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Abstract
Aim: Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease in most 
countries for patients with type 2 diabetes (T2D). Elucidating novel epigenetic contributors to DN can not only 
enhance our understanding of this complex disorder but also lay the foundation for developing more effective 
monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving 
patient care.

Methods: 5-hydroxymethylcytosines (5hmC)-Seal, a highly selective chemical labeling technique, was used to 
profile genome-wide 5hmC, a stable cytosine modification type marking gene activation, in circulating cell-free 
DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with 
nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients 
without any complication (controls, n = 14). Differential analysis was performed to find DN-associated 5hmC 
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features, followed by the exploration of biomarker potential of 5hmC in cfDNA for DN using a machine learning 
approach.

Results: Genome-wide analyses of 5hmC in cfDNA detected 427 and 336 differential 5hmC modifications 
associated with DN, compared with non-DN individuals and controls, and suggested relevant pathways such as 
NOD-like receptor signaling pathway and tyrosine metabolism. Our exploration using a machine learning approach 
revealed an exploratory model comprised of ten 5hmC genes showing the possibility to distinguish DN from non-
DN individuals or controls.

Conclusion: Genome-wide analysis suggests the possibility of exploiting novel 5hmC in patient-derived cfDNA as a 
non-invasive tool for monitoring DN in high-risk T2D patients in the future.

Keywords: Type 2 diabetes, nephropathy, epigenetics, 5-hydroxymethylcytosine, cfDNA

INTRODUCTION
Diabetic nephropathy (DN) is one of the most common complications of type 2 diabetes (T2D) and a 
leading cause of end-stage renal disease globally[1]. Approximately 20-40% of T2D patients will ultimately 
develop nephropathic diseases, thus posing a significant risk for T2D patients[2]. Early detection and 
preventive intervention of DN has been limited due largely to the lack of a comprehensive understanding of 
its complex pathogenesis and effective biomarkers. Notably, conventional clinical markers to evaluate renal 
functions of DN, including serum creatinine, estimated glomerular filtration rate (eGFR), and urinary 
albumin, can be influenced by many factors[3]. Pathologically, the “gold standard” to diagnose DN has been 
percutaneous renal biopsy. However, various complications can be caused by the procedure, such as 
bleeding, pain, and infection[4]. Therefore, investigation of novel molecular contributors implicated in DN 
would not only enhance our understanding of this disease but also provide opportunities to develop more 
effective diagnostic and preventive approaches. Of particular interest to us are novel epigenetic 
modifications revealed in circulating cell-free DNA (cfDNA), a clinically convenient liquid biopsy, which 
may reflect systematic changes in the body during pathogenesis[5].

Particularly, epigenetic modifications are gene regulatory elements that sit between phenotypes and 
genotypes[3]. The most-investigated epigenetic modification is DNA methylation, i.e., 5-methylcytosine 
(5mC), which has been implicated in normal physiological processes and pathogenesis. The regulation of 
DNA methylation in vivo is a dynamic process. The ten-eleven translocation enzymes can oxidize 5mC into 
5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine under an active demethylation 
process[6]. Unlike other demethylated products of 5mC, 5hmC is relatively abundant and biochemically 
stable in the human genome. Previous studies have confirmed that the 5hmC modifications show a distinct 
genomic distribution and gene regulatory role from 5mC[7] and have been implicated in a variety of diseases. 
Notably, recent studies have begun to demonstrate an association of altered 5hmC with diabetes-related 
conditions such as hyperglycemia[8].

Technically, the widely used bisulfite conversion-based epigenomic profiling techniques, although offering 
opportunities of profiling genome-wide cytosine modifications, cannot distinguish 5hmC from 5mC[9]. 
Therefore, to investigate whether the 5hmC modifications are implicated in DN, we utilized the 5hmC-Seal 
technique[10], a highly sensitive chemical labeling technique for genome-wide profiling of 5hmC, and next-
generation sequencing (NGS), in cfDNA samples derived from a cohort of T2D patients with and without 
nephropathy. The 5hmC-Seal technique has been systematically validated using spike-in controls and serial 
DNA inputs by our team and other groups as a reliable approach for biomarker discovery[9,11-15] using limited 



Page 51Yang et al. Extracell Vesicles Circ Nucleic Acids 2022;3:49-60 https://dx.doi.org/10.20517/evcna.2022.03 

clinical biospecimens, e.g., as low as a few nanograms of cfDNA that can be conveniently isolated from 1-2 
mL of plasma[11]. Therefore, the 5hmC-Seal technique has a technical advantage, especially suitable for 
future clinical implementation of cfDNA-based non-invasive tools for disease diagnosis, prognosis, and 
surveillance. Furthermore, our previous genome-wide analyses of 5hmC in cfDNA suggested a link between 
altered 5hmC and T2D-associated vascular complications in general[16]. For example, the 5hmC-based 
signatures in cfDNA were shown to have the potential to distinguish T2D patients with multiple vascular 
complications from those with single vascular complications[16], as well as between T2D patients who 
developed diabetic retinopathy and those who did not[17]. However, whether there are specific 5hmC 
changes implicated in DN has not been investigated yet.

Specifically, in the current study [Figure 1], we profiled genome-wide 5hmC in cfDNA samples derived 
from a cohort of 55 patients with T2D using the 5hmC-Seal technique and NGS. Differential analysis was 
performed to identify DN-associated modified genes as well as involved pathways. To investigate the 
feasibility of future biomarker studies targeting 5hmC for DN, we also explored the distinguishing capacity 
of 5hmC for DN by summarizing the genome-wide 5hmC profiles through feature selection using a 
machine-learning approach. Findings from this study enhance our understanding of DN-associated 
epigenetic changes and involved pathways, and provide the foundation for developing more effective and 
non-invasive tools for DN monitoring and preventive intervention in the future.

METHODS
Study populations
In total, 55 patients with T2D, including 12 patients with DN, 29 patients with non-DN complications (i.e., 
macrovascular complications, neuropathy, and retinopathy), and 14 sex- and age-matched T2D controls 
without complications, were recruited at Zhongnan Hospital of Wuhan University, China. Patients were 
diagnosed according to the 2017 Standards of Medical Care in Diabetes of the American Diabetes 
Association[18]. All study participants were excluded for other kidney diseases. Clinical variables were 
collected from the medical records following a standard protocol. Fasting plasma samples (~ 2 mL/patient) 
were collected the next morning after hospital admission. This study was approved by the Medical Ethics 
Committee of Zhongnan Hospital of Wuhan University (2019069). Informed consent was obtained from 
each participant.

Laboratory measurements
Laboratory measurements were performed at Zhongnan Hospital for the current study. Kidney function 
parameters (creatinine, urea nitrogen, uric acid, and eGFR)[19] and serum glucose were examined by the 
AU5800 Chemistry Analyzer (Beckman). The HA-8160 Glycohemoglobin Analyzer was used to measure 
blood glycated hemoglobin (HbA1c). Serum insulin was assayed by the i4000SR Immunology Analyzer 
(Abbott Laboratories).

Preparation of cfDNA samples, 5hmC-Seal assay, and data processing
Details about the preparation of circulating cfDNA samples, 5hmC-Seal library construction, sequencing, 
and data processing are described in our previous publications[10,11,20]. Briefly, plasma samples were separated 
and stored at - 80 °C after centrifuging twice at 1350 × g for 12 min and 13,500 × g for 5 min. cfDNA was 
extracted from the plasma using the Circulating Nucleic Acid Kit (Qiagen) and the concentration of cfDNA 
was examined using the Qubit High Sensitivity dsDNA Assay (Invitrogen) according to the manufacturers’ 
instructions. The 5hmC-Seal library construction and NGS were performed at the Innovation Center for 
Genomics, Peking University (Beijing, China). Briefly, each cfDNA sample was first prepared and ligated 
with adaptors. Next, the T4 bacteriophage enzyme β-glucosyltransferase was used to transfer an engineered 
glucose moiety containing an azide-group to 5hmC in duplex DNA. A biotin tag was then installed onto the 
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Figure 1. Study design. In total, 55 patients with type 2 diabetes (T2D), including 12 patients with diabetic nephropathy (DN), 29 patients 
with non-DN complications (Non-DN), and 14 controls (CTRL), were profiled for genome-wide 5-hydroxymethylcytosines (5hmC) using 
the 5hmC-Seal technique and next-generation sequencing, followed by differential analysis, gene set enrichment analysis (GSEA), 
protein-protein interaction network analysis, feature selection, and modeling to inform biological insights and evaluate biomarker 
potential.

azide group using Click chemistry, followed by capturing of 5hmC-containing DNA fragments using avidin 
beads. The 5hmC-Seal library for each cfDNA sample was then constructed through PCR amplification, 
followed by paired-end sequencing (PE39) with the Illumina NextSeq 500 platform. On average, ~ 23 
million unique reads per cfDNA sample were obtained from NGS. According to our previous 
studies[11-13,16,17], 5hmC profiles are more abundant in gene bodies and exonic regions relative to their 
flanking regions and depleted at the transcription start sites. Therefore, well-annotated gene bodies 
provided by GENCODE (hg19)[21] were our primary targets to summarize the 5hmC-Seal data by counting 
the sequencing reads using feature Counts[22]. The principal components analysis (PCA) was conducted to 
explore the potential confounding factors in global 5hmC data. The kidney-derived histone modification 
marks for enhancers, i.e., H3K4me3 and H3K27ac, were obtained from the Roadmap Epigenomics 
Project[23] to help provide biological insights.

Identifying DN-associated 5hmC signature in cfDNA
Multivariable logistic regression models were used to identify gene bodies containing differential 5hmC 
levels (i.e., normalized read counts) between DN patients and T2D controls, as well as between DN and 
non-DN patients. Although not the focus of the current study, we also performed differential analysis 
between T2D controls and patients with non-DN complications for comparison. Adjusted covariates 
included age and sex. To evaluate potential protein–protein interaction (PPI) networks, those genes 
showing a trend of differential modifications (Wald test P < 0.01 and fold change > 10%) between diagnosis 
classes, e.g., DN vs. controls, were supplied to the stringApp from Cytoscape[24,25] with the default parameters 
based on the STRING database (confidence score > 0.8 and maximum additional interactor = 50) with 
linker genes allowed[26]. Hubs of the PPI networks were estimated based on the measurement of betweenness 
centrality, which represents the magnitude of influence a component gene has over the flow of information 
in a gene network[24]. Moreover, because of the limited sample size, instead of evaluating pathways among 
individual genes, Gene Set Enrichment Analysis (GSEA)[27] was used to explore the functional relevance of 



Page 53Yang et al. Extracell Vesicles Circ Nucleic Acids 2022;3:49-60 https://dx.doi.org/10.20517/evcna.2022.03 

canonical pathways in the whole-genome 5hmC data between diagnosis classes, e.g., DN vs. controls, using 
the clusterProfiler tool(v4.0)[28]. Specifically, over-/under-represented pathways maintained in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)[29] database (≥ 15 genes and false discovery rate < 5%) and 
normalized enrichment score were obtained from GSEA.

Summarization of a 5hmC-based epigenetic score for DN
To evaluate whether a cfDNA-based score with potential diagnostic value could be summarized from the 
genome-wide 5hmC data, those genes that showed a trend of differential 5hmC between DN and controls 
or DN and non-DN complications, but not between non-DN complications and controls, were further 
selected to explore a signature panel by applying the elastic net regularization[30] on the multivariable logistic 
regression models. To improve modeling efficiency, we filtered out most uninformative gene bodies (i.e., P 
> 0.05) before feature selection. Component genes of the exploratory model were selected if they were 
consistently present (100%) in 100 iterations using repeated two-fold cross-validation to differentiate 
between DN and controls. A weighted score to summarize the genome-wide 5hmC for each individual was 
computed as follows:

where Gi represents the normalized read counts of the ith gene body and βi represents its regression 
coefficient, following our previous publications[11,12,16,17]. The area under the receiver operator characteristic 
curve (AUROC) was used to demonstrate model performance. The optimal score cutoffs for the AUROCs 
were determined by the score that maximized the Youden index, and the corresponding sensitivity and 
specificity were estimated.

Comparison between the 5hmC-based score for DN with conventional clinical variables or risk 
factors
To compare the performance of the 5hmC-based scores for DN relative to various clinical variables, 
univariable logistic regression models for available clinical variables were examined as follows:

where Yi represents binary diagnosis classes (i.e., DN vs. non-DN/controls or DN vs. non-DN). Xi 
represents age, sex, or each of the clinical variables body mass index (BMI), smoking history, drinking 
history, glucose, HbA1c, insulin, creatinine, uric acid, urea nitrogen and eGFR. The predicted probabilities 
of the univariable logistic regression models were used for assessing classification performance, i.e., DN vs. 
non-DN/controls or DN vs. non-DN, via the AUROC. Sensitivity and specificity at the cutoff that 
maximized the Youden index were estimated for each variable.

RESULTS
Clinical and demographic characteristics of the study participants
Table 1 shows the clinical and demographic characteristics of the 55 study participants. Overall, there were 
no significant differences regarding major demographic and clinical variables between patient groups. There 
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Table 1. Demographical and clinical characteristics of the study participants

Clinical variable T2D control (n = 14) DN (n = 12) Non-DN (n = 29) pA pB pC

Age (year) 47.1 ± 9.7 56.8 ± 14.5 57.7 ± 8.1 0.08a 0a 0.71a

Sex (male/female) 10/4 9/3 13/16 0.52b 0.14b 0.25b

BMI (kg/m2) 24.9 ± 3.7 25.4 ± 2.3 25.7 ± 4.1 0.49a 0.62a 0.99a

Smoking (Yes/No) 6/8 7/5 5/24 0.69b 0.15b 0.02b

Drinking (Yes/No) 2/12 4/8 4/25 0.5b 1b 0.32b

T2D duration (year) 3.7 ± 3.9 4.5 ± 6.4 6.9 ± 6.3 0.7a 0.14a 0.08a

SBP (mmHg) 123.6 ± 9.4 135.4 ± 20.2 133.9 ± 19.2 0.17a 0.09a 0.82a

DBP (mmHg) 78.3 ± 7.9 82.1 ± 10.6 77.8 ± 10.6 0.28a 0.47a 0.13a

Glucose (mmol/L) 11.5 ± 3.3 9.5 ± 3.5 8.5 ± 3.1 0.13a 0.01a 0.46a

HbA1c (%) 9.1 ± 1.8 7.9 ± 2.2 8.4 ± 1.9 0.17a 0.33a 0.42a

Insulin (μU/mL) 10.3 ± 6.0 7.4 ± 7.1 9.5 ± 7.0 0.28a 0.66a 0.28a

Kidney Function:

Urea nitrogen (mmol/L) 5.8 ± 1.3 5.7 ± 1.8 5.9 ± 1.7 0.78a 0.83a 0.69a

Creatinine (μmol/L) 60.3 ± 13.9 78.8 ± 31 63.1 ± 18.2 0.15a 0.86a 0.14a

Uric acid (μmol/L) 283.6 ± 51.9 319.7 ± 99.1 291.1 ± 81.9 0.4a 0.93a 0.51a

eGFR (mL/min/1.73 m2) 111.6 ± 12.2 89.2 ± 28.4 98.5 ± 13.4 0.02a 0.01a 0.24a

Medication (Yes/No)

Insulin treatment 6/8 3/9 15/13 0.59b 0.74b 0.19b

Oral glucose-lowering medicine 6/8 6/6 15/13 1b 0.74b 1b

AComparison between T2D control (CTRL) and Nephropathy (DN); Bcomparison between T2D control (CTRL) and patients with non-
nephropathy complications (Non-DN); Ccomparison between DN and Non-DN; a Wilcoxon test; bchi-square test. DN: diabetic nephropathy; BMI: 
body mass index; T2D: Type 2 diabetes; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycated hemoglobin; eGFR: estimated 
glomerular filtration rate.

were comparable distributions of potential confounders for epigenetic modifications between patient 
groups, such as baseline BMI and sex (P > 0.05). Notably, differences in age at the time of blood collection 
were observed between T2D controls and DN patients. Therefore, age was used as a covariate in 
downstream differential analysis when comparing between diagnosis groups (e.g., DN vs. controls). 
Moreover, in total, 24 patients used insulin treatment and 27 patients used oral glucose-lowering 
medications, showing no significant disparity regarding medication treatment between different diagnosis 
groups (P > 0.05).

Overview of the genome-wide 5hmC profiles in cfDNA
Consistent with our observations in the cfDNA samples from other studies[13,15], the distribution of genome-
wide 5hmC was also more abundant in gene bodies and exonic regions relative to their flanking regions and 
the transcription start sites [Supplementary Figure 1A], supporting our focus on gene bodies in this proof-
of-concept study. Moreover, PCA demonstrated no significant correlations between 5hmC and potential 
confounders, including sex and age [Supplementary Figure 1B and C]. In addition, we observed a trend of 
increased genome-wide 5hmC modification levels on kidney-derived enhancer marks: H3K4me1, across 
controls, patients with non-DN complications, and patients with DN (P-trend = 0.049).

Differentially modified genes associated with DN and the PPI network analysis
In total, 336 genes were detected to show a trend of differential modification between T2D controls and 
patients with DN (Wald test P < 0.05), among which 271 genes had a fold change of at least 10% (
Supplementary Table 1 and Supplementary Figure 1D). In comparison, 427 genes were found to be 
differentially modified between patients with DN and patients with non-DN complications (Wald test P < 
0.05), among which 250 genes had a fold change of at least 10%, indicating the presence of 5hmC signatures 
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specific to DN complications [Figure 2A, Supplementary Table 1, and Supplementary Figure 1E]. Genes 
with a more stringent cutoff (Wald test P < 0.01 and fold change > 10%) were further evaluated for PPI 
networks to explore potential biological connections with relevant functions. Notably, the PPI network 
analysis implicated those genes showing differential modifications between DN and T2D controls in hub 
genes relevant to kidney diseases [Supplementary Figure 2]. For example, SMARCA5, a member of the 
SWI/SNF-related matrix-associated action-dependent regulator of chromatin subfamily A as well as a 
differentially modified gene, was found to be connected with biomarkers for diabetic kidney disease[31]. 
RUVBL1, which encodes RuvB like AAA ATPase 1, is connected with certain differential genes (e.g., 
COMMD2 and GPS1), and its deletion could lead to acute kidney injury in mice[32]. In contrast, the PPI 
network analysis based on a list of genes showing differential 5hmC between DN and non-DN patients also 
identified connections with hub genes implicated in DN [Supplementary Figure 3]. For example, signal 
transducer and activator of transcription 1 (STAT1) are connected with certain differential genes (e.g., 
MX1, IFI44L, and IFIH1), and its activation was shown to cause cell apoptosis and renal fibrosis, thus being 
implicated in DN[33].

GSEA implicating pathways differentially modified in patients with DN
The GSEA results reveal over- or under-representation of certain canonical pathways in patients with DN 
relative to controls, such as the NOD-like receptor signaling pathway, neuroactive ligand-receptor 
interaction, platelet activation, tyrosine metabolism, and necroptosis [Figure 2B and Supplementary Table 2
]. Several core genes that contributed to the over- or under-representation of these pathways were also 
differentially modified between DN and T2D controls, including CXCL1 and PKN2 in the NOD-like 
receptor signaling pathway; PYY, GRM, EDN2, GCGR, and MLN in neuroactive ligand-receptor interaction; 
and IL1B in necroptosis [Supplementary Table 2]. In addition, the GSEA results between DN patients and 
patients with non-DN complications indicate significant over- or under-representation of KEGG pathways 
such as tyrosine metabolism, olfactory transduction, and signaling pathways regulating pluripotency of stem 
cells [Figure 2B and Supplementary Table 2], although they are not differentially modified at the single-gene 
level, likely due to the small sample size. Interestingly, several over-represented pathways between DN and 
controls/non-DN patients are known to be associated with DN or kidney-related diseases, such as the 
NOD-like receptor signaling pathway and tyrosine metabolism[34, 35].

Summarization of 5hmC-based epigenetic score for DN
An exploratory model comprised of ten genes (i.e., UQCRFS1, VARS2, WWOX, CSPG4, TMCO4, 
SLC38A3, RPL36, CTD.2116N17.1, MATN4, and CABP7) was identified using the elastic net regularization 
and multivariable logistic regression models for distinguishing DN from T2D controls [Figure 2C]. Of note, 
the 5hmC scores were significantly different between patients with DN and controls, as well as between 
patients with DN and those with non-DN complications [Figure 2D] (t-test, P < 0.01). When using the 
5hmC score as the only predictor, the AUROC results show 100% sensitivity and 97% specificity to classify 
DN and non-DN complications, in addition to the performance of distinguishing patients with DN from 
controls [Table 2].

We compared the sensitivity and specificity of various clinical variables in our cohort for distinguishing DN 
from T2D controls or patients with non-DN complications [Table 2]. Notably, logistic regression results 
indicate that the 5hmC scores in general outperformed age, sex, and various conventional clinical variables, 
including clinical variables of kidney functions, featuring greater AUROCs and higher sensitivity/specificity 
[Table 2]. For example, the 5hmC scores significantly outperformed the eGFR in differentiating between 
patients with DN and controls (AUROC, 100% vs. 78%) as well as between DN and non-DN complications 
(AUROC, 98% vs. 62%).
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Table 2. Biomarker potential of the 5hmC model and comparisons with clinical variables

T2D control vs. DN Non-DN vs. DN

Clinical variable/model Sensitivity Specificity AUROC Sensitivity Specificity AUROC

Age (year) 0.83 0.50 0.70 0.42 0.83 0.54

Sex (male/female) 0.75 0.29 0.52 0.75 0.55 0.65

BMI (kg/m2) 1.00 0.36 0.58 1.00 0.24 0.50

Smoking (yes/no) 0.58 0.57 0.58 0.58 0.83 0.71

Drinking (yes/no) 0.33 0.86 0.60 0.33 0.86 0.60

Glucose (mmol/L) 0.73 0.64 0.68 0.55 0.68 0.58

HbA1c (%) 0.55 0.86 0.67 0.55 0.85 0.59

Insulin (μU/mL) 0.83 0.62 0.69 0.67 0.71 0.66

Creatinine (μmol/L) 0.36 1.00 0.68 0.36 0.93 0.65

Uric acid (μmol/L) 0.64 0.71 0.60 0.73 0.48 0.57

Urea nitrogen (mmol/L) 0.45 0.86 0.54 0.45 0.72 0.54

eGFR (mL/min/1.73 m2) 0.64 1.00 0.78 0.64 0.79 0.62

5hmC model 1.00 1.00 1.00 1.00 0.97 0.98

T2D: Type 2 diabetes; DN: diabetic nephropathy; AUROC: the area under the receiver operator characteristic curve. BMI: body mass index; 
HbA1c: glycated hemoglobin; eGFR: estimated glomerular filtration rate.

DISCUSSION
Enhancing our understanding of the molecular contributors to DN pathogenesis would provide 
opportunities for developing more effective clinical tools to prevent and manage this complication. 
Equipped with the highly sensitive 5hmC-Seal technique, we sought to investigate DN-associated 5hmC in 
patient-derived cfDNA using a cohort of T2D patients with and without DN. Genome-wide analysis of 
5hmC indicated there existed differential 5hmC modifications and over-/under-represented pathways in 
cfDNA that provided links between 5hmC signatures for DN and relevant pathways/genes. Besides 
previously implicated pathways and genes in DN or kidney disease, such as the NOD-like receptor signaling 
pathway and CXCL1 of the inflammasome family[34,36], interestingly, our identified DN-associated 5hmC 
signatures were also shown to be connected with PPI hubs relevant to kidney disease and the pathogenesis 
of DN[32,33], thus reflecting the DN relevance of the 5hmC profiles in patient-derived cfDNA. Additionally, 
certain significant pathways such as Fc gamma R-mediated phagocytosis and natural killer cell-mediated 
cytotoxicity were found to be enriched in those genes dysregulated in DN from a meta-analysis of mouse 
microarray data[37], lending further support for the existence of biological links between the 5hmC landscape 
reflected in DN patient-derived cfDNA and the underlying pathogenesis.

One important question about the cfDNA-based methods is whether the patient-derived cfDNA samples 
reflect the target tissue. Our genome-wide scan examining co-localization of the 5hmC-Seal reads and 
kidney-derived enhancer markers demonstrated a trend of increased modification levels between T2D 
controls and DN patients, suggesting the contribution of the target tissue (i.e., kidney) to the 5hmC profiles 
in DN patients. The current tissue-derived histone modifications, however, included only two individuals 
from the Roadmap Epigenomics Project; with the availability of more reference epigenomes in the future, a 
more comprehensive evaluation would provide more insights into the relative proportions of cfDNA 
sources in patients with DN.

Considering that cfDNA could reflect the systematic and dynamic physiological condition of the patient, 
our findings targeting novel epigenetic information in cfDNA could provide the foundation for developing 
a convenient clinical tool for the care of T2D patients. Therefore, besides differential analysis, we also 
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Figure 2. Novel 5hmC modifications implicated in diabetic nephropathy. Genome-wide analysis of the 5hmC-Seal data in patient-derived 
cfDNA reflected novel epigenetic modifications implicated in diabetic nephropathy (DN). (A)The Venn diagram shows differentially 
modified gene bodies specific to DN. (B)KEGG pathways significantly over-/under-represented in DN patients relative to either controls 
(CTRL) or non-DN patients (Non-DN) were identified from the GSEA. (C) The exploratory model comprised of ten component genes 
could distinguish DN from CTRL, as well as DN from Non-DN. (D) The 5hmC scores computed with the ten-gene exploratory model for 
DN were significantly different between DN and CRTL/Non-DN. Statistical significance (t-test): ns, P > 0.05; ** P ≤ 0.01; **** P ≤ 
0.0001. KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene set enrichment analysis; NES: Normalized enrichment score.

sought to evaluate the possibility of summarizing the genome-wide 5hmC profiles in cfDNA into an 
epigenetic score with biomarker potential. Particularly, findings from the feature selection based on 
machine learning and modeling in the current study provided promising results for the future development 
of cfDNA-based diagnostic or monitoring tools for DN. In particular, although limited by the sample size, 
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the 5hmC-based exploratory model for DN showed a consistent trend of outperformance over various 
conventional clinical indices for diabetic complications, especially those related to kidney functions, thus 
supporting the potential advantage of utilizing the 5hmC features in cfDNA as a novel biomarker for DN. 
Moreover, because the 5hmC-Seal technique can provide the genome-wide distribution of 5hmC in a single 
test, it is possible to integrate the DN-associated model with models for other diabetic complications to 
develop a comprehensive tool for routine care of patients with T2D in the future.

We are aware of several limitations in the current study. Firstly, the sample size is relatively small. Although 
our primary goal was to demonstrate the relevance of 5hmC to DN and the feasibility of using novel 
epigenetics and non-invasive liquid biopsy to develop management tools for DN in the future, future larger 
scale investigations studies will be necessary to provide a more comprehensive picture of the epigenetic 
landscape of DN or DN-associated pathways. Secondly, also limited by the current sample size, our 
modeling of 5hmC for their biomarker value was preliminary using a single cohort. Although testing using 
patients with and without DN helped us evaluate the biological relevance of the identified 5hmC features, 
future investigations involving more independent samples for both training and independent validation will 
be necessary to develop a clinically useful model based on 5hmC in cfDNA. Thirdly, the current study only 
focused on the 5hmC modification over genic regions; because the functional relevance of genic regions was 
better annotated and established, it would be interesting to extend the 5hmC analysis to other genomic 
regions, such as long non-coding RNA[38] and enhancer markers as well as co-regulation analysis between 
5hmC and gene expression in the future. Finally, future studies that expand to other populations and ethnic 
backgrounds will provide insights into any population-specific epigenetic modifications associated with 
DN, because of the long-appreciated baseline differences in epigenetic modifications across human 
populations[39].

In conclusion, novel 5hmC modifications detected in patient-derived cfDNA samples were found to be 
implicated in DN. The 5hmC-Seal technique implemented with cfDNA holds promise for the future 
development of a non-invasive, clinically convenient tool for early detection of DN in high-risk T2D 
patients, thus contributing to the ultimate goal of improving clinical outcomes through personalized 
preventive intervention and/or treatment.
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