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Abstract
Nanotechnology-based drug delivery platforms have been developed over the last two decades because of 
their favorable features in terms of improved drug bioavailability and stability. Despite recent advancement in 
nanotechnology platforms, this approach still falls short to meet the complexity of biological systems and diseases, 
such as avoiding systemic side effects, manipulating biological interactions and overcoming drug resistance, 
which hinders the therapeutic outcomes of the NP-based drug delivery systems. To address these issues, various 
strategies have been developed including the use of engineered cells and/or cell membrane-coated nanocarriers. 
Cell membrane receptor profiles and characteristics are vital in performing therapeutic functions, targeting, and 
homing of either engineered cells or cell membrane-coated nanocarriers to the sites of interest. In this context, 
we comprehensively discuss various cell- and cell membrane-based drug delivery approaches towards cancer 
therapy, the therapeutic potential of these strategies, and the limitations associated with engineered cells as drug 
carriers and cell membrane-associated drug nanocarriers. Finally, we review various cell types and cell membrane 
receptors for their potential in targeting, immunomodulation and overcoming drug resistance in cancer.

Keywords: Cell membrane-based drug delivery, cell-mediated drug delivery, membrane receptors, drug carriers, 
cancer drug resistance, nanoparticles
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INTRODUCTION
Based on recent trends, cancer is expected to become the leading cause of death in the world and effective 
treatment strategies are needed to address the increasing trend in incidents of cancer[1]. Chemotherapy has 
been established as a standard treatment in various cancer therapies with hundreds of antitumor drugs 
developed and approved for human use. However, drug sensitivity in cancer cells has been reduced due to 
the emergence of multiple drug resistance (MDR) induced by various factors including ATP-dependent 
drug efflux out of the cell, selective stress of drugs, altered DNA repair mechanisms, cellular heterogeneity 
in the tumors, and other drug barriers[2]. Several nanotechnology-based drug delivery systems utilize 
biomaterials including polymers, metals and lipids to improve the therapeutic index by improving drug 
loading efficacy, controlling drug release kinetics to address the challenges associated with free drugs such 
as systemic side effects, pharmacokinetic diversity, and physiological variety, as well as achieving ideal 
dose regimen and other antagonistic effects of combinatorial drug therapies used in addressing MDR. But 
the efficient bioavailability with those platforms has not yet been achieved due to their relatively simple 
structure compared to complex biomolecule interactive systems in vivo and they still suffer from the 
“foreign-body” aspects, leading to side effects, immune clearance and poor targeting abilities due to the 
protein corona formation in vivo, making them unable to meet clinical expectations[3]. 

Nanoparticles (NPs) as a carrier loaded with drugs can be directed towards a specific target by the use 
of various surface moieties involved in the complex biological mechanisms [4]. A bottom-up approach 
of surface functionalization is commonly adopted in the preparation of NPs for targeted drug delivery. 
Surface functionalization incorporates functional moieties such as antibodies, enzymes, ligands, and 
other functional target molecules onto the surface of drug delivery carriers via various chemical and 
non-chemical interactions. Though NPs have shown optimal therapeutic results, they still lack in 
multifunctional applications such as improved circulation, targeting, homing, immunomodulation, and/
or in combination. Although more than 80% of NP systems published are designed to treat cancer through 
their enhanced permeability and retention (EPR) effects, only a few tumors have been reported to achieve 
NP accumulation through EPR effects[5,6]. Various cells, due to their innate features, can reach tumor sites 
via their membrane components which may help in reducing toxicities arising from the current one-size-
fits-all approach. Patient-to-patient in vivo biology varies in immune responsiveness and disease pathology; 
for example, tumor heterogeneity in cancers requires a bio-interfacing approach to address limitations 
of synthetic NP drug delivery systems. Together, the challenges faced in NP drug carriers demands more 
efficient and safer approaches to achieve therapeutic potential and to meet clinical expectations.

Cell- and cell membrane-based NPs possess multifunctional abilities, which make them ideal in NP-based 
cancer therapies. Cell membrane-coated NP (CMCNPs) have been increasingly studied for their mimicry 
of cell surface functionality, which can aid in reducing the immune responses of synthetic NPs in vivo and 
introduce the ability to combine both natural and synthetic materials concisely as shown in Figure 1. Cell- 
and cell membrane-based drug carriers exhibiting intrinsic properties of in vivo biology have been shown 
to overcome the challenges faced by synthetic NP-based drug carriers and achieve acceptable toxicity 
and better biocompatibility than their synthetic counterparts[7-12]. Major advantages of using cell- and cell 
membrane-based drug carriers include provision of immune escape and specific tumor targeting imparted 
by the cell membrane proteins leading to improved EPR in cancer therapies, and an ability to generate 
desired cytotoxic immunomodulatory effects via cell surface engineering, leading to tumor regression[13-18].

Cancer is a complex disease involving various cells and their membrane interactions in the tumor 
microenvironment, such as immune suppression via PD-1/PD-L1 axis in T cells, recruitment of stem 
cells via membrane receptor-mediated CXCR4/CXCL2 chemokine axis, maturation of immune cells via 
membrane interactions, and various other chemical interactions, which uncover the potential of using cells 
in cell- and cell membrane-based drug delivery. Recently, discovered mechanisms of these interactions 
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are being explored by NP technology to develop various treatment strategies[19-21]. Efficient navigation, 
while maintaining the integrity of the drug carrier and physiologically pertinent interactions within 
complex biological environments, can be achieved using cell membrane-coated NPs with a relatively 
higher circulation-time[22]. Accordingly, researchers in NP-based drug delivery have shifted their focus to 
the use of engineering cells and/or cell-derived sources for cancer therapies and immunomodulation, as 
shown in Figure 2. Bioengineered components including whole cells, cell membranes, and exosomes are 
being employed in anticancer or immunomodulating drugs[23] and vaccine-loaded carriers[24,25]. Cell- and/
or cell membrane-based NP drug delivery platforms can be applied in numerous ways to alter biological 
functions and pathways and be used in targeting and manipulating their destination to achieve desired 
therapeutic responses. Therefore, it is of critical importance to understand the cell membrane mechanisms 
involved in targeting, altering immune responses, and eliciting therapeutic outcomes. Along with recent 
cell- and cell membrane-based drug carriers in cancer and immunomodulation, we provide an up-to-date 
review of current and potential cell types and cell membrane receptors involved in cancer therapy and 
immunomodulation. 

CELLS AS DRUG CARRIERS AND LIMITATIONS OF WHOLE CELLS AS CARRIERS
As cell-based drug delivery systems involve the utilization of the cell’s biological features for the 
development of drug carriers, it is essential to understand their mechanisms in vivo. Multicellular organisms 
perform complex biological interactions between the host cell and the pathogen or diseased cells, which 
usually lead to highly acidic conditions inside the cells, dysregulated proliferation, release of inflammatory 
molecules, and other abnormalities. Most of the regulatory molecular interactions occurring in the immune 
system are in response to the abnormalities existing in diseases including cancer, autoimmune diseases, 
and infections. Recent breakthrough discoveries in underlying interactions in immunobiology and cancer 
biology have led to immune cell-based therapies as a new therapeutic approach in the clinic, especially in 
hematological cancers[19-21,26]. 

Figure 1. Preparation of cell/cell membrane-based payload delivery and its applications. CRISPR: clustered regularly interspaced short 
palindromic repeats; Cas9: CRISPR associated protein 9; IPTG: isopropyl β-D-1-thiogalactopyranoside
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Immune cells are extensively employed in cell-based drug carriers because of their ability to reach inflamed 
sites typically seen in many diseases, including cancer. In the last decade, engineered lymphoid cells were 
developed with various approaches to recognize specific disease antigens via their naïve receptors called 
“T cell receptors” (TCRs) or via novel engineered synthetic receptors called “chimeric antigenic receptors” 
(CARs). Novel approaches like the use of engineered T cells to give synthetic NPs a hitching ride to their 
destination show promising results in targeted drug delivery. Although there have been great advances 
in directing T cells to the tumor environment, immunosuppression in the tumor microenvironment still 
remains challenging[27]. T cells engineered using Synthetic Notch (SynNotch) circuits, when in contact with 
a specific antigen, promote cleavage of the transmembrane SynNotch receptor and release of transcriptional 
domain attached intracellularly, leading to entry into the nucleus followed by activation of targeted gene 
expression[28]. Cellular engineering strategies like these can be used to overcome challenges such as tumor 
immunosuppression and autoimmune activation[29]. In addition, they can successfully deliver molecules of 
interest at a pathologically-specific location, circumventing issues such as dilution of drug molecules and 
low circulation half-life faced in the direct injection of NP delivery[30]. Another similar strategy includes 
nuclease-deficient synthetic receptors (dCas9-synR), which accommodate combinatorial inputs such as 
proteins, lipids or sugars as an intracellular signal transduction module of antigen/antibody specific-cellular 
responses[31]. 

Cellular engineering techniques also have potential in designing novel signaling pathway circuits to 
improve cell differentiation where required, to provide the supplement antibody expression for regulatory 
feedback mechanisms, and to release immunosuppressive factors observed in autoimmune diseases, 

Figure 2. Illustration showing major cell types and the use of cell membranes in drug delivery, immunotherapy, and immunomodulation. 
CAR: chimeric antigenic receptor
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opening new avenues in immunomodulation. Some other drug delivery strategies employ cells as a 
carrier for targeted delivery of immunomodulatory drug-loaded NPs. In addition to immunosuppressive 
factors, the tumor microenvironment (TM) is hard to reach and plays a critical role for drug resistance 
development within the tumors[32,33]. Addressing these issues through applied therapies such as cell-based 
nanocarriers may help to overcome cancer drug resistance. For instance, targeting CTLA-4- and PD-1- 
expressing lymphocytes has shown to be a potential therapeutic approach towards tumor regression [16]. 
Conjugating immunomodulatory drug-loaded NPs on T cell surfaces (such as R848-toll-like receptor 
agonist or SD-208-inhibitor of TGFβ kinase) creates advantages such as more active seeking of cancer cells 
compared to only ligand-conjugated NPs, which have a reduced circulation half-life and are easily cleared 
from the system before reaching their targets[16]. In addition, immunomodulatory drugs loaded into NPs 
can induce checkpoint blockade and inhibit immunosuppressive mediators via autocrine and paracrine 
routes, leading to infiltration of CD8+ T cells into tumors. Cell-based drug delivery systems are beneficial 
over functionalized, synthetic drug carriers for many reasons including augmented with their intrinsic 
properties of reduced immunogenicity, imposed innate targeting ability, and improved circulation half-life. 
In addition to providing customizable signal pathways, cells provide an ideal platform to hitchhike drug 
carriers to desired locations [Figure 3].

Although they have advantageous biological intrinsic factors over synthetic nanocarriers, cells are highly 
sensitive to external manipulation including loading drug carriers, genetic and other morphological 
changes. Attaching or encapsulating drug-loaded NPs to the cell may present toxicity and alter its innate 
physiological abilities in maintaining homeostasis. It has been reported that RBC stability and plasticity 
have been affected due to chemical modifications of cell membranes. For instance, glycophorin A 
expression patterns have changed after crosslinking of NPs on the cell surface[34]. This change may lead 
RBCs to release damage-associated patterns (DAMP) and result in immune activation or opsonization 
by humoral elements[35]. In addition, abnormal release of internal proteins from modified cells may cause 
immune reactions such as hemoglobin-mediated immune responses[36]. The use of bacterial cell-mediated 
drug delivery may induce unfavorable immune responses in immune compromised terminally ill cancer 
patients[37]. Mesenchymal stem cell (MSC)-mediated drug delivery is employed to deliver payloads to tumor 
regions. However, it is reported that MSCs might contribute to tumor metastasis by releasing chemokines, 
helping tumors to suppress the immune system, to the differentiation of epithelial cells to become cancer-
associated fibroblasts, and to the retention of the stemness of cancer cells[38]. Aspects of cell-based drug 
delivery require a thorough consideration of cell type selection and a combinatorial therapeutic approach. 
Limitations of cell-based drug delivery also include the limited surface availability and the cell’s own 
vital interactions with the environment. In addition, maintaining the released drug concentration in the 
therapeutic window while avoiding a cytotoxic effect to its cell carrier can make drug dosage optimization 
very challenging to achieve in cell-based therapies[39].

ADVANTAGES AND APPLICATIONS OF CELL MEMBRANE-COATED NANOPARTICLE-BASED 

DRUG DELIVERY SYSTEMS
Cell membrane-coated NPs have made a notable contribution by aiding NP-based cancer therapies in 
overcoming drug resistance. Due to the cell membrane structure and the retained cellular antigens, 
biomimetic CMCNPs extend special advantages over targeting ligand-functionalized synthetic NPs such 
as ligand recognition, long blood circulation, homotypic targeting, immune escape, and the ability for a 
sustained drug delivery. CMCNPs address the limitations of cell sensitivity, cell differentiation and cell 
toxicity seen in cell-based NP drug delivery by utilizing therapeutically significant cell membrane proteins 
instead of the cell itself. Among the various motives considered in preparing a NP-mediated delivery of 
therapeutic drugs, having a longer circulation time will have a major clinical impact as it increases the 
chances of sustained drug delivery and targets the tumor site with active and passive mechanisms such as 
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EPR effects and evasion of reticuloendothelial system (RES) clearance[40]. Exploiting these mechanisms with 
more specific targeting and biomodulation are the major advantages provided by the biomimetic CMCNP. 
Listed in Table 1 are major applications of CMCNPs, and advantages reported of specific cell membrane 
components (ligands) over conventional targeting carrier preparations such as antibody- or peptide-
decorated NPs.

There is an increasing trend in using cell membrane-coated NPs because of their advantages, including 
circulation time, RES, and other aspects. The first CMCNPs reported were developed by a coating of 
erythrocyte membrane on poly(L-lactic)-co-(glycolic acid) (PLGA) NPs, which increased NP retention in 
the blood to 72 h in comparison to 15.8 h of conventional synthetic stealth featured PEG-coated NPs. This 
was possible by avoiding the clearance by macrophage engulfment via an endogenous CD47 marker present 
on the red blood cell (RBC) membrane[41]. Also, RBC membrane-mimetic PLGA NPs with perfluorocarbon 
core (PFC-PLGA-RBCM) were used in membrane camouflaging to deliver oxygen to solid tumors, showing 

Figure 3. Current and potential cell types used for design of nanoparticle-based drug delivery in cancer therapy and immunomodulation 
along with their strategies to improve drug delivery (strategies include nanoparticle hitchhiking, autocrine signaling via cell membrane-
bound nanoparticles, cell surface engineering and cell membrane-coated nanoparticle-based drug delivery). BBB: blood brain barrier 
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Table 1. Current applications of cell membrane-based nanoparticles in cancer therapies

Ligand CMCNP type Advantages Application Ref.
CD47 RBC membrane-coated 

PLGA NPs
Increased circulation half-life of NPs with 
an immunosuppressive CD47 marker 
towards SIRPα in phagocytic cells such as 
macrophages

Personalized medicine [41,42]

CD47, CD235α, CD61 
and CD41

RBC-platelet-coated PLGA 
NPs

CD235a marks a species-specific 
marker on the RBC along with CD47, 
an immunosuppressive marker, CD41 
and CD61, making up the αlbβ3, assists in 
hemostasis and thrombosis of platelets

Personalized medicine [43,44]

Cadherins and 
glycoprotein100 

Mouse melanoma and cell 
membrane-coated PLGA 
NPs

Induction of dendritic cell maturation and 
stimulation of antigen-specific T cells by 
gp100 epitope

Cancer immunotherapy [45]

CD45, CD3z and CD11a Cytotoxic T lymphocyte 
membrane PLGA NPs

Ability to avoid opsonization via CD45 
and CD3z markers and facilitate vascular 
extravasation via LFA-1 or CD11a

Cancer immunotherapy [46]

α4 Integrin Liposomes coated with 
macrophage membranes 
for targeting metastatic 
cancer cells

Macrophage α4 interactions with 
metastatic cancer cell VCAM-1 molecules 
to target and inhibit metastasis

Drug delivery for 
antimetastatic 
immunotherapy

[8]

Mac-1, 
N-cadherins

PLGA NPs coated with 
neutrophil membranes

Neutrophil membrane proteins such as 
Mac-1 and N-cadherin facilitate CTC-
targeting properties and help design DDS 
for targeting metastatic niches

Antimetastatic 
immunotherapy

[11]

FGFRs, EGFRs Stem cell membrane-
coated nanoparticles

Stromal cell proliferation signal responsive 
receptors such as FGFRs and others on 
MSCs home them to the tumors, and 
this phenomenon is being used for tumor 
targeting

Targeted tumor therapy [10]

FAKs, RHO Cancer cell membrane- 
coated magnetic iron oxide 
NPs

Surface specific proteins such as integrins, 
FAKs and RHO proteins provide a homing 
ability of cancer cell membrane-coated NPs 
in tumor-self targeting

Targeted tumor therapy [45,47]

Anti-CD19 synthetic 
notch receptor

T cell expression via 
SynNotch receptors

Antigen specific expression (input) of 
desired proteins at desired locations via T 
cells

Cancer immunotherapy [30]

RTK-based and GPCR-
based chimeric 
receptors

DCas9-SynR in HTLA /
HEK293 cells

Combinatorial antigen inputs for site-
specific cellular responses/delivery of 
therapeutic agents

Cancer immunotherapy [31]

Neutrophil extracellular 
traps (NETs)

Neutrophil cell membrane-
coated nanoparticles

Natural binding of NETs to circulating 
tumor cells by selective adhesion is 
targeted to deliver therapeutic drugs 
inhibiting CTCs

Anti-metastatic therapy [9,11]

MSR, MMR, 
VCAM-1

Macrophage membrane- 
coated nanoparticles

The macrophage membrane actively 
targets cancer by respective ligand 
adhesion and delivers the therapeutic 
drugs via nanoparticle release

Cancer immunotherapy [48]

CXCR4 and CD44 Cancer cell and glioma 
cell membrane-coated 
nanoparticles

Disruption of cancer cell migration towards 
fibroblasts by internalization of NPs with 
CXCR4 and CD44

Antimetastatic 
therapies

[49]

MPLA Cancer cell membrane, 
MPLA-functionalized PLGA 
NPs

Maturation of dendritic cells via MPLA 
functionalized cancer cell membrane

Antitumor therapy [45]

PAMPs  Outer membrane vesicle of 
Salmonella

PAMPs bind to PRRs and stimulate innate 
immunity activities

Vaccine [50]

HER-2-specific affibody E. coli K-12 W3110 strain 
outer membrane vesicle 
(OMV)

HER-2-homing AffiHer-2 OMVs siRNA 
delivery to target cancer cells

Bacteria-mediated 
cancer immunotherapy

[51]

Engineered lipid A 
moiety 

Salmonella enterica  with 
lipid A modification for 
evading immune system

Tumor treatment of colon adenocarcinoma, 
metastatic murine carcinoma and B16Bl6 
melanoma via engineered S. enterica

Bacteria-mediated 
antitumor therapy

[50]

CMCNP: cell membrane-coated nanoparticle; CD: cluster of differentiation; RBC: red blood cell; PLGA: poly(lactic-co-glycolic acid); NP: 
nanoparticles; SIRPα: signal-regulatory protein alpha; LFA-1: lymphocyte function-associated antigen 1; VCAM-1: vascular cell adhesion 
molecule 1; CTC: circulating tumor cells; DDS: drug delivery system; FGFR: fibroblast growth factor receptor; EGFR: epidermal growth 
factor receptor; MSC: mesenchymal stem cells; FAK: focal adhesion kinase; RHO: Ras homologous protein; RTK: receptor tyrosine 
kinase; GPCR: G protein coupled receptor; HTLA/HEK293: human embryonic kidney; PD-1: programmed cell death 1; NET: neutrophil 
extracellular traps; MSR: macrophage scavenger receptors; MMR: macrophage mannose receptor; CXCR4: C-X-C chemokine receptor 
type 4; MPLA: monophosphoryl lipid A; PAMP: pathogen-associated molecular pattern; PRR: pattern recognition receptor; HER-2: 
human epidermal growth factor receptor 2
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another application of cell membrane-coated NPs delivery to improve the blood circulation time by 
mimicking the cell surface functionality in navigating and reaching the specific target via the EPR approach 
due to their nano-size[17]. 

A few other hybrid approaches such as fusing two different natural cell membranes have also been 
reported, e.g., RBC and platelet cell membranes fused and used for coating PLGA NPs[43]. This approach 
not only improves the circulation by inhibiting RES, but also has an added functionality of the platelet 
cell membrane. This membrane has cancer cell specific binding molecules such as P-selectin and CD44 
receptor with surface specific capture by cancer cells, providing a significant targeting advantage over a 
bottom-up preparation approach to target cancer cells. Hybrid approaches of using RBC membranes and 
various cancer cell membranes have also been shown to inhibit tumor growth. Strategies using copper 
sulfide NP coating with RBCs and melanoma cancer cell membrane fused hybrid vesicles have exhibited 
immunosuppression mechanisms such as macrophage phagocytosis inhibition and homotypic targeting 
achieved by homologous surface adhesion domains on the cancer cell membranes[52,53]. A nanosponge 
made of RBC-coated PLGA NPs with α-toxin incorporation reduced staphylococcal α-hemolysin when 
administered to a toxin-challenged mouse showing the capability of arresting toxins by taking advantage of 
the biomimicking nature of RBC membranes in avoiding immune clearance[54]. Cell membranes increase 
the efficacy of cancer therapy and are also used as a cell mimicry-based delivery, which is promising in 
toxin neutralization.

There are other approaches being explored by CMCNPs using cancer cell membrane-coated NP-mediated 
cancer therapies. Capability to induce immune responses by stimulating immune cells or by blocking major 
checkpoints in immune pathways of cytotoxic T cell-associated proteins and other immunomodulatory 
molecules can be achieved using cancer cell membrane-coated NPs. Cancer cells evade elimination and 
survive various challenges from the immune system via loss or dysregulation of major histocompatibility 
complex expression (MHC) as well as decrease in immunogenicity or immunosuppression by taking 
advantage of anergic pathways of tumor-infiltrating lymphocytes and other active sites of “immune 
privilege” formed by tumor-infiltrating lymphocytes[20]. Along with the forementioned evasive strategies, 
tumor cells agglomerate congregating in a solid tumor via strong adhesion using their surface membrane 
proteins, which makes the infiltration restricted. In addition, unorganized and poor vasculature inhibits 
them from utilizing the EPR effects of NP delivery in some cancer types. Taken together, these unique 
features of cancer cell membrane components can be employed in developing CMCNPs with better 
therapeutic outcomes.

Taking into consideration of the advantages of the homing abilities and decreased immunogenic profiles of 
cancer cell membranes, they have the potential to enhance cancer-targeted drug delivery. To that regard, 
Cao et al.[8] explored the interaction of the macrophage α4 protein and VCAM-1 of metastatic cancer cells 
to deliver cytotoxic anticancer drugs for metastatic inhibition in breast cancer metastasis to the lungs. 
In another study, Fang et al.[45] showed that cancer cell membrane-coated NPs exert homotypic tumor 
targeting by means of galectin-3 and Thomsen-Friedenreich antigen (T antigen) adhesion properties of 
cancer cell membranes. Also, use of cracked cancer cell membrane-coated magnetic iron oxide NPs for 
targeting tumors showed an increased ability for homing to homologous tumors in vivo over other active 
targeting strategies, which depend on recognition selectivity and receptor density[55]. There was a 40-fold 
and 20-fold increase in uptake of cancer cell membrane-coated NPs in comparison with RBC-coated NPs 
and bare PLGA cores, respectively, in MDA-MB-435 cells, showing the affinity of cancer cell membrane-
coated NPs towards cancer cells in attribution to the cancer cell adhesion molecules from cancer cell 
membranes[55]. In addition to drug delivery and targeting applications, the membrane coating approach has 
emerged as a great tool for the development of cancer vaccines. In a combinatorial therapy, Kroll et al.[23] 
encapsulated an immunological adjuvant, CpG oligodeoxynucleotide 1826 (CpG) into a PLGA nanocore, 
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which can trigger maturation of antigen-presenting cells, and the PLGA-CpG NPs coated with B16-F10 
mouse melanoma cell membrane containing tumor-associated antigens improved immune responses and 
eventually could be developed as a vaccine towards various cancers (e.g., in the melanoma cancer vaccine 
approach presented in this study).

An immune cell membrane with its receptor-mediated immunogenicity and cytotoxicity can act towards a 
synergistic effect of immune responses and sustained chemotherapy drug release via NPs. Leukolike vectors 
(LLV) recently developed using neutrophil membrane-coated NPs (NM-NP) for targeting metastatic niches 
showed two- to threefold increased accumulation in the metastatic foci in comparison with those of bare 
NPs and PLGA-PEG-NPs, respectively[11]. This affinity towards metastatic niches is facilitated by the Mac-1, 
N-cadherin and other adhesive proteins expressed on neutrophil membranes available on CMCNPs over 
conventional PEG coating used for increasing circulation half-life and avoiding clearance[56,57]. In another 
study, cytotoxic T lymphocyte membrane-coated NPs in combination with low-dose irradiation were used 
for targeting and treating gastric cancer[46]. The low-dose irradiation increased the chemoattractant such 
as IFN-γ and upregulated adhesion molecule expression facilitating the increase in CD8+ T cells in the 
tumor environment along with homing and localization of T lymphocyte membrane-coated PLGA NPs 
by avoiding opsonization via highly abundant proteins such as CD45 and CD3z. It also showed a 50%-75% 
decrease in phagocytic uptake of T lymphocyte membrane-coated PLGA NPs when compared to the bare 
NPs due to vascular extravasation by LFA-1 or CD11a. Interestingly, another study reported capabilities of 
T lymphocyte membrane-coated PLGA NPs to avoid being sequestered by lysosomes and to retain their 
lymphocyte coating, whereas plain NPs were seen to be trapped among the endolysosomal compartments 
prone for degradation in in vivo studies[58]. This study also found T lymphocyte-coated NPs having a 
twofold increase in particle density across tumors in mice in comparison to bare NPs. Many other research 
groups are working towards utilizing the cell membrane’s innate abilities for development of biomimetic 
drug carriers for cancer therapies.

CONSIDERATIONS AND LIMITATIONS OF CELL MEMBRANE-COATED NANOPARTICLES
Cell membrane coating of NPs is employed for its various features such as targeting, immune evasion, signal 
transduction and other therapeutic advantages over the bottom-up formulation of targeting NPs. To take 
advantage of CMCNPs in cancer treatments, the cell membrane’s functional and structural features should 
be intact before coating drug carriers. Stability of the cell membrane is a crucial factor that determines the 
overall durability of the drug carrier system. Under natural conditions, cells and particles are subjected 
to shear and torque forces from circulation and tissue microenvironment. Cells cope with those forces 
by actively modulating their ligand, ligand density, lipid profile and cytoskeleton-membrane interactions. 
One challenge to mimicking the natural cell membrane by CMCNPs is the intracellular cytoskeleton and 
membrane interaction by the cells. For instance, intracellular protein-cell membrane interaction enhances 
the robustness of natural cells. Cell membranes are losing and/or changing some of the key cell membrane 
stability regulators during the membrane isolation procedures. Therefore, assessment of overall membrane 
stability in cell membrane-based drug delivery platforms becomes a necessity before moving forward 
to biomimetic-based therapy applications. Although various tools have been developed to check the 
membrane stability of biomimetic drug carriers, only very limited data are available on whether CMCNPs 
are stable enough to cross biological barriers to reach target tissues, an important point for cell membrane-
based drug delivery applications[59]. Various techniques are reported in the literature to assess the stability 
of membrane structures. For instance, cryo-TEM, lipophilic dye enhanced/advanced fluorescence and/
or spectrophotometric techniques are very useful for visualizing morphology and structural integrity of 
cell membranes[60,61]. RBC membranes fused with gold NPs showed stability for over 3 days in PBS and 
100% serum along with an antibody binding assay showing the intact CD47 RBC cell membrane proteins 
on the gold-coated NPs[13]. In the same study, FITC-thiol conjugation to gold NPs was studied for the 
protection ability of membrane coating; there was no decrease in fluorescence activity over a period of 72 h, 
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confirming the shielding effect and overall stability of cell membrane coating onto NPs[13]. Similarly, Tian et al.[14] 
prepared stem cell membrane-coated paclitaxel-loaded PLGA NPS for cancer therapies and tested NPs 
for stability by monitoring change in size in FBS and drug release in physiological conditions; stable size 
over 72 h and low drug release compared to uncoated PLGA NPs were observed[14]. This stability shows 
the potential of cell membrane-coated NPs for formulating stable drug delivery systems. Furthermore, 
contemporary techniques such as microfluidic electroporation of NPs in combination with cell membrane-
derived vesicles can help achieve higher stability. For such implementation, proteins from cell membranes 
did not get adsorbed by the NPs during the microfluidic electroporation-based coating and had improved 
therapeutic efficacy than did conventional extrusion-based cell membrane coating, which reveals the 
potential of robust techniques for biomimicry-based drug carriers[59]. In terms of membranes’ elastic and/
or mechanic integrity, ektacytometry might be the right tool to measure membrane elongation under fluid 
shear stress[62]. The lipid composition of the cell source is also a determining factor for overall stability 
of CMCNPs. In one study done to compare the lipidomic profiles in cells, primary cell cultures showed 
higher unsaturated phospholipids in comparison with other cultured cell lines, and each cell type revealed 
a unique lipidomic profile, which can be employed to assess the stability of cell membranes for further 
improvement in membrane coating dynamics and stability of coated membranes, among which the latter 
is vital for mimicking cellular interaction[60,61]. For this purpose, colorimetric lipid assay, FTIR or X-ray 
scattering are useful tools for the qualitative phospholipid assessment[63,64].

It is important to consider the cellular source and state to avail the cell membrane characteristics. In this 
manner, Evangelopoulos et al.[65] showed the cell source to be a determinant factor for the immunogenicity 
of biomimetic NPs. In their study, multistage cell membrane derived vesicles from different sources 
were analyzed in terms of opsonization and phagocytosis as well as targeting of inflamed tissues. Results 
revealed that cellular coating derived from a syngeneic cell membrane source resulted in higher avoidance 
of uptake by the liver and immune repertoire cells[65]. On the other hand, healthy homotypic cells in their 
growth phase with intrinsic properties of their membrane should be preferred for cell membrane isolation 
and coating of NPs. Homogeneity of the clonal population of cells is vital to interpret the true therapeutic 
efficacy of cell membrane coated NPs. To meet this demand, expression levels or quantification of certain 
surface markers (ligands or receptors) becomes a pivot point. Cellular state and homogeneity of cell 
membranes can be assessed via solid techniques such as SDS-PAGE, Western Blot, and flow cytometry, 
which might be very useful to serve the abovementioned purposes[66]. This evaluation step of characterizing 
the cells for their biomarkers and other ligands that will be used in targeting, signal transduction and other 
therapeutic approaches will improve translational effects. 

As CMCNPs confer their therapeutic properties via membrane protein interactions with the local 
microenvironment and other cells, the prominent presence of the desired cell membrane proteins needs to 
be maintained in the cell culture. Various chemical signaling and transfection strategies can be employed to 
induce desired protein expression and regulation of cellular states in cultured conditions. On the contrary, 
the long-term cell culture of some specific cell types might adversely affect their desired nature for CMCNP 
applications. For instance, the cell culture condition determines the mesenchymal stem cells’ (MSCs) 
phenotypes, and this makes them heterogeneous between individuals, cell populations and even batches[67]. 
In vitro expansion of MCSs affects their mRNA expression profiles, and surface proteins responsible for 
migration and/or adhesion (i.e., CXCR4, CXCR7, C-met/HGF, etc.) are also affected[68-71]. In the case of 
immune cell membrane coating of NPs, cellular source and state of immune cells are important as they 
undergo various changes with respect to pro- and postinflammatory phases, e.g., M1 and M2 macrophages 
which represent pro- and post-inflammatory conditions with plausible related membrane proteins. Tumor-
associated macrophages (TAMs), for example, are very similar to M2-macrophages phenotypically[72], and 
support cancer cells in the tumor microenvironment[72,73]. Membranes derived from these cells might help 
tumor growth and shadow effects of the chemotherapeutic cargo. Therefore, following the cell source, state 
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and membrane characterization, characterization of membrane-coated NPs via aforementioned solid and 
fundamental techniques becomes a touchstone and can reveal the cell membrane characteristics on NPs[62].

For these reasons, it is getting more attractive to engineer the surface of well-defined cells with desired 
molecules (peptides, proteins, or small molecules) via genetic or non-genetic techniques before harvesting 
cell membranes[74]. In this case, the natural receptor profiles of cell membranes are getting affected, and the 
results of this effect are not fully known so far. For example, highly biotinylated erythrocyte membranes 
are prone to bound C3b proteins and getting phagocytized by macrophages via complement activation. It 
is speculated that biotinylation inactivates the “self-markers (i.e., CD47)” or complement regulators (i.e., 
CD59) on the cell membrane[75-77]. On the other hand, researchers have reported that NP conjugation on the 
cell membranes does not fully affect their natural behaviors. Stephan et al.[59] conducted a comprehensive 
analysis of NP-tethered T cells in terms of cell division, antigen pulse, transmigration, and synapse formation. 
Maleimide-thiol conjugation of NPs on the cell membrane until a certain number of NPs (~100 NPs/cell) 
did not interfere with their physiological tasks [59]. Overall, immunogenicity of the engineered cell 
membranes is highly dependent on the cell source selection, methods used for engineering, and the 
modification degree of the membranes. Therefore, comprehensive qualification and characterization of 
CMCNPs via the abovementioned fundamental and engineering methods are crucial for the translation of 
biomimetic-based drug delivery applications to the clinic.

Although cell membrane-coated nanocarriers have great prospects to deliver cytotoxic drugs at the 
desired location for tumors, there are several limitations and challenges associated with this strategy. 
The cell membrane is comprised of various proteins, some of which are required for targeting specificity 
and evading immune responses while other abundant proteins have other interactions in the host 
environment whose biodistribution, immune responses and toxicity profiles have not yet been elucidated. 
Cell lines required for extracting cell membranes need a high quality control to avoid variation and to 
maintain their homogeneity; for instance, stem cells with heterogeneous populations have been observed 
in a clonal cell population[78]. Cell membrane isolation procedures, however, are not robust and are 
often limited to laboratory settings, which can be a challenge in clinical translation of the CMCNPs. In 
addition, OMVs extracted from bacteria involve a tedious process, and any external stimuli including iron 
depletion, oxidative stress, temperature stress and genetic manipulations during the process can give rise 
to undesirable changes in OMV composition[79]. Therefore, quality control of protocols that could retain 
functional and structural aspects of cell membranes or OMV during membrane isolation techniques needs 
to be established. In the case of a whole-cell delivery system, it is still challenging for carrier cells to have 
site-specific drug releases based on many factors including their survival, drug retention of NPs loaded in 
cells, and other pharmacodynamic effects from the drug release of NPs on their journey to reach the target. 
The potential side effects of these endogenous carriers are still under investigation. On the other hand, 
some of the functionalized NPs have already entered clinical trials, and the cell membrane-coated NPs have 
shown promising results in preclinical studies with a potential for testing in clinical trials, indicating the 
urgency for the development of regulatory and safety guidelines for a smooth clinical translation[80]. 

CELL TYPES USED IN CELL- AND CELL MEMBRANE-BASED DRUG DELIVERY APPLICATIONS 

FOR CANCER THERAPY AND IMMUNOMODULATION
It is evident from the recent CMCNP applications that cell membrane coating is highly investigated for 
biomimetic approaches in drug delivery[81-83]. Unique drug delivery features such as the ability to reach 
solid tumors and homing to inflamed tissues can be achieved through CMCNPs via coating of NPs with 
membranes of different cell types including RBCs, platelets, lymphocytes, cancer cells, and others. Among 
those considered, having a prolonged blood circulation time, a specific type of tumor accumulation through 
adhesion molecules, and other specific tumor microenvironment interactions are highly desired. One of the 



Page 890                                          Yaman et al . Cancer Drug Resist  2020;3:879-911  I  http://dx.doi.org/10.20517/cdr.2020.55

major advantages of using CMCNPs is also to overcome drug resistance incurred by tumor heterogeneity. 
A tumor-homing cell membrane employed in CMCNPs can help NPs navigate across the interstitial fluid 
pressure, avoid TAM uptake, target different cancer populations, and achieve higher drug concentrations 
in those targeted cells, thereby circumventing drug resistance seen with low drug bioavailability in 
conventional chemotherapies[84]. The type of cell or cell membrane choice is critical to take advantage 
of site-specific delivery and targeting via camouflaging, and reduction in unfavorable interactions with 
complementary systems in vivo. Cells are used in drug delivery through various approaches including NP-
mediated autocrine signaling for manipulating cellular responses at targeted sites, hitchhiking of NPs on 
cells, cell surface engineering for immunomodulatory responses, and cell membrane coating of NPs for 
multifunctional therapeutics [Figure 3]. Major cell types used for CMCNP-mediated cancer therapies and 
potential immunomodulatory effects are listed in Table 2.

T cells
T cells have a variety of immune functions within the body because of the large amounts of proteins found 
on their membranes. T cell proteins have been found to affect MPS uptake, to be involved with immune 
tolerance, and to target endothelium/tumors[85]. The combination of T cell targeting and permeability 
abilities along with NP modulation makes T cells attractive candidates for cancer therapies. Stephan et al.[100] 
have reported synapse directed delivery of immunomodulator drug NSC-87877 via T cell surface-
conjugated NPs. In this research, NPs attached to T cell membrane proteins facilitated molecular 
interactions regulating the prevention of autoimmunity while boosting immune responses against tumor 
cells. In this study, lipid NPs prepared from maleimide-functionalized liposomes through extrusion 
and conjugated to effector T-cells via incubation were injected into prostate cancer implanted mice. The 
liposome-treated T cells managed a 5.2-fold reduction in tumor volume and gave a survival advantage of 
over 14 days over the mice treated with just T cells. As an alternative approach to NP hitchhiking via T cell 
surface or compartment, our group showed that T cell membrane-coated NPs actively target tumor regions 
via their specific T cell receptors called TCR[15]. In this study, chemotherapeutic drug Trametinib loaded 
PLGA NPs were coated with the membranes of melanoma-specific “anti-gp100/HLA-A2” T-cell receptor 
(TCR) bearing T cells. T cell membrane-coated NPs (T-MNPs) showed high stability and cyto- and hemo-
compatibility. T-MNPs produced a threefold increase in cellular uptake towards the melanoma cell line 
in vitro compared to bare PLGA NPs. The in vitro cancer killing effectiveness of T-MNPs was significantly 
higher compared to other NP groups. An animal study was followed by administering T-MNPs to 
DM-6 tumor-bearing mice. In vivo biodistribution studies demonstrated the targeting capabilities of the 
T-MNPs with more than a twofold increase in tumor retention compared to the uncoated and nonspecific 
membrane-coated groups. Mitchell et al.[12] showed that TRAIL-coated lymphocytes killed cancer cells in 
circulation. Cancer cells and blood cells use a selectin-based adhesion to interact between each other. With 
this knowledge, liposomes with E-selectin adhesion proteins and TNF-related apoptosis-inducing ligand 
(TRAIL) were presented on its surface and conjugated with lymphocytes to provide T cells with the ability 
to adhere and improve cytotoxic effects in circulating colon or prostate tumor cells in the bloodstream[12]. 
Control mice had ~130,000 cancer cells/mL of blood while ES/TRAIL-coated lymphocyte treated mice had 
< 2,000 cancer cells/mL. Further experimentation revealed a decreased number and increased apoptosis 
of COLO 205 cells lodged in mouse lungs after ES/TRAIL liposome treatment. The lymphocytes were 
still functional even after 2.5 h of circulating in the mice displaying the feasibility of these NPs for cancer 
therapy[12].

In addition to T cells, there are other types of lymphocytes that show potential in treating tumors by 
providing effective targeting. For instance, Parodi et al.[58] used lymphocyte properties to investigate the 
particle uptake between host and donor cells and the accumulation of LLVs in melanoma tumors due to 
the intrinsic property of lymphocytes, which can cross biological barriers and accumulate at target tissues. 
They also showed that nanoporous silicon particles can perform similar actions when coated with cell 
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Cell type Disease treated Strategy Ref.
T cells Autoimmunity and cancer Direct delivery of immunomodulatory drugs via T cell surface-conjugated 

nanoparticles
[85]

Prostate cancer Maleimide-functionalized nanoparticles conjugated to effector T cells [86]
Circulating tumor cells TRAIL-coated lymphocytes [12]
Gastric cancer Cytotoxic T lymphocyte membrane-coated nanoparticles combined with 

low-dose irradiation
[46]

Melanoma Nanoporous silicon particles coated with LLV. [58]
Melanoma Melanoma peptide MHC-specific TCR-expressing T cell membrane-coated 

PLGA nanoparticles
[15]

Macrophages Breast cancer Doxorubicin-loaded mesoporous silica nanocapsules camouflaged with 
macrophage cell membranes

[87]

Bacterial infection Mouse macrophage cell membranes and fusing them with PLGA cores [88]
Dendritic cells Melanoma, lung, and colon 

carcinoma
Exosomes derived from dendritic cells [86]

Breast cancer Monocyte cell membrane shell- and doxorubicin-loaded PLGA core [89]
Neutrophils Glioma Neutrophils loaded with paclitaxel carrying liposomes [90]

Circulating tumor cells Coating neutrophil membranes on carfilzomib-loaded PLGA nanoparticles [11]
Red blood cells Lymphoma Red blood cell membrane- and doxorubicin-loaded PLGA nanoparticles [7]

MRSA infection RBC membrane functionalized with pore-forming α-hemolysin fused with 
the surface of PLGA

[91]

Pore-forming toxins Nanosponge made of RBC-coated PLGA [54]
Platelets Melanoma and breast cancer Conjugated anti-programmed-death ligand 1 on the surface of platelets [92]

Breast cancer and prostate 
cancer

Engineered platelets to express membrane-bound TRAIL [93]

Myeloma Bortezomib-loaded nanoparticles covered by alendronate-conjugated 
platelet membranes

[94]

Circulating tumor cells Designed silica nanoparticles coated by TRAIL-conjugated platelet 
membranes

[93]

Stem cells Lung adenocarcinoma and 
ovarian cancer

Engineered human MSCs with paclitaxel-loaded polymeric nanoparticles [95]

Cervical cancer Bone marrow derived mesenchymal stem cell membrane-coated gelatin 
nanogels loaded with doxorubicin

[10]

Glioblastomas Bone marrow derived MSCs loaded with paclitaxel encapsulated PLGA 
nanoparticles

[96]

Cancer cells Breast cancer Doxorubicin-loaded gold nanocages (AuNs) as an inner core and 4T1 
cancer cell membranes (CMVs) as the outer shell

[97]

Melanoma CpG-loaded PLGA with B16-F10 mouse melanoma cell membranes [23]
Melanoma MPLA modified mouse melanoma cancer cell membranes coated on PLGA 

nanoparticles
[45]

Bacteria Carcinoma and melanoma Lipopolysaccharide-inactivated E. coli outer membranes only [98]
HER-2 overexpressing 
tumors

Anti-HER-2 expressing E. coli membranes delivering small interfering RNA 
via targeting kinesin spindle protein

[99]

Table 2. Major cell types and their applications in cancer and immunomodulatory therapies

TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; LLV: leukolike vector; MHC: major histocompatibility complex; TCR: T cell 
receptor; PLGA: poly(lactic-co-glycolic acid); MRSA: methicillin-resistant Staphylococcus aureus ; RBC: red blood cell; MSC: mesenchymal 
stem cell; CpG: CpG oligodeoxynucleotides; MPLA: monophosphoryl lipid A; HER-2: human epidermal growth factor receptor 2

membranes from human THP-1 and murine J774 cells. A decrease in uptake for the LLV coating was 
observed when the donor membrane matched the host membrane ranging from ~50% to ~75%. Murine 
J774 LLVs had delayed accumulation in the liver for up to 40 minutes in vivo and also bound to the outside 
of murine B16 melanoma tumors in a non-destructive manner[58]. These studies show the potential of T 
cells in CMCNPs for their targeting, cytotoxicity, and immunogenicity towards tumors.

Macrophages and dendritic cells 
Macrophages are a type of immune cell that secrete cytokines and chemokines to home in monocytes 
to deal with damaged tissues and/or infections. Macrophages are known to cross biological barriers and 
are present in tumor masses, making them potential drug delivery carriers. In tumor sites, macrophages 
can release chemo-attractants to attract more macrophages, enhancing immune responses. Furthermore, 
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macrophages can operate under hypoxic conditions, which is commonly seen in tumors. Xie et al.[101] 
developed a drug delivery and theragnostic system using macrophages as NP carriers. Biodegradable 
photoluminescent poly (lactic acid) (BPLP-PLA) were loaded with anti-BRAF V600E mutant melanoma 
specific drug (PLX4032) and conjugated with muramyl tripeptide (MTP) (MTP-BPLP-PLA-PLX4032), 
which were internalized in THP-1 macrophage cells. THP-1 cells and MTP-BPLP-PLA-PLX4032 NP-
loaded THP-1 cells were co-cultured with 1205Lu cells and WM35 cells as models for high and low 
metastatic melanoma cells, respectively. Confocal microscopy and quantitative flow cytometry analysis 
revealed that the NP-loaded THP-1 were able to bind to 1205Lu cells under static conditions and release 
the NPs via exocytosis after binding to the cancer cells. Under dynamic shear-flow conditions, NP-loaded 
THP-1 cells bound to WM35 cells and over 90% of 1205Lu cells as confirmed by flow cytometry. Another 
in vitro study was conducted to show the ability for the drug delivery system to effectively kill melanoma 
cells. A minimum of 5,000 cells of NP-loaded THP-1 cells significantly decreased the viability of 1205Lu 
and WM35 cells compared to normal THP-1 cells. 

Combined with drug-loaded NPs, macrophages and their membranes can serve as a potent drug delivery 
vehicle. For instance, Xuan et al.[87] prepared doxorubicin (DOX)-loaded mesoporous silica nanocapsules 
(MSNCs) camouflaged with macrophage cell membrane (MPCM) for treatment of tumors. More than 30% 
of MPCM-camouflaged MSNCs were phagocytized by macrophages, and MPCM-camouflaged MSNCs 
remained in circulation after 24 h and 48 h of treatment with 36% and 32% retention, respectively, whereas 
all bare MSNCs were cleared after 24 h. An in vitro study showed that 4T1 mouse breast cancer cells 
efficiently take up DOX-loaded MPCM-camouflaged MSNCs. An animal study was followed by injecting 
DOX-loaded MPCM-camouflaged MSNCs and regular MSNCs into 4T1 tumor-bearing mice. After 72 h, 
MSNCs aggregated largely in the spleen and liver, whereas some accumulation of MPCM-camouflaged 
MSNCs were at the same sites. However, DOX fluorescence could be detected in the tumor site because 
of the accumulation of MPCM-camouflaged MSNCs at the tumor site. Tumors treated with DOX-
loaded MPCM-camouflaged MSNCs had their volumes decreased and, in some cases, regressed almost 
completely[87].

Similarly, Thamphiwatana et al.[88] prepared macrophage mimicking NPs (MM-NPs) by using J774 mouse 
macrophage cell membranes and fusing them with the PLGA core for treatment of E. coli infections. The 
MM-NPs contained LPS-binding proteins such as CD14 and TLR4 along with cytokine-binding receptors 
CD126, CD130, CD120a, and CD120b. The LPS removal capacity of the MM-NPs was measured using 
assays, which indicated 62.5 ng of LPS were removed per milligram of MM-NPs. The MM-NPs were then 
measured for their ability to sequester proinflammatory cytokines in a mixture, where they removed 105.1 pg 
of IL-6, 4.3 pg of TNF, and 6.5 pg of IFN-γ, corresponding to 52.5%, 11.6%, and 14.8%, respectively. Further 
study revealed 60% of mice survived lethal LPS levels. A lethal dose of E. coli was administered to mice 
followed by MM-NPs treatment, and 4 out of 10 mice survived up to 60 h. The number of bacteria in key 
organs and proinflammatory cytokines were significantly lower compared to the control treatment[88]. 

Dendritic cells (DC), on the other hand, have the ability to express ligands capable of activating various 
immune cells such as natural killer (NK) cells responsible for killing tumor cells. DC are often the target 
for antigen-presenting vaccines, but these cells can also be repurposed for immunomodulation. Dendritic 
cells can process a variety of antigens, and as shown by Munich et al.[86], exosomes derived from TNF, 
FasL, or TRAIL expressing DC directly kill tumor cells and activate NK cells via TNF superfamily ligands 
(TNFSFLs). TNFSFL-expressing mature DC exosomes (mDCex) and TNFSFL-expressing immature DCex 
(iDCex) expressed approximately 300 pg of TNF and < 1 pg of FasL per 100 μg of intact iDCex, and 800 
pg of TNF and 2 pg of FasL per 100 μg of intact mDCex on their respective membrane surfaces. mDCex 
exposed to melanoma cells through incubation induced significant cell death at 24 h and further increased 
at 48 h and 72 h. mDCex were also capable of killing other cancer cell types such as lung carcinoma 
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KLN205 cells and colon carcinoma MC38 cells. NK cell exposure to mDCex and iDCex showed greater 
NK cell activation when exposed to mDCex than iDCex[86]. In another study, Krishnamurthy et al.[89] 
synthesized nanoghosts by using a monocyte cell membrane shell and DOX-loaded PLGA core. Using flow 
cytometry, the uptake of the DOX-loaded nanoghosts by MCF-7 breast cancer cells was higher than that of 
PLGA NPs. The cytotoxicity of the nanoghosts was evaluated on MCF-7 cells. Blank nanoghosts and plain 
PLGA NPs showed no cytotoxic effect after a 72-h treatment period. An MTS assay was then conducted 
to measure the killing effectiveness between free DOX, DOX-loaded nanoghosts, and DOX-loaded PLGA 
NPs. The IC50 values for DOX-nanoghosts and DOX-PLGA were 4 μmol/L and 12 μmol/L, respectively. 
Macrophages, DC, and monocytes together considered as the mononuclear phagocyte system (MPC) have 
overlapping characteristics and robust immune responses towards the tumor niche, which can be employed 
in the development of CMCNPs for cancer therapies[102].

Neutrophils
Neutrophils like their other white blood cell counterparts, macrophages and T-cells, play an active role 
in the body’s immune system and have similar advantages for therapeutic purposes. Neutrophils set 
themselves apart from the other cell types for having the capability to travel to places in the body that 
other cells cannot access, such as the brain[103]. For example, neutrophils have the capability to penetrate 
inflamed brain tumors as reported by Xue et al.[90], who used neutrophil-mediated anticancer drug 
delivery for suppression of malignant glioma. In this research, neutrophils carrying paclitaxel (PTX)-
loaded liposomes suppressed glioma in mice. The inflammation signals facilitated neutrophils to release 
PTX cationic liposomes (PTX-CL) into the tumor cell. PTX-CL and neutrophils were incubated together 
so the liposomes could be taken up by the neutrophils. The PTX-CL/neutrophils (PTX-CL/NEs) had a 
loading capacity of 18 μg PTX/106 cells. PTX-CL/NE showed delayed accumulation in the liver compared 
to Taxol and PTX-CL. There was high accumulation of PTX in the spleen due to the natural migratory 
patterns of neutrophils. PTX-CL/NE brain-targeting efficiency was determined to be greater than one 
showing the efficient targeting abilities of PTX-CL/NEs. PTX-CL/NE treatment ensured a 50% survival 
rate of up to 61 days in treated mice compared to Taxol and PTX-CL, which showed 29- and 38-days 
survival, respectfully. About 25% of mice treated with PTX-CL/NEs survived more than 4 months[90]. In 
another study, Kang et al.[11] developed a nanosized neutrophil-mimicking drug delivery system (NM-NP) 
by coating neutrophil membranes onto carfilzomib-loaded PLGA NPs to neutralize circulating tumor cells 
(CTCs) and to inhibit formation of the metastatic niche when NM-NPs loaded with carfilzomib (NM-
NP-CFZ) and CTCs were incubated together. In vivo studies of mice implanted with 4T1 lung cancer cells 
followed by NM-NPs, PLGA-PEG-NPs and bare NPs showed that NM-NP accumulation in the metastatic 
foci increased 2.12- and 3.02-fold compared to bare NPs and PLGA-PEG-NPs, respectively, after 24 h of 
intravenous administration. NM-NPs showed a strong attraction to the liver and spleen. NM-NP-CFZ were 
administered to mice four times on 0, 7, 14, and 21 days. Early metastatic nodule formation was found to 
be significantly low. The same group showed that NM-NP-CFZ reduced 4T1 metastasis foci by 87.2% in 
animal studies[11].

Red blood cells
Red blood cells (RBCs) are the major cells in circulation providing longer circulation and eventually higher 
accumulation as well as targeting of tumors[104]. Furthermore, RBCs can be type-matched to enhance 
biocompatibility[104]. Their availability and lack of intracellular organelles makes their membranes easy to 
be collected for coating onto drug-loaded NPs. RBC membranes with longer circulation characteristics 
combined with drug-releasing NPs can lead to prolonged drug release. Luk et al.[7] combined RBC 
membranes and DOX-loaded PLGA NPs [RBC-NP(DOX)] as an anti-tumor drug delivery system. RBC-
NP(DOX) killing effectiveness was tested on EL4 mouse lymphoma cells with an in vitro cytotoxicity assay 
with a 72-h incubation period. While cancer cell killing tests revealed free DOX working more effectively 
with an IC50 of 1.4 ng/mL compared to the RBC-NP(DOX) with an IC50 of 5.6 ng/mL, the latter formulation 
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had better uptake by EL4 cells compared to free DOX. Mice were implanted with lymphoma T cells (EL4 
cells), which were allowed to grow for 9 days and then treated with RBC-NP(DOX). The formulation-
controlled tumor growth almost doubled the median survival from 24 days to 47 days[7].

Besides cancer therapy, RBC membrane coating has also been used in vaccines and toxins. Toxoid vaccines 
are developed from the inactivated toxins, but the processes used for preparation of these vaccines are 
difficult and denaturing for the toxin protein structure, leading to altered antigen presentation, and 
compromising immunogenicity. NP-based toxoids (nanotoxoids) can circumvent these preparation 
challenges by detaining the toxins inside the cell membrane and delivering them safely in vivo. Wang et al.[91] 
developed a NP-based anti-virulence vaccine to target methicillin-resistant staphylococcus aureus 
(MRSA) skin infections. RBC membranes were fused to the surface of PLGA where the RBC membrane 
coating was the functional part for pore-forming α-hemolysin (Hla) (heptameric cell membrane pore-
forming factor) insertion. In this study, nanotoxoid (Hla) injections in mice showed induction of Hla-
corresponding antibodies and germinal center formation characteristic in draining lymph nodes. There was 
almost no drop in anti-Hla titers over a five-month period. When nanotoxoid (Hla)-vaccinated mice were 
challenged with MRSA bacteria, there was clear attenuation of lesion formation with a 5-fold decrease in 
dermonecrotic area and inhibition of Hla-mediated skin damage, showing high extravascular neutralization 
activity of the titers produced from the vaccine induction[91]. Similarly, Hu et al.[54] developed another 
biomimetic approach where RBC-based nanosponges were shown to absorb pore-forming toxins (PFTs), 
which are the most common toxic proteins generated by pathogenic bacterial infection.

RBCs also contain characteristic membrane proteins that protect them from macrophages. Coating gold 
NPs (AuNPs) with RBC membranes via extrusion showed effective shielding of AuNPs from phagocytic 
uptake as shown by Gao et al.[13] who incubated RBC-AuNPs with J774 murine macrophage cells. Cell uptake 
of RBC-AuNPs was measured after 30 minutes. RBC-AuNPs had an uptake of 3.2 ng/1,000 macrophage cells. 
Uncoated AuNPs had an uptake of 13.5 ng/1,000 macrophage cells. RBCs coexist with immune cells 
in circulation where they might possess abilities in maintaining homeostasis in the circulating cells. In 
that regard, Danesh et al.[105] reported the use of RBC exosomes which triggered monocytes to release 
proinflammatory cytokines for boosting lymphocyte responses in vitro. Mixing these cells with extracellular 
vesicles (EVs) results in the secretion of proinflammatory cytokines and increased survival of peripheral 
blood mononuclear cells (PBMCs). EVs also increased CD4+ and CD8+ T cell proliferation. PBMCs from 
0, 21, and 42 days were cultured with EVs for 24 h, and on day 0, EVs induced significant upregulation of 
various cytokines, especially IL-1β, as compared to those incubated for 21 days and 42 days. EVs incubated 
with both monocytes and T cells interacted with monocytes instead of T cells, and this interaction induced 
the production of TNF-α via exosomes[105]. Overall, RBCs possess intrinsic properties of longer circulation 
times, phagocytosis avoidance, and stimulation of immune cells, which may be more advantageous, while 
developing cancer and immunomodulation therapies.

Platelets
Platelets are small circulating cells with a lifespan of around 8-10 days. Their primary role is to maintain 
homeostasis in vascular injury by sealing ruptured vessels and releasing granules that promote angiogenesis 
and recruitment of regenerative cells[106]. Platelets also play a role in tumor growth and metastasis through 
interacting with tumor cells and the tumor microenvironment where they can adhere to cancer cells 
through GPIb-IX-V, GPIIb-IIIa, P-selectin, and tumor cell integrin αvβ3[107]. Researchers have incorporated 
proteins on platelets and used these engineered platelet cell membranes for coating NPs. For instance, 
Wang et al.[92] conjugated anti-programmed-death ligand 1 (aPD-L1) on the surface of platelets to reduce 
post-surgical tumor recurrence and metastasis. Upon activation of the platelets, platelet microparticles 
are generated with aPD-L1-conjugated membranes. In vivo studies were conducted on mice bearing 
primary melanomas (B16-F10) or triple-negative breast carcinomas (4T1). The study revealed that 
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B16F10-inoculated mice treated with platelet-PD-L1 had the smallest relapsed-tumor volumes compared 
to free aPD-L1, platelets, and PBS. In their B16F10 metastatic study, platelet-PD-L1 reduced both local 
tumor recurrence and lung metastasis, whereas free PD-L1 only reduced metastatic cancer. Another 
metastatic study was done with 4T1 carcinomas, where the platelet-aPD-L1 group showed few metastatic 
foci compared to 16 foci for the free aPD-L1 group and ~30 foci for the platelet and PBS group[92]. Taken 
together, these results show the potential of platelet cell membrane engineering in developing CMCNPs.

Due to a lack of a nucleus, platelets cannot be directly engineered. Instead, researchers engineer 
megakaryocytes, which then release engineered platelets. Li et al.[93] utilized that strategy to engineer 
platelets to express membrane-bound TRAIL to induce apoptosis in tumor cells. The TRAIL-expressing 
platelet-like particles (TRAIL-PLPs) exhibited cytotoxicity against the cancer cells, reducing cell viability 
to approximately 20% when using a TRAIL-PLP concentration of 10 μg/mL. A TRAIL-PLP concentration 
of 1 μg/mL reduced cell viability to 50% and 30% for MDA-MB-231 and PC3 cell lines, respectively. In vivo 
studies revealed that TRAIL-expressing platelets reduced metastases in the liver compared to empty vector 
transduced platelets[93].

Researchers have also used platelet membranes coupled to NPs to enhance NP circulation time because of 
the abundance of platelets found in the circulation. Hu et al.[94] developed a platelet membrane-coated NP 
platform (PM-NP) to target and inhibit myeloma cells. These PM-NPs were designed to deliver bortezomib 
(bort) and use alendronate (Ald) as the targeting ligand. For the in vitro study, they treated myeloma cell 
line NCI-H929 with PM-NP-bort and Ald-PM-NP-bort. PM-NP-bort and Ald-PM-NP-bort exhibited late 
apoptosis rates of 38.6% and 37.4%, respectively[94]. Also, PM-NP-bort and Ald-PM-NP-bort had IC 50 values 
of 13.6 ng/mL and 13.1 ng/mL respectively, but was lower than NP-bort IC50 of 23.2 ng/mL[94]. Li et al.[108] 
designed silica NPs coated with TRAIL-conjugated platelet membranes for the treatment of CTCs in vitro. 
The authors showed that TRAIL-PDMV-Si particles reduced MDA-MB-231 and PC3 cell viability to 
approximately 5% when the TRAIL concentration was 1 μg/mL. The in vivo study indicated ~40-fold 
reduction of lung metastases compared to TBS and PMDV-Si particle control groups. Furthermore, TRAIL-
PDMV-Si particles reduced lung metastases by ~8 fold compared to soluble TRAIL[93]. The strengths of 
platelets as a drug delivery platform are their long circulation times, which allow for better targeting of 
cancers found in the circulation, their release of granules that can enhance immune responses, and ease of 
availability in the body.

Stem cells
MSCs are used as drug delivery systems for their innate targeting ability towards inflammation and tumor-
tropic properties. MSCs can penetrate solid tumors and interact with target cells. Additionally, MSCs can 
be genetically modified to express therapeutic genes and their expression could be enhanced with NPs. 
Their membranes retain most of their functionality and therefore can be employed for membrane-based 
drug delivery systems[109]. For instance, Sadhukha et al.[95] engineered mesenchymal stem cells as tumor-
targeted therapeutic carriers where they treated human MSCs with paclitaxel-loaded polymeric NPs. Nano-
engineered MSCs were cytotoxic towards A549 lung adenocarcinoma cells and MA148 ovarian cancer 
cells in vitro. This was determined via MTS analysis that showed an IC50 of 6.71 nmol/L and 4.52 nmol/L in 
A549 cells and MA148 cells, respectively. Animals studies using infrared fluorescence revealed the nano-
engineered MSCs initially travelled to the lung tumors but later distributed to the liver and spleen [95]. In 
addition, Gao et al.[10] developed bone marrow derived mesenchymal stem cell membrane-coated gelatin 
nanogels (SCMGs) as a tumor-targeting drug delivery system. These gelatin nanogels were loaded with 
the anticancer drug DOX. SCMGs-DOX were incubated with HeLa human cancer cells for 24 h. An MTT 
assay showed an IC50 of 0.63 µg mL-1 and 2.55 µg mL-1 for SCMGs-DOX and gelatin-DOX, respectively. 
HeLa cells uptake of SCMGs-DOX was almost 100% after 0.5 and 1 h. SCMGs-DOX injected into mice 
bearing HeLa tumor showed delayed tumor growth for 15 days. The average tumor weight for the SCMGs-
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DOX treated mice was smaller compared to the four control groups: PBS, gelatin, free-DOX, and gelatin-
DOX[10].

MSC membrane-coated NPs also show improved targeting in brain tumors and survival in mice with 
no cognitive side-effects showing the capabilities of MSC coated NPs for delivering drugs across the 
Blood Brain Barrier (BBB). For example, Wang et al.[96] used bone marrow-derived MSCs loaded with 
paclitaxel (PTX)-encapsulated PLGA NPs for glioblastoma therapy in rats. The MSC NPs were injected 
into contralateral brain hemispheres. MSC NPs (1 pg drug/cell) decreased C6 glioma cell survival by 40%-
50% compared to 100% C6 cell survival demonstrated by untreated MCS. Two days after injecting the right 
brain hemisphere with Cm-Dil-stained MSC NPs, about 44.4% ± 5.4% of drug-loaded MSCs migrated 
towards gliomas with no abnormal consciousness or motor responses. In addition, the median survival 
time for the tumor-bearing mice was 35.5, 24.5, 22.0, 13.5, and 14.5 days for MSC NPs, MSC Ptx, Ptx-PLGA 
NPs, MSCs, and saline, respectively, with the MSC-NP group exhibiting the most significant reduction in 
glioma areas[96]. Stem cells with their ability to differentiate and produce a vast array of bioactive molecules 
including cytokines, chemokines, and other growth factors may impart immunomodulatory responses 
in tumor niches imparting therapeutic effects. Autocrine signaling and paracrine signaling pathways in 
stem cells towards achieving therapeutic effects on inhibiting tumors can be accomplished by tagging stem 
cells with signaling molecule-loaded NPs[110]. Also, stem cell membranes have efficient abilities to home 
to inflammation sites and tumor lesions, making them ideal candidates for targeting approaches in the 
development of CMCNPs.

Cancer cells 
Cancer cells as therapeutic carriers are unique candidates for CMCNPs as they can be easily cultured to 
harvest higher yields of cell membranes. The cancer cells target other cancer cells because of their high 
affinity within tumor interactions and they can escape the immune system for longer circulation in the 
bloodstream. Cancer cell membrane-coated NPs (CCMNPs) can deliver tumor-associated antigens to 
antigen-presenting cells and can be used in immunomodulatory, anticancer drug, or vaccine delivery 
platforms[23,45,55,97]. MDA-MB-435 cell-based CCMNPs are an example of CCMNPs for cancer therapy, 
which were prepared using human cancer cell line membranes with homotypic aggregation properties 
and coated onto PLGA with fluorescent dye loaded in the core to assess their therapeutic properties in 
cancer[55]. Results showed affinity of CCMNPs towards cancer cells in attribution to their cell adhesion 
molecules, which aid in homotypic binding. Sun et al.[97] developed a drug delivery system using DOX-
loaded gold nanocages (AuNs) as an inner core and 4T1 cancer cell membrane (CMVs) coating as the 
outer core. This type of drug delivery system (CDAuNs) utilizes the homotypic targeting of the cancer cell 
membranes and the hyperthermia-responsive ability of the AuNPs for thermal-triggered drug release. The 
DOX loading capacity and encapsulation efficiency were 5.5% ± 0.2% and 97.3% ± 0.4%, respectively. In 
in vitro studies, CDAuNs released DOX under hyperthermia and targeted 4T1 cancer cells via cell 
membrane interactions. An in vivo biodistribution study revealed that CDAuNs with or without NIR 
irradiation had threefold lower DOX accumulation in heart tissue compared to free DOX. Furthermore, 
CDAuNs reduced tumor volumes and metastatic nodules by 98.9% and 98.5%, respectively, using a 4T1 
breast tumor model[97]. CDAuNs show the ability to combine both biological and synthetic materials for 
multifunctional cancer therapeutics.

Towards developing cancer vaccines, cancer cell membrane-based antigen presentation can yield a 
prominent immune response against tumors. Taking advantage of the antigen-presenting ability of cancer 
cell membranes, Kroll et al.[23] developed an anticancer vaccine by coating CpG ODN-loaded PLGA 
with B16-F10 mouse melanoma cell membranes (CpG-CCNPs)[23]. CpG-CCNPs were successful in 
stimulating bone marrow-derived DC to secret interleukin (IL)-6 and IL-12 more than free CpG ODN, 
and CpG-CCNPs managed to induce dendritic cell maturation after in vivo administration. A high T-cell 
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proliferation was observed in mice on CpG-CCNP treatment, with infiltrating T cells generating multiple 
tumor antigen specificities such as enhanced production of IFN-γ and IL-2. The vaccine prevented tumor 
occurrence for 86% of mice after 150 days of administration[23]. In another study, Fang et al.[45] reported 
that cancer cell membrane-coated NPs (CCMNPs) can be used as an anticancer vaccine and a drug 
carrier. MPLA modified mouse melanoma cancer cell membranes were extruded with drug loaded PLGA 
NPs. These CCMNPs have a dual functionality of both tumor-antigen presentation for immunotherapy 
and homotypic targeting of cancer cells to deliver the drug payload. Incubation of MPLA incorporated 
CCMNPs with DC was shown to upregulate maturation markers such as CD40, CD80, and CD86 in the 
DC. Co-culture of MPLA-CCMNPs pulsed DC and splenocytes with gp100 epitope showed T-lymphocyte 
crowding around DC, whose activation was later quantified by IFN-γ, confirming antigen-specific response 
elicited by MPLA-CCMNPs[45]. Cancer cell membranes have various antigen components, which can be 
efficiently presented to DC via CCMNPs to elicit desired immune responses, and adhesion molecules on 
cancer cell membranes can be highly advantageous in homotypic targeting of drug-loaded NPs to cancer 
tissues.

Bacteria
Bacterial outer membrane vesicles (OMVs) have been used as vaccine platforms for decades due to their 
ability to carry surface antigens, to be readily phagocytosed by cells, and to stimulate innate immunity 
and promote adaptive immune responses. In addition, bacterial OMVs have recently been investigated as 
therapeutic delivery systems just as OMVs and/or in combination with NPs. Bacterial OMVs are attractive 
for their high uniform yield. Compared to other mammalian cells and their membranes, OMVs carrying 
drug-loaded NPs have two potential positive therapeutic effects; immunostimulant and payload delivery. 
Bacterial membranes facilitate immunogenic antigens and pathogen associated-molecular patterns 
(PAMPs), which help to stimulate immune responses and associated pathways[111-113]. Gao et al.[114] have used 
an Escherichia coli (E. coli) bacteria pathogen model to study bacterial membrane-coated NPs. Here, they 
collected bacterial membranes and fused them to the surface of AuNPs (gold nanoparticles) by chemical 
interactions. Injection of these bacterial membrane-coated AuNPs showed boosted activation of CD11c+ 
DC in lymph nodes with upregulation of costimulatory molecules (CD40, CD80, and CD86) as well as 
elicited B cell responses (increased IgG levels) and T cell responses (increased levels of IFN-γ and IL-12 
on vaccination with BM-AuNPs)[114]. Similarly, Salmonella enterica OMV-expressing pneumococcal PspA 
were employed to probe antibody responses, and mice immunized with PspA engineered OMVs triggered 
immune responses in contrast with no responses coming from only OMVs or only PspA groups[115].

Bacterial outer membranes have also been shown to suppress tumors such as murine colon adenocarcinoma 
tumors, which may explain the immunostimulatory features of bacterial membranes. In a related study, 
mice were transplanted with the cancer cells and treated with a genetically engineered E. coli outer 
membrane, with inactivated lipopolysaccharide (LPS)[98]. Naturally, LPS binds to TLR4 receptors, which 
in turn produces the cytokine IL-8, but the impaired LPS does not interact with TLR4 receptors[98]. The 
modified E. coli OMVs showed decent prevention of tumor growth for murine carcinoma and B16BL6 
melanoma cells in comparison to functionalized NPs prepared using a bottom-up approach[98]. In similar 
application of OMVs by Gujrati et al.[51], E. coli was engineered to express human anti-Her-2 protein 
with reduced endotoxicity toward human cells and with an ability to kill cancer cells by delivering small 
interfering RNA (siRNA) via targeting kinesin spindle protein (KSP). These OMVs had an affinity towards 
HER-2-overexpressing tumors, which resulted in greater tumor inhibition by 66% compared to the 
control group mice. Modified OMVs did not show induction of a severe immune response or prolonged 
inflammatory responses and were safe at higher doses[51]. Fantappiè et al.[99] engineered E. coli OMVs to 
carry heterologous antigens: SpyCEP, streptolysin O, Spy0269, SAM_1372, and R-TEM b-lac. These antigens 
were chosen for their ability to induce immune responses, measurable functional activities, and belonging 
to different compartments of the cell. The recombined OMVs were capable of inducing antibody responses 
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especially from those immunized with Slo-OMVs and SpyCEP-OMVs with > 80% survival rates in mice[99]. 
Bacterial cell membranes possess various characteristics including easy production and manipulation via 
molecular biology techniques, affinity to hypoxic areas and other intrinsic tumor suppressing abilities, 
which can aid in the development of safer vaccines and exhibit immunomodulatory effects in vivo when 
combined with conventional NP drug delivery systems. 

CELLULAR COMPONENTS ASSOCIATED WITH CELL- AND CELL MEMBRANE-BASED 

PAYLOAD DELIVERY
Cell membrane components for active payload targeting and delivery
CD47
CD47 (cluster of differentiation 47) is also known as an integrin-associated protein, which is ubiquitously 
expressed in the transmembrane of human cells and is part of the immunoglobulin family with 60%-
70% similarity among mice, rats, and bovine CD47. CD47 has a molecular weight of 50 kDa and is 
composed of a 109-amino acid long membrane receptor with an extracellular N-terminal IgV domain, 
five transmembrane domains and a short C-terminal intracellular tail, and it interacts in cis and trans 
with integrins and signal-regulatory protein alpha (SIRPα)[116]. The immune system recognizes invaders 
as foreign because they express determinants that are absent on host cells or because they lack “markers 
of self ” that are normally present. CD47 (integrin-associated protein) functions are shown as a marker of 
self on murine RBCs. CD47 lacking RBCs were rapidly cleared from the bloodstream by splenic red pulp 
macrophages. CD47 receptor presence on RBCs prevented this elimination by binding to the inhibitory 
SIRPα where it induces phosphorylation, leading to the activation of protein phosphatase, which in turn 
inhibits the phagocytic synapses and eventually blocks phagocytosis[117]. Macrophages may use several 
nonspecific activating receptors and rely on the presence or absence of CD47 to distinguish themselves 
from foreign substances. Using the CD47 receptor to functionalize the NPs via cell membrane engineering 
or surface coating can help in longer circulation time and eventually better therapeutic outcomes in 
nanomedicine approaches. CD47 expressing cell membranes such as RBCs are co-extruded/coated along 
with other cell membranes to prepare cell membrane-coated NPs, which can avoid phagocytic elimination 
by macrophages and increase circulation time for prolonged drug release[117].

GPIbα
GPIbα is a platelet membrane receptor and part of the glycoprotein family, and it mainly functions by 
facilitating adhesion onto von Willebrand factor (vWF) during vessel injury in the sub endothelium; this 
interaction between GPIbα and vWF is important for primary hemostasis and thrombus formation[118]. 
GPIbα forms a glycoprotein complex called GPIb-IX-V located on the surface of platelets composed of 
four leucine-rich glycoproteins including 135 kDa GPIbalpha with 626 amino acid length[119]. Blocking of 
this protein resulted in reduction of atherosclerosis in mice, which reveals its potential to be developed 
as a therapeutic approach for targeting this protein using anti-GPIbalpha-rich platelet membrane-coated 
NPs[120]. GPIbα was seen to be the prime mediator in non-alcoholic steatohepatitis, which progresses to 
hepatocellular carcinoma and treatment modalities involving antiplatelet therapies. Platelet cell membrane-
coated NPs containing GPIbα or genetically overexpressed GPIbα can be employed for targeting platelet-
derived cancer and tumor microenvironment responsive drug delivery for hepatocellular carcinoma[120,121].

SNARE
soluble N-ethylmalemide-sensitive factor attachment protein receptors (SNARE) plays a major role in 
vesicle-mediated transport events. They are classified into v-SNAREs and t-SNARES, which help with the 
vesicle and target compartment, respectively[122]. V-SNARE has a coiled-coil homology domain with 60 
amino acid length[123,124]. Various SNARE proteins, together, act to facilitate exocytosis and membrane fusion 
in cells, and SNAREs are also involved in the neurosecretion and orchestration of communicational aspects 
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of neuronal and sensory cell synapses[125]. Membrane fusion is essential in delivery of intracellular proteins 
and improves efficiency of drug delivery to cells by aiding endosomal escape[126]. SNARE transmembrane 
domain is seen to be highly involved in the fusion-related functions of cell membranes[127]. Due to their 
fusogenic nature, investigating SNARE proteins for their use in functionalizing NPs for endosomal escape 
and improvement of cytosolic delivery is highly beneficial in drug delivery.

Mannose receptor
Mannose receptor (MR) or CD206 is a transmembrane receptor with a size of 175 kDa and a part of 
the mannose receptor superfamily. MR was reported to recognize and internalize specific groups of 
monosaccharides and lysosomal enzymes[128]. Mostly presented in DC, macrophages, and some nonvascular 
endothelial cells, MR plays an important role in the recognition and clearance of numerous endogenous 
antigens[129]. MR-mediated antigen capture is one of the two antigen capture mechanisms of DC[130]. It 
also aids in adaptive immunity by presenting the recognized antigen to the T cells for memory. Though 
the reasons are still unclear, MR was found to be present abundantly in gastric cancer and had a direct 
correlation with the severity of the cancer[17]. MR is also shown to play an immunoregulatory role in 
infectious diseases including those caused by HIV-1 and dengue virus. The virus enters the macrophages 
through the MR recognition of terminal mannose, fucose, or N-acetyl glucosamine moieties presented on 
the viral moieties. An interesting finding shows that MR mediates the retention of virions on the cell surface 
from detaching thereby downregulating the infection[131,132]. Based on the functional aspects associated with 
MR, it may serve as an essential antibody target for modulating immune responses, whether to induce or 
suppress immune responses by blocking its availability for pathogen entry. The potential of this receptor 
in cancer therapy is still unexplored, and the use of MR inhibitors or MR antibody-decorated NPs or cell 
membranes with MR expression coating drug NPs can be used to target gastric cancer or reduce viral titers 
by blocking MR and releasing antiviral drugs in a CMCNP-based approach.

CAR
Lymphocytes express different types of proteins on their membrane surface to detect diseased or inflamed 
tissues[133,134]. In addition, human lymphocytes express high levels of adhesion molecules to reach affected 
or activated tissue[135,136] and are more effective in targeting tumor sites[137,138]. Therefore, the lymphocyte 
membrane on the surface of a drug carrier can increase specific tumor accumulation and target tissue 
interactions via native lymphocyte cell membrane adhesion molecules, which the tumor microenvironment 
also has in increased expression levels of the ligands for those adhesion molecules[40]. Some studies have 
reported improved targeting to tumor; for example, cytotoxic T lymphocyte- coated NPs have been used 
for targeting and treating gastric cancer[46]. Low-dose irradiation upregulated adhesion molecule expression 
in the tumor tissue, facilitating the increase in CD8+ T-cells in the tumor environment along with homing 
and localization of T lymphocyte membrane-encapsulated PLGA NPs. These T lymphocyte membrane-
encapsulated NPs avoid opsonization via highly abundant serum proteins such as CD45 and CD3z and 
vascular extravasation by LFA-1 or CD11a, showing a decrease in overall uptake when compared to bare 
NPs. In addition, other studies reported that T lymphocyte membrane-encapsulated PLGA NPs were able 
to avoid being segregated by lysosomes and retained their lymphocyte coating on the NPs while trapped 
in the endolysosomal compartments[58]. Furthermore, integrating specific targeting moieties on the surface 
of lymphocytes by engineering the cell membrane with CAR is going to ensure its specific targeting to the 
affected tissues such as tumors.

Engineering for CAR-T cells is gaining interest due to their recent success in treating hematological 
malignancies by overcoming cytotoxic effects and improving therapeutic efficiencies in drug-resistant 
tumors; more recent advances in CAR-T engineering are discussed elsewhere by Huang et al.[139]. 
Crittenden et al.[140] reported that tumor-associated carcinoembryonic antigen and CAR-engineered 
Jurkat cells were actively accumulated in vivo on liver cancer cells compared to naive Jurkat cells for cell-
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based viral therapeutic delivery. Studies show that integrating the tumor-specific targeting receptor to 
the surface of lymphocytes is going to increase the targeting of biomimetic drug carriers to the affected 
tissue by boosting the abovementioned advantages of T lymphocyte cell membranes. It is hypothesized 
that the synergistic effect of having specific targeting CARs on the T lymphocyte cell membranes will 
provide additional benefits to drug carriers in terms of more specific targeting. Therefore, the strategy of 
targeting the molecule (CAR, TCR, ScFv and so on) in engineering T lymphocyte cell membrane-coated 
drug delivery is a promising approach for the biomimetic drug delivery field to be explored further. In 
comparison, T cell receptors (TCRs) have site-specific affinity, especially against tumors, which can be 
harnessed along with engineered CARs to coat the nanocarriers to address the inter-and intra-heterogeneity 
of tumors. Recently, a similar approach was reported by Ma et al.[141], where glypican-3 receptor specific to 
hepatocellular carcinoma was expressed on the T cell membrane to generate CAR-T cells, and engineered 
cell membranes were used to coat near-infrared dye (IR-780)-loaded mesoporous silica NPs[141]. CAR-T cell 
membrane-coated particles showed a higher accumulation and tumor reduction in the liver compared to 
only T cell membrane-coated NPs and uncoated plain NPs[141]. This study shows the ability of a CAR-T cell 
membrane as a potential therapeutic approach to treat solid tumors, where CAR-T-cell therapy approaches 
have faced challenges in overcoming barriers such as penetration and surviving an immunosuppressive 
environment in solid tumors. Furthermore, use of CAR-T membrane-coated nanocarriers may open a new 
way for individualized and tumor-specific targeting by the patient’s own ligand- and membrane-coated NP 
delivery.

Fc receptors
Fc receptors have been detected across different hematopoietic cells and are highly involved in antibody-
dependent immune responses, which show Fc receptors as a potential target in the treatment of infectious 
diseases[142]. FcγRs are different types of receptors in the IgG superfamily, and they have a vital functional 
role in the activation of cytotoxic activity of FcγR-positive cells including NK cells, monocytes, macrophages 
and neutrophils via IgG monoclonal antibodies. Antitumor effects of mAbs at CD20 and HER2 are Fc-
dependent as shown in Fc receptor-deficient nude mice[143]. FcγRs are involved in autoimmunity in a way 
where they impart hyper-responsiveness through interactions of FcγRs with circulating immune complexes; 
for instance, in FcγR (FcγRIIa) transgenic mice, Ab treatment inhibited collagen II-induced arthritis by 
binding to human FcγRIIa[144].

For decades, Fc receptors have been investigated in terms of various diseases ranging from malaria to 
autoimmune disorders. Therefore, their physiology and role are well understood in most of the cases today. 
For example, monoclonal antibody therapies targeting activating Fc receptors are one of the promising 
cancer treatment strategies. Another potential application includes acute and chronic inflammation 
therapies. Nevertheless, Fc receptor biology has not been fully explored and utilized enough by researchers 
so far. If we consider Fc receptor biology from the aspect of cell- and cell membrane-based therapies, it 
has a vast potential to have various applications in drug delivery, imaging, and autoimmune regulatory 
treatments. For instance, tumor heterogenicity is a big hurdle for effective drug delivery and treatment 
of cancer. Targeting specific Fc receptor-decorated carriers can be envisioned as a personalized medicine 
by allowing a la carte ligand decoration on the surface of these drug carriers. Autoimmune diseases have 
complex disease initiation and progression; Fc-binding cell membrane receptors can modulate disease 
progression by aiding in the inhibition of excessive antibody and immune complexes in circulation. 
CMCNPs can be developed on the basis of this receptor knowledge to address the hyper-responsiveness 
issues by alleviating side effects of soluble protein-based therapeutics.

Cellular membrane components for cancer therapy and immunomodulation
SCARF-1
scavenger receptor class F (SCARF1) is an 86-kDa type I transmembrane protein that contains a serine- 
and proline-rich cytoplasmic tail, a short transmembrane domain and epidermal growth factor-like 
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domains on the extracellular region[145]. Functions of SCARF-1 are involved in low-density lipoprotein 
(LDL) binding [including acetylated (Ac)- and oxidized (Ox)-LDLs], apoptotic cell recognition in a C1q- 
and phosphatidylserine-dependent manner, and apoptotic cell clearance in vitro and in vivo[145]. Cells 
undergoing apoptosis present phosphatidylserine (PS), which is bound by SCARF-1 activated complement 
factor, C1q, leading to clearance of those apoptotic cells[146]. Impairment in the clearance of apoptotic 
cells leads to autoimmune diseases, e.g., systemic lupus erythematosus (SLE)[145]. Shedding light on the 
SCARF-1 pathway not only reveals its fundamental role in physiology, but also, this new SCARF-1 pathway 
can be used in new research directions for various diseases, including autoimmune disorders. As most of 
the cell surface receptors present SCARF-1, it has the potential to be utilized in cell/cell membrane-based 
applications, such as modulating SLE autoimmunity, delivering payloads to atherosclerotic lesions by 
targeting LDL, and apoptotic cell imaging in vivo via C1q-PS binding features.

TRAIL
TRAIL is a 281-amino acid, type II transmembrane protein that shares the TNF homology domain (THD), 
a conserved sequence of 150 residues, located at the extracellular carboxy terminal end of the molecules 
with other members of the TNF superfamily[147]. TRAIL is expressed in tissues such as the small intestine, 
colon, placenta, and most cells of the hematopoietic tissue[148]. TRAIL interacts with five different receptors: 
TRAIL receptor 1, TRAIL receptor 2, decoy receptor 1, decoy receptor 2, and osteoprotegerin (OPG). 
TRAIL receptor 1 [death receptor 4 (DR4)] and TRAIL receptor 2 [death receptor 5 (DR5)] contain a death 
domain, which upon TRAIL binding, causes apoptosis via various caspase activations[149]. Decoy receptors 1 
(DcR1) and decoy receptor 2 (DcR2) express on the cell surface like DR4 and DR5. The tissue distribution 
of DcR2 is like DR4 and DR5, whereas DcR1 is only found in the heart, kidney, liver, lung, placenta, 
peripheral blood leukocytes, and spleen[150]. Overexpression of DcR1 and DcR2 protects from TRAIL-
induced apoptosis[125,151]. DcR2 achieves this by activating NF-kB which is known to increase apoptosis[150]. 
The fifth receptor is OPG, a soluble protein with low affinity for TRAIL, but it has an unclear function. 

The function of TRAIL is to control autoreactive immune cells and surveillance against tumor development 
and metastasis. TRAIL can induce apoptosis in cancer cells with little to no cytotoxicity against healthy 
cells[152]. However, there is reported hepatocyte toxicity caused by the exogenous tags (polyhistidine or 
Flag) on recombinant soluble human TRAIL (rhTRAIL)[153]. Despite the shortcomings of TRAIL as a lone 
therapeutic agent, researchers are combining TRAIL with cells and cell membranes. For example, a recent 
study of expressing TRAIL on human adipose-derived stem cells (hADSCs) and coating them with NPs 
was employed to effectively treat glioblastoma multiforme[154]. Future research will continue to develop 
strategies for overcoming TRAIL resistance in cancer through combining TRAIL with chemotherapy, 
immunotherapy, nanotechnology, or synthetic biology. Cell membrane-based research can use TRAIL in 
conjunction with different targeting proteins, drug-loaded NPs, and cell types including bacteria to treat 
drug-resistant tumors.

PD-L1
programmed death-ligand 1 (PD-L1) is a 40-kDa transmembrane protein that acts as a checkpoint that 
is operated as a negative regulator of T cells creating immune tolerance[155]. It is upregulated in tissues in 
response to IFN-γ and other inflammatory mediators[156]. Tumor cells overexpress PD-L1 as an adaptative 
mechanism to avoid an immune response[157,158]. PD-L1 inhibitors/antibodies have been used as an effective 
treatment against various cancer types, including melanoma and NSLC[159,160]. The suppression of PD-L1 and 
the PD-1 interaction has been shown to reduce malignancy in various clinical trials. One major problem 
with using PD-L1 inhibition therapy is its non-specificity, where overall suppression of PD-L1 increases the 
risk of autoimmune disorders. This, on the other hand, opens a new strategy for cell/cell-membrane based 
therapies where PD-L1-expressing membranes could be used for avoiding systemic clearance such as RES, 
and thereby increasing circulation time to improve therapeutic efficiency. Xu et al.[161] showed that anti-
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PD-L1 mAb-coated polyethylene glycol-poly (ε-caprolactone) NPs (PEG-PCL NPs) loaded with docetaxel 
showed significant killing in PD-L1-transfected gastric tumor cell lines in comparison with the isotype IgG 
Ab control coating. Engineered T cell membrane-expressing PD-L1 antibodies can be employed to coat 
drug-loaded NPs for treating solid tumors by blocking PD-L1 interaction with PD-1, improving immune 
responses and providing efficient site-specific drug release of chemotherapeutic drugs[162].

Major histocompatibility complex
Major histocompatibility complex (MHC) is a close locus of genes that code for the proteins present on 
most cell surfaces, which help in the detection of foreign peptides. There are two main groups of MHCs, 
class I and class II, of which the latter is present in immune cells alone unlike class I which is present in 
most cells[163]. The MHC group also has a class III, which codes for other proteins such as complement 
proteins, cytokines (chemical messengers), and enzymes[163]. The important function of the MHC is to bind 
pathogenic peptides and display them on the cell surface for T-cell recognition[164]. Each MHC complex 
has multiple alleles for the same gene, which makes it hard for the pathogen to evolve against the MHC 
mechanism. MHCs are found to be one of the major causes of autoimmune disorders, including type 1 
diabetes, multiple sclerosis, ulcerative colitis (UC), and rheumatoid arthritis (RA), which arise when MHC 
class II presents self-antigens to autoreactive T lymphocytes due to loss of immunotolerance for some self-
antigens[165]. MHCs play an important role in inflammatory regulation as seen in the study by Espel et al.[166], 
where binding of TSST‐1 or LPS to MHC enhanced the transcriptional and translational rate of TNF‐α, a 
systemic inflammatory cytokine. Further research must be done on the pathways by which MHC molecules 
are linked to autoimmune diseases. This could open new directions for genetic engineering modalities 
against autoimmune diseases. Targeted therapies against specific MHCs could deliver drugs in situ against 
inflammation. Molecular biology techniques can also be employed to express specific antigen-presenting 
MHC molecules on cells and bacteria, and those engineered cell membranes could be used for coating NPs 
to be used as vaccines.

Bromodomain-containing protein 4
Bromodomain-containing protein 4 (BRD-4) is a human protein from the bromodomain family, which is 
largely known for its expression regulation properties of various oncogenes including Myc[167,168]. BRD-4 
is expressed on cells of all tissues, and deregulation of BRD-4 has been shown to cause various diseases 
including cancer and fibrosis[169]. BRD-4 is shown to stabilize and help the growth of carcinoma and 
inhibition of BRD-4 using gene silencing or inhibitors, which significantly reduced tumor progression[170]. 
BRD-4 is also being studied as an effective regulator for fibrosis. Ding et al.[171] showed that BRD-4 is a 
crucial component for the induction of profibrotic genes and aids in the activation of hepatic stellate cells 
(HSCs). It is shown that BRD-4 does not directly cause fibrosis, but rather aids in the induction of pro-
fibrotic factors including TGF-β, and that using BRD-4 inhibitors (JQ1 and I-BET) would downregulate 
the profibrotic effects[172,173]. The potential of BRD-4 as a biomarker and regulator for various diseases 
including fibrosis and cancer is promising. Mesenchymal stromal cells have great potential in the 
treatment of inflammatory diseases because of their affinity towards inflammatory signals. Engineering 
the Mesenchymal stromal cells to express BRD-4 inhibitors could act as a twofold mechanism treatment 
modality against fibrosis by inhibiting the induction of profibrotic factors and remodeling the inflammatory 
environment. BRD-4 gene silencing is also a field that is yet to be explored in the area of fibrosis.

CONCLUSION AND FUTURE ASPECTS
Conventional synthetic payload delivery systems have a “foreign” material effect in vivo and some of 
the clinically approved materials today still cause immune system activation (complement or innate) 
and other toxic side effects to T cells owing to the mode of administration, material choice, and other 
pharmacodynamically varied profiles[104]. These challenges in conventional synthetic nanocarriers demand 
for a more advanced biomimetic drug delivery platform, where there is a balance between therapeutic 
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activity and toxicity in healthy cells by drug carriers. Cancer drug resistance is caused by various factors 
including low bioavailability of drugs in deeper tumor sites, multiple drug resistance, tumor heterogeneity 
and other pharmacokinetic issues encountered in vivo. Cell- and cell membrane-based therapies can aid 
in overcoming cancer drug resistance by taking advantage of cell intrinsic properties of homing abilities 
with regard to targeting inflammation sites and infiltration into tumor regions. This potential opening 
avenues to engineer synthetic circuits producing therapeutic bioactive molecules in situ and other drug 
payload-carrying abilities, together, can improve drug bioavailability in the target location (e.g., tumor 
microenvironment) irrespective of cancer cell heterogeneity and other phagocytic issues faced by surface 
functionalized NPs.

Cell membrane-based therapeutic applications are mainly reported in the sense of passive-active targeted 
payload delivery, prolonged circulation and performing different types of therapeutic purposes on affected 
areas. Major advantages of CMCNPs include eliciting physiologically relevant immune responses, avoiding 
clearance while improving circulation and enhanced targeting via retained membrane proteins on NPs. 
All these properties together can improve the therapeutic efficacy of chemotherapeutic drugs in treating 
cancers. Various receptor-coated cell membranes can improve the abilities of synthetic NPs to facilitate 
combinatorial therapies, e.g., receptor-mediated apoptosis and immunomodulation, provision of fusion 
with cell membranes to escape endocytosis, in addition to NP-based chemotherapy in cancer. These 
multifunctional approaches lead to improved drug bioavailability at tumor sites, antigen presentation and 
immune cell maturation, improved adhesion via integrins, cell adhesion molecules and other potential 
receptor-mediated cancer therapeutics [Figure 4].

The cell membrane takes part in various critical biological tasks such as cell-cell signaling, inhibition or 
activation of cascades, and intrinsic and secretory pathways. Therefore, membrane-related proteins hold a 
very critical role in pathogenesis and progression of various acute and chronic diseases, including chronic 
infection, inflammation, cancer, autoimmune diseases, and other systemic disorders. Though the cell 
membrane coating of NPs can improve their physiochemical characteristics a great deal as discussed in the 
paper, it surely is not the end of the road. New research is focusing on new ways to improve membrane-
coated NPs with pre- and post-membrane modification techniques [174]. Adding a targeting ligand to 
membrane-coated NPs has shown to greatly improve the targeting and retention properties of NPs without 
compromising the advantages of membrane coating. Fang et al.[175] showed that lipid-assisted insertion of 
targeting aptamer showed very high targeting and uptake properties towards the cancer cells compared to 
plain membrane-coated and folate-conjugated membrane-coated NPs[175]. Various other researchers have 
also shown the increased functionality of lipid-assisted ligand insertion in membrane-coated NPs[176,177]. 
Cell membrane engineering techniques, both genetic (e.g., transfection) and other non-genetic engineering 
approaches (e.g., biotinylation, lipid membrane fusion, enzymatic or direct covalent, hydrophobic and 
electrostatic interactions), can be used to engineer cell membranes towards cell-based therapies including 
NP payload delivery against cancer[178]. Krishnamurthy et al.[179] showed that transfecting proline, alanine 
and serine (PAS) expressing plasmid to cells and then using the membrane to coat NPs showed improved 
circulation with the increased targeting and retention property of membrane-coated NPs[179]. By taking 
advantage of proteomic techniques, one can identify pathologically significant membrane protein 
biomarkers and engineer therapeutically significant, patient-specific cell membrane components (e.g., 
CAR-T cells for the coating of nanocarriers) showing promise in personalized medicine[180,181]. Similarly, 
transfected cell membranes with various ligands and expressing genes could be used to coat NPs to produce 
synergic effects of the cell membrane with the transfected ligand/gene function.

The CMCNP core still utilizes synthetic materials for drug loading, which may pose potential side effects 
due to their accumulation in situ and elicit toxicity to the filtering organs such as kidneys and liver 
because of their extended elimination rates (e.g., longer retention time of metallic NPs in vivo)[182]. In 
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that regard, research focused on preparation of biodegradable materials with improved pharmacokinetic 
and pharmacodynamic profiles for drug loading is highly desired. Overall, cell membrane-coated NP 
technology needs a multidisciplinary approach including the fields of membrane biology, bioengineering, 
molecular biology, proteomics, and pharmacology to develop more efficient cell- and/or cell membrane-
based drug delivery systems with better safety and therapeutic efficacy in the treatment of cancers and 
immunomodulation-dependent diseases (e.g., autoimmune diseases).

Figure 4. Potential cell surface proteins and their complements to be used in immunomodulation, immunotherapy, and targeted-
drug delivery applications. t-SNARE/v-SNARE: target snap receptor/vesicle snap receptor; PS: phosphatidylserine; C1q: complement 
component 1q; SCARF-1: scavenger receptor class-F, member-1; Gp1b: glycoprotein-Ib; TSP-2: thrombospondin-2; SIRPα: signal regulatory 
protein α; CD: cluster of differentiation; ICAM: intercellular adhesion molecule; LFA-1: lymphocyte function-associated antigen-1; MAC-
1: macrophage adhesion ligand-1; VLA: very late antigen; PAMP: pathogen associated molecular pattern; DAMP: damage-associated 
molecular pattern; PD-1/PD-2: programmed cell death protein-1/programmed cell death protein-2; PD-L1/PD-L2: programmed death-
ligand-1/programmed death-ligand-2; CTLA-4: cytotoxic t-lymphocyte-associated protein-4; TRAIL: tumor necrosis factor-related 
apoptosis-inducing ligand; TNF: tumor necrosis factor; B7-H6: B7 homolog 6; MIC: MHC class I polypeptide-related sequence; H60: 
histocompatibility protein-60; NKp: natural cytotoxicity triggering receptor; NKG: natural killer cell granule protein; KIR: killer-cell 
immunoglobulin-like receptor; LIR: leukocyte immunoglobulin-like receptor; HMGβ1: high-mobility group protein β1; RAGE: receptor for 
advanced glycation end products
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