4 𝒑𝒂𝒕 (𝒑, 𝒊) = 𝒑𝒂𝒕 (𝒑, 𝒓𝒄𝒕 (𝒔𝒄𝒉[𝒊𝒏𝒅𝒆𝒙 (𝒔𝒄𝒉,𝒊) − 1], 𝒑))
𝑖𝑛𝑑𝑒𝑥(𝑠𝑐ℎ,𝑖) means get node i’s subscript in the schedule array 𝑠𝑐ℎ.

5
𝒓𝒔𝒕 (𝒊, 𝒑) = max{𝒑𝒂𝒕 (𝒑, 𝒊) , max

𝒋∈𝑷𝒂𝒓𝒆𝒏𝒕 (𝒊)
{𝒓𝒄𝒕 (𝒋 ,𝚫) + 𝜹 (𝒋 , 𝒊, 𝒑,𝚫) }}

In the simulation, the processor that completed node j will be recorded, here Δ represents the processor.

6 𝒓𝒄𝒕 (𝒊, 𝒑) = 𝒓𝒔𝒕 (𝒊, 𝒑) + 𝒘𝒊

The run-time completion time of task 𝑣𝑖 on processor 𝑝.

7 𝒎𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = max{𝒓𝒄𝒕 (𝒊, 𝜽) |𝒗𝒊 ∈ {𝒗 𝒋 |𝑪𝒉𝒊𝒍𝒅 (𝒋) = ∅}
𝜃 mean the processor that 𝑣𝑖 assigned to.

based on the number of processors available. In the clustering process, we will get a new graph based on the
current partition information. The rules for generating the new graph are specified as follows. First, the total
weight of the partition is calculated, i.e., the weights of all nodes in the same partition are summed. Because
the weights of the nodes refer to the execution time of the task on the processor, the execution time does not
vary due to clustering. The following formula calculates the weights of partition 𝑘 :

𝑤𝑘
𝑣𝑘∈𝐺2

=
∑
{𝑤𝑖 |𝑣𝑖 ∈ 𝐺1 𝑎𝑛𝑑 𝑠𝑖 = 𝑘}. (1)

Then in the second stage, the communication time between partitions will be calculated. There are several
possible candidates here: (1) the sum of node communication weights between partitions; (2) the average
of node communication weights between partitions; and (3) the maximum value of node communication
between partitions. The first case calculation rule modeled that the processor can only process tasks and send
data serially. The second calculationmethod considers the communication situation as a whole, which is in the
case that the communication weights are more evenly distributed and have a smaller distribution. However,
the new graph is no longer accurate if there are extreme cases, such as a communication cost in a subinterval
that is significantly above the average, which will have a negative impact on our later strategies. We adopt
the third solution in this paper, which is suitable for the model of multi-port duplex communication. The
communication cost between 𝑘 and 𝑧 is calculated as follows:

𝑐(𝑘, 𝑧)
𝑣𝑘 ,𝑣𝑧∈𝐺2

= max{𝑐(𝑖, 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝐺1 𝑎𝑛𝑑 𝑠𝑖 = 𝑘 𝑎𝑛𝑑 𝑠 𝑗 = 𝑧} (2)

The negative impact due to taking the maximum value will be optimized in the Deduplication phase. In the
third step, the connectivity between the partitions will be obtained by calculation. In the new DAG, the node
numbers are the ones of the previous partitions, making it easier for the mapping process later. For example,
partition 1 and partition 2, correspond to node 1 and node 2 in the new graph. if there exists any node in
partition 1 that needs to communicate to the node in partition 2, then node 1 needs to communicate to node
2 in the new graph. The new graph should have a directed edge between node 1 and node 2 . This value takes
the communication weight value obtained in the second step.

Scheduling
In the task scheduling phase, the solution we use is primarily based on TDCA, a duplication-based scheduling
algorithm. At the same time, We have made some improvements to adapt our algorithm: TDCA is better
when the number of processors is sufficient. TDCA does not give a suitable solution when the processors are
fully occupied, but there are still a large number of tasks to be assigned. Considering that we mainly deal with
large-scale task scheduling, the number of tasks is much larger than the number of available processors. So
we made some changes. We stop the initialization method of TDCA when there are no available processors.

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 208

Based on the existing scheduling scheme, we calculate the RCT of the task assigned and then assign the task
to the processor with the smallest RCT. A more detailed description of the algorithm is given in Algorithm 1.

Algorithm 1 Initial Task Array for no processor available
Input: Current schedule sch; Not assigned task array ta;

1: while |𝑡𝑎 | ≠ 0 do
2: Try to assign the first task in the task array
3: 𝑡𝑖𝑑 ← 𝑡𝑎[0];
4: Find processor 𝑝 and minimizes 𝑟𝑐𝑡 (𝑡𝑖𝑑, 𝑝)
5: Assign task 𝑡𝑖𝑑 to processor 𝑝 and update 𝑠𝑐ℎ
6: ta.pop(tid);
7: end while

After the task initialization, we will get a task scheduling based on the newDAG.The task scheduling algorithm
is based on TDCA. In this paper, some parameters are tuned to get better scheduling results. All the parameters
we use and the formulas are shown in Tables 1 and 2. We will further optimize the scheduling scheme after we
obtain it.

Deduplication
It is more challenging to optimize the scheduling scheme based on the new graph further. Before further
optimizing makespan, the scheduling scheme needs to be applied to the original graph. The difference is that
3.2 generates a new dag graph based on partitioning, while the work to be done here is to decompose the
nodes in the scheduling scheme to the nodes in the original graph that make up the partition based on the
partition information. Here it will make the makespan further reduced. Since our scheduling is based on task
duplication scheduling, the same task is processed more than once on different processors. Before mapping
back to the original graph, the nodes of the same partition are regarded as a block. The granularity of tasks is
smaller aftermapping back to the original graph. Then there will be some tasks that will be repeatedly executed.
So, we can remove the duplicate tasks to improve the global completion time. More specifically, we simulate
the execution of tasks on each processor based on the existing task scheduling scheme. When executing to a
task 𝑣𝑖 on processor 𝑝, the task will be computed on the assigned processor 𝑝 at first, and then the completion
time 𝑟𝑐𝑡 (𝑖, 𝑝) of the task on the assigned processor 𝑝 will be recorded in the completion list. Then we check
the completion of that task in the completion list. It means there is a possibility that the same task is repeatedly
computed on different processors several times if the task is completed more than once. Further, we deal with
this case. We find the processor where each task is assigned to first. Then we find the first child node of that
task assigned to the same processor and record the communication weight 𝜃 between them. This process is
usually done very quickly because the task arrangement is based on an incremental BLevel arrangement, and
the BLevel values of the parent and child nodes do not differ very much. Then we make a comparison, which
is illustrated here by the example that task 𝑖 has completed the computation on both processors 𝑝, 𝑞. Then we
check if any of the tasks satisfy the following equation:

𝑟𝑐𝑡 (𝑖, 𝑞) > 𝑟𝑐𝑡 (𝑖, 𝑝) + 𝛿. (3)

𝛿 here refers to the communication delay from task 𝑖 to the first child node on processor 𝑞. If the equation
holds, it means that the task 𝑖 assigned on processor 𝑞 is unnecessary since task i has already completed its
computation on processor 𝑝, and the result is transferred to 𝑞 earlier than 𝑖 completes on 𝑞. So we can remove
task 𝑖 on processor 𝑞. This process works better when more completion records are found. A more exact
description of this algorithm is in Algorithm 2.

http://dx.doi.org/10.20517/jsegc.2021.13

Page 209 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

Algorithm 2 Deduplication
1: for proc 𝑝 = 1 to 𝑚 do
2: for task 𝑡 = 1 to |𝑇𝑝 | do
3: Finish task 𝑇(𝑝,𝑖) on processor 𝑝

i get 𝑟𝑐𝑡(𝑖,𝑝)
i insert {𝑝, 𝑟𝑐𝑡(𝑖,𝑝)} to finished list 𝐹𝐿𝑇(𝑝,𝑖)

4: if |𝐹𝐿𝑇(𝑝,𝑖) | <= 1 then
5: continue;
6: end if
7: repeat
8: ∀ 𝑥 ∈ 𝐹𝐿𝑇(𝑝,𝑖)
9: Find another finish info 𝑦 ∈ 𝐹𝐿𝑇(𝑝,𝑖)
10: if 𝑟𝑐𝑡𝑥 > 𝑟𝑐𝑡𝑦 + 𝐶𝑇 then
11: remove 𝑇(𝑥. 𝑓 𝑖𝑟𝑠𝑡,𝑥.𝑠𝑒𝑐𝑜𝑛𝑑) from 𝐹𝐿𝑇(𝑝,𝑖)
12: remove 𝑥 from 𝑇(𝑥. 𝑓 𝑖𝑟𝑠𝑡,𝑥)
13: end if
14: until can not find 𝑦
15: break;
16: end for
17: end for

Table 3. Weight of nodes for origin DAG 𝐺1

Nodes 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑣14 𝑣15

Weight 62 67 88 43 40 75 80 74 40 60 69 63 78 39 31

Complexity analysis
Themeanings of the symbols are explained at the beginning. 𝑛 and 𝑚 denote the number of nodes and edges,
respectively. Similarly, 𝜆 and 𝜃 denote the number of nodes and edges of the DAG after clustering, respectively.
By 𝑝, we denote the number of processors.

In the partition stage, we use the DAGP [28] partition algorithm, which has a time complexity of𝑂 (𝑛+𝑚). The
complexity of the cluster is 𝑂 (𝑛 + 𝑚). In the task scheduling phase, our strategy is similar to TDCA [4]. The
complexity is 𝑂 (𝑝𝜃𝜆 + 𝑝2𝜃). Moreover, the complexity is effortless to calculate in the mapping phase, which
is 𝑂 (𝑛). In the deduplication phase, we can calculate the complexity to be 𝑂 (𝑝2𝑛), which is described in
Algorithm 2.

To sum up, the overall time complexity of TDPATD is 𝑂 (𝑚 + 𝑝𝜃𝜆 + 𝑝2𝜃 + 𝑝2𝑛). We know that the complexity
of TDCA is 𝑂 (𝑝𝑚𝑛 + 𝑝2𝑚). When the number of processors is constant, and the number of task nodes is
much larger than the number of processors, i.e., 𝑛 ≫ 𝑝, our complexity can be considered as 𝑂 (𝑚 + 𝑛 + 𝜃𝜆),
while the complexity of TDCA is𝑂 (𝑚𝑛). It can be seen from the above equation that our algorithm has a great
advantage in time.

Trace of TDPATD
We will use a small instance to illustrate the process of TDPATD in this section. The DAG we use is shown in
Figure 2. The connection relationship between them and the communication time is given in the figure. Also,
the weights of the nodes are in Table 3. We will schedule the tasks to 2 processors. We partition the DAG
by DAGP [28] firstly. Here we partition the original dag 𝐺1 into 5 parts, and the partition results are shown
in Figure 2. The same color belongs to the same partition. Then we clustered the original graph into a new

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 210

Table 4. Weight of nodes for new DAG 𝐺2

Nodes 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

Weight 233 80 144 204 248

Figure 2. The origin DAG 𝐺1 and partition result. Nodes with
the same color belong to the same partition.

Figure 3. The new DAG 𝐺2.

dag graph 𝐺2 based on the partition information. We can calculate the weight of task 𝑣1 in the new graph 𝐺2
according to the rules of clustering:

𝑤1
𝑣1∈𝐺2

=
∑
{𝑤𝑖 |𝑣𝑖 ∈ 𝐺1 𝑎𝑛𝑑 𝑠𝑖 = 1} 𝑐(1, 2)

𝑣1,𝑣2∈𝐺2

= max{𝑐(𝑖, 𝑗) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝐺1 𝑎𝑛𝑑 𝑠𝑖 = 1 𝑎𝑛𝑑 𝑠 𝑗 = 2}

= 𝑤1 + 𝑤3 + 𝑤4 + 𝑤5
𝑣1,𝑣2,𝑣3,𝑣4∈𝐺1

= 𝑐(1, 7)
𝑣1,𝑣7∈𝐺1

= 233 = 12

The cost of communication from node 𝑣1 to node 𝑣2 can be obtained by calculating. The remaining data in
the 𝐺2 are available through the same calculation steps. The full calculation results are shown in Figure 3 and
Table 4.

Next, we schedule 𝐺2 to our two processors based on our strategy. The scheduling results are shown in
Figure 4. Then, we apply this scheduling scheme to the original graph 𝐺1. The results are shown in Fig-
ure 5. We observe that task 𝑣1, 𝑣3 and 𝑣5 are assigned on both processes. Next, we will check the possibility of
deleting them.

During the Deduplication phase, we will simulate the execution of the scheduling scheme on the processor. We
remove and update the scheduling scheme if we find any tasks that match the conditions. First, we simulate
the execution of processor 1. It can be seen that processor 1 does not need to accept data from other processors
before it can complete all assigned tasks. We can get 𝑟𝑐𝑡(3,1) = 217 and 𝑟𝑐𝑡(12,1) = 437. Next, we simulate the
execution of processor 2. After the processor has computed task 𝑣3 . We find that there are two completion
messages for task 𝑣3. Then check if there is a possibility to delete one of them. Then we find that task 𝑣3 on
processor 2 is qualifying because 𝑟𝑐𝑡(3,2) = 305 > 𝑟𝑐𝑡(3,1) + c(3,9) = 244 holds. Then we remove task 𝑣3 from
processor 2. A similar case occurs again when processor 2 completes task 𝑣5. As a result of the calculation,
there exists a task that meets the condition because the equation 𝑟𝑐𝑡(5,1) = 331 > 𝑟𝑐𝑡(5,2) + c(5,12) = 281 holds.
We remove task 𝑣5 from processor 1 and update the scheduling scheme. Attention, all tasks after task 𝑣5 on
processor 1 need to be re-simulated for computation. In the end, our scheduling scheme is shown in Figure 6.

http://dx.doi.org/10.20517/jsegc.2021.13

Page 211 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

T
im
e

233

313
437

457

462

710

1 1

4 2

3

5

p1 p2

Figure 4. Scheduling result for new
DAG 𝐺2 (makespan = 710).

T
im
e

217

437

457

705

1
2

3

8

1

7

6

5
4
11
10

9

13

14

15

5

12

3

635

p1 p2

Figure 5. Mapping result for origin
DAG 𝐺1 (makespan = 705).

T
im
e

217

354

429

547

617

1
2

3

8

12

1

7

6
5
4
11
10

9

13

14

15

p1 p2

Figure 6. Deduplication result
(makespan = 617).

RESULTS
DataSet
We have evaluated instances coming from two sources. The program generates the first set we use to generate
the various types of graphs we need. The specific generation process will be described in detail later. The
second set is from the work of Lin et al. [2]. This set contains 7 instances of graphs, each having 200 to 8000
nodes. We used four DAGs generated by widely used DNN models. The DNN models include BERT (with 3,
6, 128 transformer layers), ResNet-50 [2].

There are several important parameters for our generation procedure which we will explain in detail. The first
is the number of tasks 𝑛, i.e., the number of vertices in the DAG graph. Then the next is the communication
computation ratio, 𝐶𝐶𝑅. 𝑔𝑟𝑎𝑝ℎ ℎ𝑒𝑖𝑔ℎ𝑡, which is the number of layers of the graph levels. 𝐴𝑂𝐷, the average
out-degree. 𝐶𝐷𝑅, the communication data packet range. The steps of our graph generation are as follows. In
addition, there are two critical parameters used in our strategy. The 𝑝𝑟𝑜𝑐 indicates the number of available
processors, and 𝑝𝑎𝑟𝑡 is the number of partitions. The 𝑝𝑎𝑟𝑡 is also interpreted as the number of nodes in the
clustered DAG graph 𝐺2.

1. Generate the count of node in every level. We obtain the results directly since both the first and the last layer
of the graph contain only one node. Then (n-2) nodes are randomly and uniformly distributed into the
remaining layers.

2. Generate the out degree and weight of node. In this step we generate the exit degree information for each
node in each layer starting from the first layer. The out degree matches the normal distribution with a mean
value of the configured parameters. The process will not stop until the bottom second layer, because the
penultimate layer has only one outgoing edge of the node, pointing to the exit node. The last layer has
only exit nodes, and the exit node out degree is 0. we consider both the ideal AOD and the number of
nodes in the next layer when generating the out degree for each node. If the number of nodes is sufficient,
the random generation is performed with the AOD as the mean value. Otherwise, we judge whether the
generated number of nodes is within the reality, and if not, they are rounded off and regenerated. At the
same time, we randomly generate weight for each node according to the configuration of CDR and CCR.
Here the distribution of weight follows distribution.

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 212

3. Connect nodes in adjacent level. This process connects the nodes between the layers and then the entire
DAG. We ensure that the difference in the in-degrees of the nodes in the connected layers is not greater
than one when establishing connections between layers to ensure the balance of the whole graph. For the
first layer, the entry node will establish a directed edge with each second layer node. For the penultimate
layer, each node will establish a directed edge with the exit node. Also, we will generate the edge weight for
each generated directed edge, that is, the communication time between tasks, based on the CCR and CDR.

4. Ensure the connections among multiple levels. There may occur a case that a node does not have a parent
node or child node in the actual process of generating the graph. We finally check each node’s parent node
and child node (except the entry node and the exit node). We will randomly choose a parent node in the
node’s upper level to create a directed edge if the in-degree of the node is 0. If the node out-degree is 0, a
child node is randomly selected among the nodes in the next layer of that node to create a directed edge.
By doing so, we ensure that the final graph is directed and acyclic.

Baselines
BL_EST [5]

The logic of the algorithm is relatively simple. First, all the tasks that can be executed immediately are put into
the ready queue. Generally, the tasks in the queue are usually the entry tasks after initialization. All completed
tasks are put into the completion queue. The task will be put into the waiting queue if any parents are not in
the completion queue. When a processor is available, the first task in the ready queue will be assigned.

ETF [5]

EFT is a dynamic priority-based list scheduler. For tasks in the ready queue, the algorithm calculates the
earliest start time for each task on a different processor. Unlike BL_EST, which assigns processors directly,
ETF considers the actual time that a task gets executed on a processor, which is relatively better than BL_EST.
However, its time complexity is higher than the latter.

BL_EST_PART and ETF_PART [5]

These two are mixed scheduling algorithms of clusters and lists. The main concept of this algorithm is to
partition tasks into a certain number of clusters first and then schedule them. The detailed algorithm for
scheduling is basically similar to BL_EST and ETF, but tasks belonging to the same cluster will be assigned to
the same processor. This is an algorithm with a balanced performance.

B_Deduplication
This is half of our algorithm, which does not contain the results of deduplication. Thework of B_Deduplication
(before deduplication) mainly optimizes the algorithm for initializing the task queue. We set this baseline to
emphasize the practical part of our work.

Comprehensive comparison
The parameters of the DAG graphs and the parameters of the algorithm involved in the experiments are as
follows:

• Number of nodes n ∈ {4000, 5000, 6000, 7000, 8000, 9000, 10000}.
• Communication-computation ratio CCR∈ {0.5, 1, 1.5, 2, 2.5, 5, 7}.
• Processor number proc ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}.
• Partation num part ∈ {400, 500, 600, 700, 800, 900, 1000, 1200}.

We evaluated the effect of the different number of partitions on the performance of our strategy in the first ex-
periment. It should be noted that we cannot exhaustively explore all the possibilities due to the large parameter

http://dx.doi.org/10.20517/jsegc.2021.13

Page 213 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

-80

-60

-40

-20

0

20

40

60

0

5

10

15

20

25

30

35

40

45

50

o
p

ti
m

iz
at

io
n

 p
er

ce
n

ta
g

e

m
ea

n
 m

ak
e

sp
an

x
 1

0
0

0
0

BFDeduplication TDPATD

BL_EST ETF

EST_Part ETF_Part

Figure 7. Comparison of makespan on the number of
𝑝𝑎𝑟𝑡. TDPATD performs better with 𝑝𝑎𝑟𝑡 increase.

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

part_100 part_200 part_300 part_400 part_500 part_600 part_1000

m
ea

n
 m

ak
e

sp
an

BFDeduplication TDPATD EST_Part

ETF_Busy ETF_Part BL_EST

Figure 8. Comparison of makespan on realistic dataset
bert 128.

space. Thus we adopted reasonable configurations in each experiment except the variable under investigation.
As shown in Figure 7, the performance of our algorithm is not so good when the number of partitions is small.
As the number of partitions increases, the advantage of our strategy is exposed. Our method performs equally
well on the real dataset, as shown in Figure 8. According to the experiments, the all-around performance of
TDPATD exceeds the traditional clustering-based algorithm when the ratio of the number of nodes to the
number of partitions does not go beyond 20. The improvement in the performance of our algorithm over
baseline is about 30% to 40% when the number of partitions is reasonable. Moreover, the data for ETF and
BL_EST remain unchanged in Figure 7 for the reason that the number of partitions does not affect these two
strategies.

In the second experiment, we investigated the effect of CCR on makespan. As shown in Figure 9, our algo-
rithm performs well and produces a satisfactory makespan when the CCR is within a reasonable range. The
performance of our algorithm tends to be the same as the baseline algorithm, and the effect of the dedupli-
cation fades out when the CCR is greater than 5. In our strategy, we will remove node 𝑣𝑖 from 𝑝 if 𝑣𝑖 has
generated results on other processors and the transfer time to 𝑝 is faster than executing 𝑣𝑖 directly. As the time
for communication between tasks grows, fewer tasks will be qualified in this case. So the experiment meets ex-
pectations. Second, in this experiment, we observe that the effect of deduplication is noticeable. Themakespan
is primarily consistent with the effect of the baseline when no task is being done with the deduplication, which
is a further indication that our work is practical.

We investigated the effect of the number of processors on themakespan in the third experiment. We found that
the baseline algorithm is not very sensitive to the number of processors. As the number of processors we set
increases, the actual number of occupied processors does not produce any additional variation. We found that
the baseline algorithm is not very sensitive to the number of processors. As the number of processors increases,
the actual number of occupied processors will settle at a specific value. Our analysis of the possible reasons for
this phenomenon is that the communication time incurred by scheduling the cluster to other processors will
be longer than the computation time of the processors because the communication time on the same processor
is almost negligible. The results are shown in Figure 10, which indicates that our algorithm can obtain about

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 214

10

15

20

25

30

35

ccr 0.5 ccr 1 ccr 1.5 ccr 2 ccr 2.5 ccr 5 ccr 7

m
ea

n
 m

ak
e

sp
an

x
 1

0
0

0
0

BFDeduplication TDPATD

BL_EST ETF

EST_Part ETF_Part

Figure 9. Comparison of makespan on CCR. TDPATD
prefers small CCR.

9

11

13

15

17

19

21

23

25

5 6 7 8 9 10

m
ea

n
 m

ak
e

sp
an

x
 1

0
0

0
0

BFDeduplication TDPATD BL_EST

ETF EST_Part ETF_Part

Figure 10. Comparison of makespan on number of pro-
cessor. TDPATD can obtain better results when the num-
ber of available processors is growing.

0

5

10

15

20

25

30

35

40

n6000 n7000 n8000 n9000 n10000

m
ea

n
 m

ak
e

sp
an

x
 1

0
0

0
0

BFDeduplication TDPATD

BL_EST ETF

EST_Part ETF_Part

Figure 11. Comparison of makespan on number of node.

0

5

10

15

20

25

30

35

40

45

0

1

2

3

4

5

6

proc_1 proc_2 proc_3 proc_4 proc_5 proc_10 proc_20

ru
n

 t
im

e

m
ea

n
 m

ak
e

sp
an

X
 1

0
0

0
0

TDPATD TDCA

Figure 12. Comparison of makespan and running time
for TDCA and TDPATD on the graph with node 1000.
TDPATD has outstanding advantages in running speed.

30% optimization compared to the baselines. The makespan decreases, but the rate of change tends to zero as
the number of processors increases.

In the fourth experiment, we investigated the effect of the number of nodes on the makespan. Figure 11
shows that when the number of partitions is fixed, the performance of our algorithm gradually decreases as
the number of tasks increases, which corroborates the conclusion of the first experiment indirectly.

In addition, we compare it with the traditional duplication-based scheduling algorithm. When TDCA [4] runs
tens of thousands of node graphs (large-scale DAG), it takes too long, so we tested it with small-scale graphs.
The results are shown in Figure 12. We first compare our method with TDCA’s makespan. We find that our
method and TDCA’s makespan are pretty similar when the number of available processors is small. At the

http://dx.doi.org/10.20517/jsegc.2021.13

Page 215 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

0

0.5

1

1.5

2

2.5

BERT_3 BERT_6 Resnet_50 BERT_128

m
ea

n
 m

ak
e

sp
an

TDCA TDPATD

Figure 13. Results for makespan with different number of nodes on the bert dataset. TDPATD has practically comparable results on the
realistic data set.

same time, our method runs an order of magnitude faster than TDCA. Both our method and TDCA show a
promising trend when the number of processors is larger. As the number of available processors increases, the
running time of TDCA decreases, and the running time of our method increases. Our method runtime is an
order of magnitude faster than the traditional replication algorithm. A comparison of our strategy and TDCA
is shown in Figure 13, where a deep neural network model models the dataset. The experimental results are
within our expectations since TDCA is more adept at handling a small and sufficient number of processors
cases.

In general, the experiments satisfy our expectations predominantly. Compared with traditional algorithms,
the advantage of our algorithm is self-evident when the graph size is larger and fewer processors are available.
The number of partitions and CCR have a significant impact on our algorithm. The impact of the number of
nodes on the algorithm depends on the number of partitions. The number of processors affects the experi-
mental results in a way.

CONCLUSIONS
For large-scale DAG task scheduling, we propose a new algorithm. The algorithmmixes cluster-based schedul-
ing and duplication-based scheduling. The cluster-based scheduling algorithm can significantly reduce the
complexity and running time of the algorithm when dealing with large-scale scheduling tasks. However, there
is a loss of scheduling effectiveness as a consequence. Therefore, we apply the duplication-based task schedul-
ingmethod based on clustering to reduce the loss of scheduling effect due to clustering. Moreover, we optimize
the task queue initialization strategy of TDCA to make it more suitable for our algorithm. In addition, we de-

http://dx.doi.org/10.20517/jsegc.2021.13

Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13 Page 216

fine several new parameters 𝑝𝑎𝑡, 𝑟𝑠𝑡, and 𝑟𝑐𝑡. By calculating the 𝑟𝑐𝑡 of the task, we can further optimize the
scheduling scheme during the simulation stage. More importantly, we carry out another task deduplication
work after that and remove the unnecessary tasks generated by the previous scheduling to improve the effec-
tiveness of our strategy. Upon experimental analysis, our strategy excels when the tasks satisfy (1) the normal
range of CCR (no more than 5); and (2) the number of available processors is small. It indicates that our strat-
egy can avoid the waste of resources while optimizing the effect of large-scale task scheduling. Further, we will
investigate large-scale task scheduling on heterogeneous processor clusters. Also, we consider using parallel
approaches to speed up this work in the future. We hope that there will be more research and progress in the
future.

DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis and
interpretation: Huang W, Shi Z, Xiao Z
Funding acquisition, project administration, provide research resources, and supervision: Chen C, Li K

Availability of data and materials
Not applicable.

Financial support and sponsorship
This work was supported by Natural Science Foundation of Hunan Province (No. 2020JJ5083).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2021.

REFERENCES
1. Parravicini A, Delamare A, Arnaboldi M, et al. DAG­based scheduling with resource sharing for multi­task applications in a polyglot

GPU runtime. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS); 2021 May 17­21; Portland, OR, USA.
IEEE; 2021. p. 111­20.

2. Lin P, Shi Z, Xiao Z, et al. Latency­driven model placement for efficient edge intelligence service. IEEE Trans Serv Comput 2021.
3. Liu L, Tan H, Jiang SHC, et al. Dependent task placement and scheduling with function configuration in edge computing. 2019 IEEE/ACM

27th International Symposium on Quality of Service (IWQoS); 2019 Jun 24­25; Phoenix, AZ, USA. IEEE; 2019. p. 1­10.
4. He K, Meng X, Pan Z, et al. A novel task­duplication based clustering algorithm for heterogeneous computing environments. IEEE Trans

Parallel Distrib Syst 2018;30:2­14.
5. Özkaya MY, Benoit A, Uçar B, et al. A scalable clustering­based task scheduler for homogeneous processors using dag partitioning. 2019

IEEE International Parallel and Distributed Processing Symposium (IPDPS); 2019 May 20­24; Rio de Janeiro, Brazil. IEEE; 2019. p.
155­65.

6. Bajaj R, Agrawal DP. Improving scheduling of tasks in a heterogeneous environment. IEEE Trans Parallel Distrib Syst 2004;15:107­18.
7. DaoudMI, Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems J Parallel

Distrib Comput 2008;68:399­409.
8. Kwok YK, Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput Surv 1999;31:406­

71.

http://dx.doi.org/10.20517/jsegc.2021.13

Page 217 Huang et al. J Smart Environ Green Comput 2021;1:202­17 I http://dx.doi.org/10.20517/jsegc.2021.13

9. Chowdhury P, Chakrabarti C. Static task­scheduling algorithms for battery­powered dvs systems. IEEE Trans Very Large Scale Integr
VLSI Syst 2005;13:226­37.

10. Chronaki K, Rico A, Casas M, et al. Task scheduling techniques for asymmetric multi­core systems. IEEE Trans Parallel Distrib Syst
2016;28:2074­87.

11. Omara FA, Arafa MM. Genetic Algorithms for Task Scheduling Problem. In: Abraham A, Hassanien A, Siarry P, Engelbrecht A, editors.
Foundations of Computational Intelligence Volume 3. Berlin: Springer Berlin Heidelberg; 2009. p. 479­507.

12. Liu GQ, Poh KL, Xie M. Iterative list scheduling for heterogeneous computing. J Parallel Distrib Comput 2005;65:654­65.
13. TangX, Li K, Liao G, et al. List scheduling with duplication for heterogeneous computing systems. J Parallel Distrib Comput 2010;70:323­

9.
14. Palis MA, Liou JC, Wei DSL. Wei Task clustering and scheduling for distributed memory parallel architectures. IEEE Trans Parallel

Distrib Syst 1996;7:46­55.
15. Zhang W, Hu Y, He H, et al. Linear and dynamic programming algorithms for real­time task scheduling with task duplication. J Super­

comput 2019;75:494­509.
16. Taheri G, Khonsari A, Entezari­Maleki R, et al. A hybrid algorithm for task scheduling on heterogeneous multiprocessor embedded

systems. Appl Soft Comput 2020;91:106202.
17. McCreary CL, Khan AA, Thompson JJ, et al. A comparison of heuristics for scheduling dags on multiprocessors. Proceedings of 8th

International Parallel Processing Symposium; 1994 Apr 26­29; Cancun, Mexico. IEEE; 1994. p. 446­51.
18. Radulescu A, Van Gemund AJC. Low­cost task scheduling for distributed­memory machines,” IEEE Trans Parallel Distrib Syst

2002;13:648­58.
19. Topcuoglu H, Hariri S, Wu MY. Performance­effective and low­complexity task scheduling for heterogeneous computing. IEEE Trans

Parallel Distrib Syst 2002;13:260­74.
20. Shin KS, Cha MJ, Jang MS, et al. Task scheduling algorithm using minimized duplications in homogeneous systems. J Parallel Distrib

Comput 2008;68:1146­56.
21. Wang H, Sinnen O. List­scheduling versus cluster­scheduling. IEEE Trans Parallel Distrib Syst 2018;29:1736­49.
22. Kanemitsu H, Hanada M, Nakazato H. Clustering­based task scheduling in a large number of heterogeneous processors. IEEE Trans

Parallel Distrib Syst 2016;27:3144­57.
23. Kwok YK, Ahmad I. Dynamic critical­path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans

Parallel Distrib Syst 1996;7:506­21.
24. Wu MY, Gajski DD. Hypertool: a programming aid for message­passing systems. IEEE Trans Parallel Distrib Syst 1990;1:330­43.
25. DaoudMI, Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. J Parallel

Distrib Comput 2008;68:399­409.
26. Liu CH, Li CF, Lai KC, et al. A dynamic critical path duplication task scheduling algorithm for distributed heterogeneous computing

systems. 12th International Conference on Parallel and Distributed Systems ­ (ICPADS’06); 2006 Jul 12­15; Minneapolis, MN. IEEE;
2006. p. 8.

27. Ranaweera S, Agrawal DP. A task duplication based scheduling algorithm for heterogeneous systems. Proceedings 14th International
Parallel and Distributed Processing Symposium; 2000 May 1­5; Cancun, Mexico. IEEE; 2000. p. 445­50.

28. Herrmann J, Kho J, Uçar B, Kaya K, Çatalyürek ÜV. Acyclic partitioning of large directed acyclic graphs. 2017 17th IEEE/ACM Inter­
national Symposium on Cluster, Cloud and Grid Computing (CCGRID); 2017 May 14­17; Madrid, Spain. IEEE; 2017. p. 371­80.

http://dx.doi.org/10.20517/jsegc.2021.13

	1 Introduction
	2 background
	2.1 Model
	2.2 Related work

	3 METHOD
	3.1 Partition and clustering
	3.2 Scheduling
	3.3 Deduplication
	3.4 Complexity analysis
	3.5 Trace of TDPATD

	4 Results
	4.1 DataSet
	4.2 Baselines
	4.3 Comprehensive comparison

	5 Conclusions
	Declarations
	Authors' contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

